CN114839009B - A device and method for detwinning of layered single crystal samples - Google Patents
A device and method for detwinning of layered single crystal samples Download PDFInfo
- Publication number
- CN114839009B CN114839009B CN202210401544.3A CN202210401544A CN114839009B CN 114839009 B CN114839009 B CN 114839009B CN 202210401544 A CN202210401544 A CN 202210401544A CN 114839009 B CN114839009 B CN 114839009B
- Authority
- CN
- China
- Prior art keywords
- metal
- metal sheet
- outer frame
- single crystal
- metal outer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 138
- 239000002184 metal Substances 0.000 claims abstract description 138
- 230000007704 transition Effects 0.000 claims description 31
- 238000005259 measurement Methods 0.000 claims description 14
- 238000001683 neutron diffraction Methods 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910001374 Invar Inorganic materials 0.000 claims description 9
- 239000003292 glue Substances 0.000 claims description 7
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 6
- 239000000523 sample Substances 0.000 description 38
- 229910000838 Al alloy Inorganic materials 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000011160 research Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 7
- 239000002887 superconductor Substances 0.000 description 6
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000001956 neutron scattering Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2806—Means for preparing replicas of specimens, e.g. for microscopal analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/36—Embedding or analogous mounting of samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/20025—Sample holders or supports therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/2055—Analysing diffraction patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/041—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明提供一种用于层状单晶样品退孪晶的装置及方法,该装置包括:具有内腔的金属外框;以及位于金属外框内腔中的金属片;所述金属片的两端与金属外框固定;所述金属外框的热膨胀系数小于金属片的热膨胀系数;所述金属片被配置为用以承载固定样品,在低温环境下,由于金属外框与金属片的热膨胀系数差异,金属片受到拉力并将拉伸应变传递给样品。该装置不仅可以实现单晶样品退孪晶,还可以将剩余的单轴应变传递给单晶样品,使得样品在退孪晶的基础上具有一定的单轴应变。
The invention provides a device and method for detwinning of a layered single crystal sample. The device comprises: a metal outer frame with an inner cavity; and a metal sheet located in the inner cavity of the metal outer frame; two of the metal sheet The end is fixed to the metal frame; the thermal expansion coefficient of the metal frame is smaller than that of the metal sheet; the metal sheet is configured to carry and fix the sample. Difference, the metal sheet is under tension and transfers the tensile strain to the sample. The device can not only realize detwinning of single crystal samples, but also transfer the remaining uniaxial strain to single crystal samples, so that the samples have a certain uniaxial strain on the basis of detwinning.
Description
技术领域technical field
本发明涉及金相显微分析技术领域。更具体地,涉及一种用于层状单晶样品退孪晶的装置及方法。The invention relates to the technical field of metallographic microanalysis. More specifically, it relates to a device and method for detwinning a layered single crystal sample.
背景技术Background technique
对于大多数铁基超导体而言,随着温度降低,体系会经历从四方相(tetragonalphase,aT=bT)到正交相(orthorhombicphase,ao>bo)的结构相变(T<TS),二者单胞基矢夹角呈45°。研究表明,结构相变后铁基超导体中形成两组对称的孪晶晶畴结构,这一晶畴沿四方相的(100)和(010)方向在样品ab面内以规则的条纹状相互平行或垂直排列;沿c方向则可延伸到整块样品,而不受样品表面缺陷等影响;若样品质量较高,则孪晶畴壁光滑且规则,间距大约10微米,如图1、图2所示。For most iron-based superconductors, as the temperature decreases, the system will undergo a structural phase transition from tetragonal phase (a T = b T ) to orthorhombic phase (orthorhombic phase, a o >b o ) (T<T S ), the angle between the two unit cell base vectors is 45°. Studies have shown that after the structural phase transition, two sets of symmetrical twin domain structures are formed in the iron-based superconductor, and the domains are parallel to each other in regular stripes along the (100) and (010) directions of the tetragonal phase in the ab plane of the sample. Or vertical arrangement; along the c direction, it can extend to the entire sample without being affected by surface defects of the sample; if the sample quality is high, the twin domain walls are smooth and regular, with a spacing of about 10 microns, as shown in Figure 1 and Figure 2 shown.
