CN114839349A - 一种获取岩石风化速率与土壤形成速率的方法 - Google Patents
一种获取岩石风化速率与土壤形成速率的方法 Download PDFInfo
- Publication number
- CN114839349A CN114839349A CN202210490888.6A CN202210490888A CN114839349A CN 114839349 A CN114839349 A CN 114839349A CN 202210490888 A CN202210490888 A CN 202210490888A CN 114839349 A CN114839349 A CN 114839349A
- Authority
- CN
- China
- Prior art keywords
- rate
- soil
- rock
- weathering
- formation rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011435 rock Substances 0.000 title claims abstract description 68
- 238000004181 pedogenesis Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000002689 soil Substances 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000004062 sedimentation Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 241000282414 Homo sapiens Species 0.000 claims description 4
- 238000006253 efflorescence Methods 0.000 claims description 4
- 206010037844 rash Diseases 0.000 claims description 4
- 230000029087 digestion Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 238000011002 quantification Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004162 soil erosion Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 241000018650 Pinus massoniana Species 0.000 description 1
- 235000011609 Pinus massoniana Nutrition 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/12—Simultaneous equations, e.g. systems of linear equations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Analytical Chemistry (AREA)
- Operations Research (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Remote Sensing (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- Medicinal Chemistry (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Measurement Of Radiation (AREA)
Abstract
本发明提供一种获取岩石风化速率与土壤形成速率的方法,包括:定期采集流域内大气干湿沉降、径流水、土壤和岩石样品,以及定期监测样本所处流域的降雨量和径流量;测定采集样品中与岩石风化和土壤形成相关的元素含量;根据流域元素地球化学质量平衡原理,建立包含岩石风化速率和土壤形成速率两个未知变量的元素输入输出平衡方程;采用多元回归方法求解元素输入输出平衡方程,获得岩石风化速率和土壤形成速率。本发明通过流域元素地球化学质量平衡法获得的风化成土速率具有原位、定量、精确等优点,可为合理制定区域土壤容许流失量提供科学依据。
Description
技术领域
本发明涉及土壤发生演化与生态环境保护技术领域,具体涉及一种获取岩石风化速率与土壤形成速率的方法。
背景技术
岩石风化是土壤形成的物质基础,是植物生长所需营养物质的重要来源,同时也是地球关键带元素生物地球化学循环的重要组成部分。岩石风化物(即成土母质)在气候、生物、地形的影响下,随着时间延续而发生物理、化学和生物学性质变化,从而形成具有特定属性和肥力特征的土壤。作为人类赖以生存的宝贵自然资源,土壤不仅关系“米袋子”、“菜篮子”和“水缸子”安全,而且关乎地球上多种生命形式的繁衍生息。因此,土壤健康发育是保障粮食安全与农业可持续发展的基础。只有当土壤形成速率大于土壤侵蚀速率时,土壤才能健康发育和维持生态系统可持续发展。然而,受气候变化和人类活动的双重影响,全球土壤侵蚀速率增快,一些地区的土壤侵蚀速率甚至高于岩石风化速率和土壤形成速率,导致土壤退化严重,土壤质量和服务功能不断下降。明确岩石风化速率和土壤形成速率是确定土壤容许流失量的前提,也是判定土壤能否健康发育的基础,同时可为模拟和预测土壤演变趋势及土壤资源可持续管理提供重要依据。
研究岩石风化速率和土壤形成速率的方法主要包括实验室模拟法、模型理论计算法、同位素比值法和元素损耗法。其中,实验室模拟法操作简单,且可以严格控制实验条件,但室内模拟的环境条件与野外实际状况具有很大差异,获得的岩石风化速率和土壤形成速率往往高于野外几个数量级。模型理论计算法可以用一组独立的性质来计算岩石风化速率和土壤形成速率,但需要测定岩石和土壤中矿物组成、不同矿物的表面积以及矿物释放盐基离子的速率,耗时而费力。同位素比值法被广泛用于计算岩石风化速率和土壤形成速率,但该方法假设岩石风化释放的某一元素(例如Sr)具有与母岩相同的同位素组成和比值,且该比值不随风化时间而变化,但实际上在漫长的成土过程中同位素比值会发生波动,因此同位素比值法也具有一定的误差。元素损耗法主要适用于单个土壤剖面,通过比较土壤与岩石之间元素组成的差异来计算岩石风化速率和土壤形成速率。该方法假定剖面内土壤均一、不同深度土壤年龄相同、且稳定元素(例如Ti、Zr)在岩石风化和土壤形成过程中不发生迁移。然而,自然界的土壤很难同时满足上述假设,这为利用元素损耗法测定岩石风化速率和土壤形成速率带来了很大的不确定性。综上所述,不同方法的适用范围不同,且每种方法都有其局限性。因此,亟需建立能够精确获取岩石风化速率和土壤形成速率的新方法。