铁基超导体中,超导电性、电阻各项异性等物理现象的起源仍缺乏较为统一的理论解释。而孪晶现象的存在阻碍了研究者对体系中本征磁性、电阻等性质的研究[2-3]。例如,孪晶现象的存在,导致T<TS在结构峰(020)o的位置处既有(020)o的贡献也有(200)o贡献。在实验中,研究和发展较为成熟的退孪晶方法显得尤为重要。目前,通过施加单轴机械应力实现尺寸较大(厘米量级)的、块状单晶样品的退孪晶工艺已相对成熟但同时伴随有来自退孪晶装置的巨大背景信号。而实验研究中仍缺少相对成熟的可以给尺寸较小的(毫米量级)、层状单晶样品退孪晶的方法。In iron-based superconductors, the origin of physical phenomena such as superconductivity and resistance anisotropy still lacks a unified theoretical explanation. However, the existence of twinning hinders researchers from studying the properties of the system such as intrinsic magnetism and electrical resistance [2-3] . For example, the existence of twinning causes T< TS to have both (020) o and (200) o contributions at the position of the structural peak (020) o . In the experiment, it is particularly important to research and develop more mature detwinning methods. At present, the detwinning process of large (centimeter-scale) bulk single crystal samples by applying uniaxial mechanical stress is relatively mature, but it is accompanied by a huge background signal from the detwinning device. However, there is still a lack of relatively mature methods for detwinning small (millimeter-scale) layered single crystal samples in experimental research.
以铁基超导体中层状单晶样品,FeSe(TS=90K)为例,该样品的基本尺寸是2*2*0.05mm3。研究者已采用不同的实验手段研究了孪晶态FeSe单晶的磁性、电阻等信息。而受限于退孪晶技术的发展,FeSe单晶中本征物性有待进一步研究。基于此,我们发明并设计了一种新的可用于层状单晶样品退孪晶的装置,并采用多种实验手段证实了该装置的实用性与可行性。Taking the layered single crystal sample of Fe-based superconductor, FeSe (T S =90K) as an example, the basic size of the sample is 2*2*0.05mm 3 . Researchers have used different experimental methods to study the magnetic properties, electrical resistance and other information of twinned FeSe single crystals. However, limited by the development of detwinning technology, the intrinsic physical properties of FeSe single crystals need to be further studied. Based on this, we invented and designed a new device for detwinning of layered single crystal samples, and verified the practicability and feasibility of the device by various experimental methods.
发明内容Contents of the invention
针对上述问题,本发明提供一种用于层状单晶样品退孪晶的装置以解决采用传统的机械加压方式无法对尺寸较小(毫米量级)的层状单晶样品退孪晶的问题。In view of the above problems, the present invention provides a device for detwinning of layered single crystal samples to solve the problem that traditional mechanical pressing methods cannot be used to detwinn the layered single crystal samples with a smaller size (millimeter order) question.
为实现上述目的,本发明采用下述技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明提供一种用于层状单晶样品退孪晶的装置,包括:The invention provides a device for detwinning a layered single crystal sample, comprising:
具有内腔的金属外框;以及a metal frame with an internal cavity; and
位于金属外框内腔中的金属片;a metal sheet located in the inner cavity of the metal frame;
所述金属片的两端与金属外框固定;The two ends of the metal sheet are fixed to the metal frame;
所述金属外框的热膨胀系数小于金属片的热膨胀系数;The thermal expansion coefficient of the metal frame is smaller than that of the metal sheet;
所述金属片被配置为用以承载固定样品,在低温环境下,由于金属外框与金属片的热膨胀系数差异,金属片受到拉力并将拉伸应变传递给样品。The metal sheet is configured to carry and fix the sample. In a low temperature environment, due to the difference in thermal expansion coefficient between the metal frame and the metal sheet, the metal sheet is subjected to tension and transmits tensile strain to the sample.
此外,优选地方案是,所述金属片包括中间区,位于中间区两端的两个过渡区,以及两个分别形成于两个过渡区的远离中间区一端的用以与金属外框结合固定的固定区;In addition, it is preferred that the metal sheet includes a middle area, two transition areas located at both ends of the middle area, and two transition areas respectively formed at the ends of the two transition areas away from the middle area to be combined and fixed with the metal frame. fixed area;
所述过渡区的两侧边部朝向中间区逐渐变窄。The two sides of the transition zone gradually narrow toward the middle zone.
此外,优选地方案是,所述中间区与过渡区的连接处及过渡区与固定区的连接处均包括弧形过渡部。In addition, preferably, the connection between the intermediate region and the transition region and the connection between the transition region and the fixed region both include arc-shaped transition portions.
此外,优选地方案是,所述中间区的两侧边部呈直边;In addition, the preferred solution is that the two sides of the middle area are straight sides;
所述过渡区的两侧边部呈逐渐聚拢的斜边。The two sides of the transition zone are sloped sides that gradually converge.
此外,优选地方案是,定义,所述金属外框的长度方向为第一方向,所述金属外框的宽度方向为第二方向,所述金属外框的高度方向为第三方向;In addition, the preferred solution is to define that the length direction of the metal frame is the first direction, the width direction of the metal frame is the second direction, and the height direction of the metal frame is the third direction;
所述金属片沿所述第一方向设置;The metal sheet is arranged along the first direction;
第一方向上所述金属外框的尺寸为95mm,第二方向上所述金属外框的尺寸为45mm,第三方向上所述金属外框的尺寸为5mm;The size of the metal frame in the first direction is 95mm, the size of the metal frame in the second direction is 45mm, and the size of the metal frame in the third direction is 5mm;
第一方向上所述中间区的尺寸为20mm,第二方向上所述中间区的尺寸为15mm,第三方向上所述中间区的尺寸为0.2mm;The size of the middle zone in the first direction is 20mm, the size of the middle zone in the second direction is 15mm, and the size of the middle zone in the third direction is 0.2mm;
第一方向上所述固定区的尺寸为7mm,第二方向上所述固定区的尺寸为35mm,第三方向上所述固定区的尺寸为0.2mm。The size of the fixing area in the first direction is 7 mm, the size of the fixing area in the second direction is 35 mm, and the size of the fixing area in the third direction is 0.2 mm.
此外,优选地方案是,所述装置还包括有形成于金属外框上的用以与外部设备连接的连接部。In addition, preferably, the device further includes a connection part formed on the metal outer frame for connecting with external equipment.
此外,优选地方案是,所述金属外框的材质为因瓦合金;所述金属片的材质为6061铝合金。In addition, preferably, the metal frame is made of Invar alloy; the metal sheet is made of 6061 aluminum alloy.
此外,优选地方案是,所述装置包括两个排列于金属片两端的且与金属外框固定的夹持固定件,所述金属片位于两夹持固定件之间;两个夹持固定件被配置为将金属片夹持固定在金属外框内。In addition, it is preferred that the device includes two clamping fixtures arranged at both ends of the metal sheet and fixed to the metal frame, the metal sheet is located between the two clamping fixtures; the two clamping fixtures It is configured to clamp and fix the sheet metal within the metal frame.
本发明还提供一种用于层状单晶样品退孪晶的方法,所述方法包括:The present invention also provides a method for detwinning a layered single crystal sample, the method comprising:
将金属片的两端与金属外框固定;Fix both ends of the metal sheet to the metal frame;
将层状单晶样品固定于金属片上;Fix the layered single crystal sample on the metal sheet;
低温环境下,由于金属外框的热膨胀系数小于金属片的热膨胀系数,金属片受到拉力并将拉伸应变传递给样品;In a low temperature environment, since the thermal expansion coefficient of the metal frame is smaller than that of the metal sheet, the metal sheet is subjected to tension and transmits the tensile strain to the sample;
对样品进行分析;Analyze the samples;
所述分析包括各项异性电阻率测试或弹性中子衍射测量。The analysis includes anisotropic resistivity testing or elastic neutron diffraction measurements.
此外,优选地方案是,金属片两端通过夹持固定件固定于金属外框内,所述方法进一步包括:In addition, a preferred solution is that both ends of the metal sheet are fixed in the metal outer frame by clamping and fixing parts, and the method further includes:
在金属片与夹持固定件以及金属外框的接触位置均匀涂抹STYCAST 2850FT胶水,并在65℃温度下,持续2小时烤干。Apply STYCAST 2850FT glue evenly on the contact position between the metal sheet, the clamping fixture and the metal frame, and bake it at 65°C for 2 hours.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明可以广泛应用于多种层状单晶样品,该装置不仅可以实现单晶样品退孪晶,还可以将剩余的单轴应变传递给单晶样品,使得样品在退孪晶的基础上具有一定的单轴应变。The present invention can be widely applied to a variety of layered single crystal samples. The device can not only realize detwinning of single crystal samples, but also transfer the remaining uniaxial strain to single crystal samples, so that the samples have A certain uniaxial strain.
实验研究中,一方面退孪晶技术的提升有利于研究样品的本征性质,增强研究者对所研究体系的理解;另一方面,体系中单轴应变的引入可能诱导出一些新奇的物理现象或引起序参量的变化。In the experimental research, on the one hand, the improvement of the detwinning technology is beneficial to the study of the intrinsic properties of the sample and enhances the understanding of the research system; on the other hand, the introduction of uniaxial strain in the system may induce some novel physical phenomena Or cause changes in order parameters.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
图1是CaFe2As2单晶(TS=173K)在293K和5K下单晶晶畴结构的光学图像。Fig. 1 is an optical image of single crystal domain structure of CaFe 2 As 2 single crystal (T S =173K) at 293K and 5K.
图2是在BaFe2As2单晶中,当T<TS(138K)时,四方相晶格发生结构相变进入正交相并形成两组孪晶晶畴。Figure 2 shows that in the BaFe 2 As 2 single crystal, when T< TS (138K), the tetragonal phase lattice undergoes a structural phase transition into the orthorhombic phase and forms two sets of twin crystal domains.
图3是本发明的整体结构示意图。Fig. 3 is a schematic diagram of the overall structure of the present invention.
图4是本发明的金属片的结构示意图。Fig. 4 is a schematic structural view of the metal sheet of the present invention.