发明内容
为解决上述问题,本发明提供了如下的技术方案。
一种获取岩石风化速率与土壤形成速率的方法,包括以下步骤:
采集流域内样品,所述样品包括大气干湿沉降、径流水、土壤和岩石;监测样本所处流域的降雨量和径流量;
测定采集样品中与岩石风化速率和土壤形成速率相关的元素含量;
根据流域元素地球化学质量平衡原理,建立包含岩石风化速率和土壤形成速率两个未知变量的元素输入输出平衡方程;
采用多元回归方法求解元素输入输出平衡方程,获得岩石风化速率和土壤形成速率。
优选地,所述样品所处流域,选择受人为活动干扰较小、基岩不透水的森林流域。
优选地,所述元素输入输出平衡方程为:
P·Pi+R·Ri=S·Si+D·Di
式中,R为岩石风化速率,S为土壤形成速率,P为年降雨量,Pi为大气干湿沉降中元素i的平均含量,D为年径流量,Di为径流水中元素i的平均含量,Ri和Si分别为岩石和土壤中元素i的平均含量。
优选地,所述样本所处流域的降雨量和径流量的监测,采用气象站和径流监测仪进行监测;所述流域内大气干湿沉降的采集,采用干湿沉降仪进行采集;
所述气象站和干湿沉降仪设置在流域内相对空旷且不受树干和树枝影响的地方,所述径流监测仪安装在流域出口处。
优选地,所述大气干湿沉降、径流水、土壤和岩石样品定期采集时针对不同地形部位、土壤、植被设多个采样点,分别采集。
优选地,所述样品中与岩石风化和土壤形成相关的元素含量采用HF-HCl-HNO3消煮后,利用等离子发射光谱仪测定。
优选地,所述样品中与岩石风化和土壤形成相关的元素为Si、Al、Ca、Mg、K和Na。
本发明的有益效果:
(1)以受人为活动干扰较小、基岩不透水的森林流域为对象,可有效避免人为输入输出及地下水渗漏的影响,同时元素输入输出平衡不受热力学性质的影响,而仅仅依赖于野外监测、采样和实验分析,可操作性强;
(2)与传统的实验室模拟法、模型理论计算法、同位素比值法和元素损耗法相比,该方法可以避免时空异质性的影响,具有原位、定量、精确等优点,同时易于推广;
(3)该方法通过长期监测、多点采样、多元素测定,在此基础上,建立多种元素的输入输出平衡方程,获得流域内平均岩石风化速率和土壤形成速率,能从根本上解决单点采样单次实验造成的误差。
(4)该方法获得的岩石风化速率和土壤形成速率为合理确定土壤容许流失量奠定了基础,并为模拟和预测土壤演化趋势和土壤资源可持续管理提供依据。
附图说明
图1为本发明实施例的方法流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
本发明的一种获取岩石风化速率与土壤形成速率的方法。如图1所示:
S1:选择受人为活动干扰较小、基岩不透水的森林流域,定期采集流域内大气干湿沉降、径流水、土壤和岩石样品,以及定期监测样本所处流域的降雨量和径流量。
S2:测定采集样品中与岩石风化和土壤形成相关的元素含量。
S3:根据流域元素地球化学质量平衡原理,建立包含岩石风化速率和土壤形成速率两个未知变量的元素输入输出平衡方程:
P·Pi+R·Ri=S·Si+D·Di
式中,R为岩石风化速率,S为土壤形成速率,P为年降雨量,Pi为大气干湿沉降中元素i的平均含量,D为年径流量,Di为径流水中元素i的平均含量,Ri和Si分别为岩石和土壤中元素i的平均含量。
S4:采用多元回归方法求解元素输入输出平衡方程,获得岩石风化速率和土壤形成速率。
本实施例中,
在安徽省南部选取基岩为花岗岩的森林小流域(安徽省宣城市泾县包合乡厚岸村,118°2′E,30°33′N),该地区属亚热带湿润季风气候,年平均气温16℃左右,年降雨量1500mm。植被主要为常绿针叶林,以冷杉和云杉为主,局部也有一些竹林、马尾松和灌丛。本实施例在流域内相对空旷且不受树干和树枝影响的地方安装小型气象站(WatchDog便携式自动气象站900ET),在流域出口处修建标准堰,并安装径流自动监测仪(美国ISCO-6712自动监测仪)。小型气象站和径流自动监测仪分别用于监测降雨量和径流量。
本实施例在森林流域的上游、中游和下游定期(每月)采集大气干湿沉降、径流水、土壤和岩石样品,实验周期为一年。将每月采集的样品带回实验室进行蒸干(大气干湿沉降和径流水)和磨碎(土壤与岩石)等预处理,采用HF-HCl-HNO3对预处理后的样品进行消煮,利用等离子发射光谱仪测定消煮液中Si、Al、Ca、Mg、K、Na等与岩石风化和土壤形成相关的元素含量。
根据上述测定的元素含量,建立包含岩石风化速率(R)和土壤形成速率(S)两个未知变量的元素输入输出平衡方程:P·Pi+R·Ri=S·Si+D·Di,其中P为年降雨量(104m-3ha- 1yr-1),Pi为大气干湿沉降中元素i的平均含量(104gt-1),D为年径流量(104m-3ha-1yr-1),Di为径流水中元素i的平均含量(104gt-1),Ri和Si分别为岩石和土壤中元素i的平均含量(104gt-1)。元素Si、Al、Ca、Mg、K、Na的输入输出平衡方程如下:
Si:0.11×1.52+35.20×R=32.54×S+7.21×0.76
Al:0.30×1.52+6.72×R=8.11×S+0.03×0.76
Ca:1.80×1.52+0.82×R=0.54×S+4.96×0.76
Mg:0.20×1.52+0.16×R=0.29×S+0.86×0.76
K:0.46×1.52+3.70×R=3.70×S+0.79×0.76
Na:0.41×1.52+2.27×R=1.94×S+4.70×0.76
采用多元回归方法,求解Si、Al、Ca、Mg、K、Na组成的元素输入输出平衡方程组,获得岩石风化速率(R=1.04±0.65t ha-1yr-1)和土壤形成速率(S=0.95±0.69t ha-1yr-1)。
本实施例表明,在亚热带湿润地区,通过选取基岩不透水的森林流域,定期采集大气干湿沉降、径流水、土壤和岩石样品,测定样品中Si、Al、Ca、Mg、K、Na等元素含量,建立各元素的输入输出平衡方程,是获取岩石风化速率和土壤形成速率的一种有效方法。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (7)
1.一种获取岩石风化速率与土壤形成速率的方法,其特征在于,包括以下步骤:
采集流域内样品,所述样品包括大气干湿沉降、径流水、土壤和岩石;监测样本所处流域的降雨量和径流量;
测定采集样品中与岩石风化速率和土壤形成速率相关的元素含量;