图5是本发明与单一样品配合图。Fig. 5 is the cooperation diagram of the present invention and a single sample.
图6是退孪晶FeSe单晶的各项异性电阻率测量以及装置单轴应变的表征。Figure 6 is an anisotropic resistivity measurement of a detwinned FeSe single crystal and characterization of the uniaxial strain of the device.
图7是本发明与多个样品配合图。Fig. 7 is a diagram of cooperation between the present invention and several samples.
图8是退孪晶态FeSe(拧紧顶部螺丝)的结构峰(020)的中子衍射结果和孪晶态FeSe(旋松顶部螺丝)的结构峰(020)的中子衍射结果。Figure 8 is the neutron diffraction result of the structural peak (020) of detwinned FeSe (tighten the top screw) and the neutron diffraction result of the structural peak (020) of twinned FeSe (loosen the top screw).
具体实施方式Detailed ways
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present invention unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way taken as limiting the invention, its application or uses.
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。Techniques and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques and devices should be considered part of the description.
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other instances of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
现有的传统机械加压方式是通过旋转螺丝将应力直接传递给厘米级尺寸单晶样品,因此无法给毫米级尺寸单晶样品直接传递应力。The existing traditional mechanical pressing method is to directly transfer the stress to the centimeter-sized single crystal sample by rotating the screw, so it is impossible to directly transfer the stress to the millimeter-sized single crystal sample.
另外,传统机械加压方式需要样品具有一定硬度,而层状软样品无法承受这一加压方式。In addition, the traditional mechanical pressing method requires the sample to have a certain hardness, and the layered soft sample cannot withstand this pressing method.
为了解决采用传统的机械加压方式无法对尺寸为毫米量级的层状单晶样品退孪晶的问题。本发明提供一种用于层状单晶样品退孪晶的装置,结合图1至图8所示,具体地所述用于层状单晶样品退孪晶的装置包括:具有内腔的金属外框1;以及位于金属外框1内腔中的金属片2;所述金属片2的两端与金属外框1固定;所述金属外框1的热膨胀系数小于金属片2的热膨胀系数;所述金属片2被配置为用以承载固定样品3,在低温环境下,由于金属外框1与金属片2的热膨胀系数差异,金属片2受到拉力并通过胶水将拉伸应变传递给样品3。该装置可以广泛应用于多种层状单晶样品退孪晶并能够对样品施加单轴应变,成功解决了铁基超导体中尺寸较小的、层状样品退孪晶的技术难题,有利于研究者们采用多种实验方法探测这些体系中的本征性质,从而加强对体系中多种序参量相互作用的理解;对于没有孪晶效应的层状单晶样品,该装置可以给单晶施加沿特定方向的单轴应变,可能会诱导出新的物理现象或对已有序参量进行调控。In order to solve the problem that the traditional mechanical pressing method cannot detwin the layered single crystal sample whose size is on the order of millimeters. The present invention provides a device for detwinning of layered single crystal samples, as shown in Figures 1 to 8, specifically the device for detwinning of layered single crystal samples includes: a metal with an inner cavity The
该装置的设计理念来自于不同金属热膨胀系数的差异。金属外框1采用因瓦合金,其热膨胀系数约为2×10-6/K;金属片2采用6061铝合金,其热膨胀系数约为24×10-6/K。随着温度的降低,因瓦合金外框与粘有样品的0.2mm厚的6061铝合金片由于热膨胀系数的不同,因瓦合金外框收缩较慢,内部6061铝合金片收缩较快,而铝合金片通过STYCAST 2850FT胶水以及螺丝与因瓦合金外框相连,导致低温下,铝合金片沿着金属外框的长度方向被拉伸。将铝合金片设计为两端较宽、中间较窄的特定形状,在降温过程中,单轴应变[~22*(300-T)×10-6]较为均匀集中地汇聚到铝合金片中间较窄的区域。通过特定胶水作用,将该应变同时传递给多个单晶样品,从而实现大面积层状单晶样品同时退孪晶或受单轴应变的调控。The design idea for the device comes from the difference in the thermal expansion coefficients of different metals. The
在一实施例中,关于金属片2的具体结构,所述金属片2包括中间区21,位于中间区21两端的两个过渡区22,以及两个分别形成于两个过渡区22的远离中间区21一端的用以与金属外框1结合固定的固定区23;所述过渡区22的两侧边部朝向中间区21逐渐变窄。In one embodiment, with regard to the specific structure of the
进一步地,为了防止中间区21与过渡区22的连接处及过渡区22与固定区23的连接处应力过于集中,所述中间区21与过渡区22的连接处及过渡区22与固定区23的连接处均包括弧形过渡部24。Further, in order to prevent excessive concentration of stress at the connection between the
更具体地,所述中间区21的两侧边部呈相互平行的直边设置,所述过渡区22的两侧边部呈对称设置的斜边设置。通过上述设置,能够使应变更加均匀集中地汇聚到铝合金片的中间区域。More specifically, the two sides of the
在上述实施例中,定义,所述金属外框1的长度方向为第一方向,所述金属外框1的宽度方向为第二方向,所述金属外框1的高度方向为第三方向;所述金属片2沿所述第一方向设置;第一方向上所述金属外框1的尺寸为95mm,第二方向上所述金属外框1的尺寸为45mm,第三方向上所述金属外框1的尺寸为5mm;第一方向上所述中间区21的尺寸为20mm,第二方向上所述中间区21的尺寸为15mm,第三方向上所述中间区21的尺寸为0.2mm;第一方向上所述固定区23的尺寸为7mm,第二方向上所述固定区23的尺寸为35mm,第三方向上所述固定区23的尺寸为0.2mm,第一方向上金属片2的总长度为77mm。在整个装置的设计中,金属片2的形状尺寸尤为关键,样品3被粘贴于金属片2中间区21,为了防止应变集中在过渡区22,因此需要一段较长的距离,进行缓慢过渡。在相同金属外框1尺寸前提下,金属片2承载样品3的中间区越窄,应变越大,但可粘贴样品3的质量有限。(当中间区太窄样品少质量不足的情况下难以获得较高的测试数据质量)在实验中,还需同时兼顾测量仪器腔体内径以及对样品量的需求。In the above embodiment, it is defined that the length direction of the
在一具体实施例中,所述装置还包括有形成于金属外框1上的用以与外部设备连接的连接部4,该连接部4用于将该装置与测试仪器进行连接。In a specific embodiment, the device further includes a connecting
在一具体实施例中,所述装置包括两个排列于金属片2两端的且与金属外框1固定的夹持固定件5,所述金属片2位于两夹持固定件5之间;两个夹持固定件5被配置为将金属片2夹持固定在金属外框1内。In a specific embodiment, the device includes two clamping
进一步地,金属外框1材质是因瓦合金;夹持固定件5和金属片2的材质均为6061铝合金;夹持固定件5通过长度4mm的M3不锈钢螺丝固定金属片,夹持固定件通过长度12mm的M3不锈钢螺丝(即顶部螺丝6)将金属片2与因瓦合金外框连接固定;整个装置上的螺丝旋紧即可,主要起到固定金属片2的作用而非拉伸金属片2的作用。Further, the
综上所述,本发明可以广泛应用于多种层状单晶样品,该装置不仅可以实现单晶样品退孪晶,还可以将剩余的单轴应变传递给单晶样品,使得样品在退孪晶的基础上具有一定的单轴应变。In summary, the present invention can be widely applied to a variety of layered single crystal samples. This device can not only realize the detwinning of single crystal samples, but also transfer the remaining uniaxial strain to single crystal samples, so that the samples can be detwinned The basis of the crystal has a certain uniaxial strain.
实验研究中,一方面退孪晶技术的提升有利于研究样品的本征性质,增强研究者对所研究体系的理解;另一方面,体系中单轴应变的引入可能诱导出一些新奇的物理现象或引起序参量的变化。In the experimental research, on the one hand, the improvement of the detwinning technology is beneficial to the study of the intrinsic properties of the sample and enhances the understanding of the research system; on the other hand, the introduction of uniaxial strain in the system may induce some novel physical phenomena Or cause changes in order parameters.
在另一实施例中,本发明还提供一种用于层状单晶样品退孪晶的方法,该方法包括:将金属片2的两端与金属外框1固定,在装配过程中,金属片2两端通过夹持固定件5固定于金属外框内,进一步地,需在金属片2与夹持固定件5以及金属外框1的接触位置均匀涂抹STYCAST 2850FT胶水,并在65℃温度下,持续2小时烤干,上述操作可以减少与M3不锈钢螺丝对应配合的螺孔周围的应力集中,防止在拉伸过程中金属片2沿螺孔方向断裂或滑移,从而造成拉力的驰豫与损耗;将层状单晶样品3固定于金属片2上;低温环境下,由于金属外框1的热膨胀系数小于金属片的热膨胀系数,金属片2受到拉力并将拉伸应变传递给样品3;对样品3进行分析;所述分析包括各项异性电阻率测试或弹性中子衍射测量;测量是通过综合物性测量系统PPMS测量,分析是采用matlab进行数据处理。In another embodiment, the present invention also provides a method for detwinning of a layered single crystal sample, the method includes: fixing the two ends of the
以铁基超导体中尺寸较小的层状单晶,FeSe为例(典型尺寸2*2*0.05mm3),我们通过多种实验方式表征了该装置的退孪晶效果:(1)结合综合物性测量系统PPMS开展输运测量(退孪晶FeSe单晶各项异性电阻率测试);(2)弹性中子衍射测量;其结果如下:Taking FeSe, a layered single crystal with a small size in an iron-based superconductor, as an example (
(1)输运测量(1) Transport measurement
退孪晶FeSe单晶的各向异性电阻率测量是基于综合物性测量系统(PPMS)并结合多功能杆完成。受限于PPMS腔体内径,可适当缩小用于层状单晶样品退孪晶的装置的整体尺寸以实现适配PPMS腔体,可以理解的是,上述操作仅仅是进行整体尺寸的相应缩小,其原理并不发生改变。The anisotropic resistivity measurement of detwinned FeSe single crystal is based on the comprehensive physical property measurement system (PPMS) combined with the multifunctional rod. Limited by the inner diameter of the PPMS cavity, the overall size of the device for detwinning of layered single crystal samples can be appropriately reduced to fit the PPMS cavity. It can be understood that the above operations are only for the corresponding reduction of the overall size. The principle does not change.