根据流域元素地球化学质量平衡原理,建立包含岩石风化速率和土壤形成速率两个未知变量的元素输入输出平衡方程;
采用多元回归方法求解元素输入输出平衡方程,获得岩石风化速率和土壤形成速率。
2.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述样品所处流域,选择受人为活动干扰较小、基岩不透水的森林流域。
3.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述元素输入输出平衡方程为:
P·Pi+R·Ri=S·Si+D·Di
式中,R为岩石风化速率,S为土壤形成速率,P为年降雨量,Pi为大气干湿沉降中元素i的平均含量,D为年径流量,Di为径流水中元素i的平均含量,Ri和Si分别为岩石和土壤中元素i的平均含量。
4.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述样本所处流域的降雨量和径流量的监测,采用气象站和径流监测仪进行监测;所述流域内大气干湿沉降的采集,采用干湿沉降仪进行采集;
所述气象站和干湿沉降仪设置在流域内相对空旷且不受树干和树枝影响的地方,所述径流监测仪安装在流域出口处。
5.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述大气干湿沉降、径流水、土壤和岩石样品定期采集时针对不同地形部位、土壤、植被设多个采样点,分别采集。
6.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述样品中与岩石风化和土壤形成相关的元素含量采用HF-HCl-HNO3消煮后,利用等离子发射光谱仪测定。
7.根据权利要求1所述的获取岩石风化速率与土壤形成速率的方法,其特征在于,所述样品中与岩石风化和土壤形成相关的元素为Si、Al、Ca、Mg、K和Na。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210490888.6A CN114839349A (zh) | 2022-05-07 | 2022-05-07 | 一种获取岩石风化速率与土壤形成速率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210490888.6A CN114839349A (zh) | 2022-05-07 | 2022-05-07 | 一种获取岩石风化速率与土壤形成速率的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114839349A true CN114839349A (zh) | 2022-08-02 |
Family
ID=82567439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210490888.6A Pending CN114839349A (zh) | 2022-05-07 | 2022-05-07 | 一种获取岩石风化速率与土壤形成速率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114839349A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116718753A (zh) * | 2023-05-31 | 2023-09-08 | 中国地质大学(北京) | 一种土壤地球化学风化基因sg01及其构建方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4328001A (en) * | 1980-09-08 | 1982-05-04 | Caruccio Frank T | Method of determining weathering characteristics of rock formations in earth moving operations |
CN108491978A (zh) * | 2018-03-29 | 2018-09-04 | 中国科学院地球化学研究所 | 一种喀斯特地区岩石风化成土速率计算的方法 |
CN110083930A (zh) * | 2019-04-25 | 2019-08-02 | 中国地质大学(北京) | 页岩风化指数的构建方法及装置 |
-
2022
- 2022-05-07 CN CN202210490888.6A patent/CN114839349A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4328001A (en) * | 1980-09-08 | 1982-05-04 | Caruccio Frank T | Method of determining weathering characteristics of rock formations in earth moving operations |
CN108491978A (zh) * | 2018-03-29 | 2018-09-04 | 中国科学院地球化学研究所 | 一种喀斯特地区岩石风化成土速率计算的方法 |
CN110083930A (zh) * | 2019-04-25 | 2019-08-02 | 中国地质大学(北京) | 页岩风化指数的构建方法及装置 |
Non-Patent Citations (2)
Title |
---|
孙子媛等: "喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究", 《地球与环境》 * |
杨金玲等: "典型亚热带花岗岩地区森林流域岩石风化和土壤形成速率研究", 《土壤学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116718753A (zh) * | 2023-05-31 | 2023-09-08 | 中国地质大学(北京) | 一种土壤地球化学风化基因sg01及其构建方法和应用 |
CN116718753B (zh) * | 2023-05-31 | 2024-05-07 | 中国地质大学(北京) | 一种土壤地球化学风化基因sg01及其构建方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China | |
Schellekens et al. | Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico | |
Li et al. | A Tianshan Mountains loess-paleosol sequence indicates anti-phase climatic variations in arid central Asia and in East Asia | |
Onderka et al. | Hydrogeologic and landscape controls of dissolved inorganic nitrogen (DIN) and dissolved silica (DSi) fluxes in heterogeneous catchments | |
Peng et al. | Impact of vegetation restoration on soil properties in near-surface fissures located in karst rocky desertification regions | |
Sakakibara et al. | Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China | |
Shao et al. | Distribution of soil available nutrients and their response to environmental factors based on path analysis model in arid and semi-arid area of northwest China | |
Chang et al. | Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China | |
Song et al. | Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China | |
Xiong et al. | Soil erosion and chemical weathering in a region with typical karst topography | |
Wang et al. | A multilayer soil moisture dataset based on the gravimetric method in China and its characteristics | |
Riotte et al. | Origin of silica in rice plants and contribution of diatom earth fertilization: insights from isotopic Si mass balance in a paddy field | |
Ding et al. | Effects of forest cover type and ratio changes on runoff and its components | |
Saulnier et al. | Climate-growth relationships in a Larix decidua Mill. network in the French Alps | |
Lu et al. | Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product | |
Lal et al. | Characterization of surface runoff, soil erosion, nutrient loss and their relationship for agricultural plots in India | |
Lu et al. | Chloride tracer of the loess unsaturated zone under sub-humid region: A potential proxy recording high-resolution hydroclimate | |
Moosdorf et al. | Changes in dissolved silica mobilization into river systems draining North America until the period 2081–2100 | |
Jiang et al. | The transmission of isotopic signals from precipitation to groundwater and its controls: An experimental study with soil cylinders of various soil textures and burial depths in a monsoon region | |
Zhang et al. | Spatial and temporal variations of dissolved silicon isotope compositions in a large dammed river system | |
CN114839349A (zh) | 一种获取岩石风化速率与土壤形成速率的方法 | |
Liu et al. | Spatio-temporal variations of δ 2 H and δ 18 O in precipitation and shallow groundwater in the Hilly Loess Region of the Loess Plateau, China | |
Li et al. | Field variation of groundwater recharge and its uncertainty via multiple tracers' method in deep loess vadose zone | |
Deiana et al. | Discharge and environmental isotope behaviours of adjacent fractured and porous aquifers | |
Wang et al. | The use of stable isotopes to determine optimal application of irrigation-water to a maize crop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220802 |
|
RJ01 | Rejection of invention patent application after publication |