用无氢胶Cytop将一块FeSe单晶样品粘贴于铝合金片中心,并调节单晶样品四方相的(110)T方向平行于铝合金片直边边缘。采用Montgomery测电阻法测量了退孪晶FeSe单晶,a,b两方向的本征电阻率ρa和ρb;通过(ρb-ρa)/(ρb+ρa)表征电阻各向异性可达6%,如图6所示,表明FeSe单晶被高度退孪晶。A FeSe single crystal sample was pasted on the center of the aluminum alloy sheet with Cytop, a hydrogen-free glue, and the (110) T direction of the tetragonal phase of the single crystal sample was adjusted to be parallel to the straight edge of the aluminum alloy sheet. The intrinsic resistivity ρ a and ρ b of the detwinned FeSe single crystal in the a and b directions were measured by the Montgomery resistance measurement method; the resistance is characterized by (ρ b -ρ a )/(ρ b +ρ a ) The anisotropy can reach 6%, as shown in Figure 6, indicating that the FeSe single crystal is highly detwinned.
为了进一步排除泊松比的影响,表征低温下铝合金片上的单轴应变,采用可以同时测量水平(b方向)、竖直(a方向)两个方向应变的应变计(型号:WK-05-062TT-350)测量了铝合金片中心矩形区域的应变,结果如图6中的b所示(在退孪晶实验研究中,默认加压方向为b方向即第二方向,而该装置是沿着竖直方向施加拉力,因此竖直方向为a方向即第一方向)。In order to further eliminate the influence of Poisson's ratio and characterize the uniaxial strain on the aluminum alloy sheet at low temperature, a strain gauge (model: WK-05- 062TT-350) measured the strain in the central rectangular area of the aluminum alloy sheet, and the results are shown in b in Figure 6 (in the detwinning experimental research, the default pressure direction is the b direction, which is the second direction, and the device is along the The pulling force is applied in the vertical direction, so the vertical direction is the direction a (that is, the first direction).
图6中的b处的两条曲线分别对应该装置顶部螺丝6拧紧和旋松状态下铝合金片中心均匀较窄矩形区域上第一方向、第二方向两个方向应变的差值。对于前者,低温下均匀矩形区域单轴应变可达εvertical-εhorizontal(εa-εb)=5×10-3,足以使FeSe退孪晶;对于后者,只可以看到非常小的残余应变。The two curves at b in Figure 6 correspond to the difference in strain in the first direction and the second direction in the uniform narrow rectangular area in the center of the aluminum alloy sheet when the
综合以上分析可得,我们将铝合金片设计为两端宽、中间窄,保持其弹性系数相对于其他部件较低,从而产生弹性形变。输运测量从多种角度证实了该装置实用性与科学性,可以成功地实现层状FeSe单晶退孪晶以及低温下铝合金片中心较窄区域具有5×10-3的单轴应变。Based on the above analysis, we can design the aluminum alloy sheet to be wide at both ends and narrow in the middle, so as to keep its elastic coefficient lower than that of other parts, so as to produce elastic deformation. The transport measurements have confirmed the practicability and scientificity of the device from various perspectives, and can successfully realize the detwinning of layered FeSe single crystals and the uniaxial strain of 5×10 -3 in the narrow central region of the aluminum alloy sheet at low temperature.
(2)弹性中子衍射测量(2) Elastic neutron diffraction measurement
弹性中子衍射是一种很好地表征装置退孪晶比率的实验探针。弹性中子衍射可以测量单晶结构峰的布拉格衍射。在中子散射或中子衍射实验中,可以采用镉(中子的吸收截面较大)包裹装置外框的因瓦合金、以及多余的铝合金片等,只将样品部分暴露在中子束流范围内,有助于减少背景信号。Elastic neutron diffraction is a well-established experimental probe for characterizing the detwinning ratio of devices. Elastic neutron diffraction can measure the Bragg diffraction of single crystal structure peaks. In neutron scattering or neutron diffraction experiments, cadmium (neutron absorption cross-section is large) can be used to wrap the Invar alloy of the device outer frame, and redundant aluminum alloy sheets, etc., and only part of the sample is exposed to the neutron beam. range to help reduce background signal.
参照图7所示,铝合金片上粘有多块FeSe单晶,其四方相的(110)T方向平行于a/b方向。该装置的退孪晶效果采用位于中国原子能科学研究院中国先进研究堆(CARR堆)中子源上的“行知”冷三轴极化谱仪进行表征。Referring to Fig. 7, there are multiple FeSe single crystals adhered on the aluminum alloy sheet, and the (110) T direction of the tetragonal phase is parallel to the a/b direction. The detwinning effect of the device was characterized by the "Xingzhi" cold triaxial polarization spectrometer located on the neutron source of the China Advanced Research Reactor (CARR Reactor) of the China Institute of Atomic Energy.
图8中的a和b分别是退孪晶态FeSe(拧紧顶部螺丝6)和孪晶态FeSe(旋松顶部螺丝6)的结构峰(020)的中子衍射结果,两条曲线对应的温度分别是20K(T<TS)和120K(T>TS)。a and b in Figure 8 are the neutron diffraction results of the structural peaks (020) of the detwinned FeSe (tighten the top screw 6) and the twinned FeSe (loosen the top screw 6), respectively, and the corresponding temperatures of the two curves They are 20K (T< TS ) and 120K (T> TS ) respectively.
对于孪晶态FeSe单晶而言,结构相变温度以下,(020)处衍射峰峰强减弱,半高宽变宽。经高斯函数拟合后发现,随着温度降低,(020)处衍射峰从一个峰劈裂为谱重相近的两个峰。这两个峰的出现是因为进入孪晶态后,结构峰(020)o处既有(020)o峰的贡献也有(200)o峰的贡献,二者贡献相当。整体而言,TS以上和以下,衍射图的谱重基本守恒,如图8中的b所示。For twinned FeSe single crystals, the intensity of the diffraction peak at (020) weakens and the half-maximum width widens below the structural phase transition temperature. After Gaussian function fitting, it was found that the diffraction peak at (020) split from one peak to two peaks with similar spectral weights as the temperature decreased. The appearance of these two peaks is because after entering the twin crystal state, the structural peak (020) o has both the contribution of the (020) o peak and the contribution of the (200) o peak, and the contributions of the two are equal. Overall, above and below T S , the spectral weight of the diffraction pattern is basically conserved, as shown in b in Figure 8.
对于退孪晶态FeSe单晶而言,采用高斯函数分别拟合T<TS和T>TS结构峰(020)处衍射谱图发现,当T<TS,同样发生了峰的劈裂,对应的两个峰既有(020)o峰(右侧)的贡献也有(200)o峰(左侧)的贡献,但两个峰的谱重有明显差异。采用(I(020)o-I(200)o)/(I(020)o+I(200)o)标定退孪晶比率,约可达71%,其中,I(020)o和I(200)o表示正交相下结构峰(020)o和(200)o的强度。且T<TS和T>TS,二者谱重守恒,如图8中的a所示。For the detwinned FeSe single crystal, the Gaussian function is used to fit the diffraction spectra at the structural peaks (020) of T< TS and T> TS , and it is found that when T< TS , the peak splitting also occurs , the corresponding two peaks have contributions from both the (020) o peak (right side) and the (200) o peak (left side), but the spectral weights of the two peaks are significantly different. Using (I(020) o -I(200) o )/(I(020) o +I(200) o ) to calibrate the detwinning ratio can reach about 71%. Among them, I(020) o and I( 200) o represents the intensity of the structural peaks (020) o and (200) o in the orthorhombic phase. And T<T S and T>T S , both spectral weights are conserved, as shown in a in Figure 8 .
综合以上分析,采用该装置可以直接同时给大量FeSe单晶部分退孪晶(退孪晶比率高达~71%),且整个装置有效降低了背景信号的影响。该装置的广泛应用将有助于研究者研究类似体系的本征性质。Based on the above analysis, the device can directly partially detwin a large number of FeSe single crystals at the same time (the detwin ratio is as high as ~71%), and the whole device effectively reduces the influence of background signals. The wide application of this device will help researchers to study the intrinsic properties of similar systems.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the implementation of the present invention. Those of ordinary skill in the art can also make It is impossible to exhaustively list all the implementation modes here, and any obvious changes or changes derived from the technical solutions of the present invention are still within the scope of protection of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210401544.3A CN114839009B (en) | 2022-04-18 | 2022-04-18 | A device and method for detwinning of layered single crystal samples |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210401544.3A CN114839009B (en) | 2022-04-18 | 2022-04-18 | A device and method for detwinning of layered single crystal samples |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114839009A CN114839009A (en) | 2022-08-02 |
CN114839009B true CN114839009B (en) | 2023-02-07 |
Family
ID=82566660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210401544.3A Active CN114839009B (en) | 2022-04-18 | 2022-04-18 | A device and method for detwinning of layered single crystal samples |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114839009B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544458B1 (en) * | 1995-06-02 | 2003-04-08 | A. H. Casting Services Limited | Method for preparing ceramic material with high density and thermal shock resistance |
CN101539505A (en) * | 2008-03-19 | 2009-09-23 | 中国科学院半导体研究所 | Method for applying continuously adjustable uniaxial stress to semiconductor samples at low temperature |
JP2013242993A (en) * | 2012-05-18 | 2013-12-05 | Tohoku Univ | Characteristics control method of rare earth-based superconductive wire |
CN109709120A (en) * | 2019-01-17 | 2019-05-03 | 西南交通大学 | Speckle preparation method of prefabricated deformed pure titanium and detwinned characterization method of pure titanium |
-
2022
- 2022-04-18 CN CN202210401544.3A patent/CN114839009B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544458B1 (en) * | 1995-06-02 | 2003-04-08 | A. H. Casting Services Limited | Method for preparing ceramic material with high density and thermal shock resistance |
CN101539505A (en) * | 2008-03-19 | 2009-09-23 | 中国科学院半导体研究所 | Method for applying continuously adjustable uniaxial stress to semiconductor samples at low temperature |
JP2013242993A (en) * | 2012-05-18 | 2013-12-05 | Tohoku Univ | Characteristics control method of rare earth-based superconductive wire |
CN109709120A (en) * | 2019-01-17 | 2019-05-03 | 西南交通大学 | Speckle preparation method of prefabricated deformed pure titanium and detwinned characterization method of pure titanium |
Non-Patent Citations (3)
Title |
---|
Dichotomy between in-plane magnetic susceptibility and resistivity anisotropies in extremely strained BaFe2As2;Mingquan He et al;《nature communications》;20171231;Results and 图1 * |
Rigid platform for applying large tunable strains to mechanically delicate samples;Joonbum park et al;《Rev.Sci.Instrum》;20200803;II.Design以及图1-2 * |
单轴压强技术在超导研究中的应用;李世强;《中国科学: 物理学力学天文学》;20211231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114839009A (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meingast et al. | Anisotropic pressure dependence of T c in single-crystal YBa 2 Cu 3 O 7 via thermal expansion | |
Narayanan et al. | Determination of unknown stress states in silicon wafers using microlaser Raman spectroscopy | |
CN114839009B (en) | A device and method for detwinning of layered single crystal samples | |
CN108051477B (en) | A method for measuring lateral thermal conductivity of rock under uniaxial compression | |
Lowe et al. | Anisotropic thermopower in the a-b plane of an untwinned YBa 2 Cu 3 O 7− δ crystal | |
Miyamoto et al. | Direct measurements of mechanical properties for large-grain bulk superconductors | |
CN106597053A (en) | Straight optical path linear optical current sensor and current detection method | |
CN105865684B (en) | A kind of comprehensive residual stress low temperature detection method of polymer matrix composites | |
CN104677820B (en) | The device of high-temperature superconductor band delamination characteristic under a kind of test shear stress | |
CN115808586A (en) | Apparatus and method for evaluating moisture-heat aging of composite insulators under stress | |
CN108387333A (en) | A kind of silicon thin film material stress detecting system | |
Chen et al. | Multichannel Mueller matrix ellipsometry for simultaneous real-time measurement of bulk isotropic and surface anisotropic complex dielectric functions of semiconductors | |
Schmidt et al. | Nematicity in the superconducting mixed state of strain detwinned underdoped Ba (Fe 1− x Co x) 2 As 2 | |
CN114034240A (en) | Multi-strain rate test analysis method in rock destruction process | |
Bagrets et al. | Cryogenic test facility CryoMaK | |
CN203310943U (en) | Low-temperature superconducting strand performance test system | |
CN201364295Y (en) | Dual-shaft testing platform of membrane material mechanics | |
CN202522482U (en) | Extensometer for measuring yield strength of plate-shaped tensile test sample of pipeline steel | |
Belyaev et al. | Ferromagnetic resonance study of the effect of elastic stresses on the anisotropy of magnetic films | |
CN205538448U (en) | Sample clamping device for measuring shearing force at low temperature | |
CN111060549A (en) | Gradient temperature load loading device and method for accelerated aging of material | |
CN101539505A (en) | Method for applying continuously adjustable uniaxial stress to semiconductor samples at low temperature | |
Brito et al. | Measurement of residual stress in EFG ribbons using a phase-shifting IR photoelastic method | |
CN114739899A (en) | Method for testing critical characteristics of superconducting strip in multi-deformation mode | |
CN219319956U (en) | Clamping device for preventing head of tensile sample with plate-shaped shoulder from curling and breaking off |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |