CN114835499A - 具有复杂形状和高成型精度碳化硅陶瓷的制备方法 - Google Patents

具有复杂形状和高成型精度碳化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN114835499A
CN114835499A CN202210691576.1A CN202210691576A CN114835499A CN 114835499 A CN114835499 A CN 114835499A CN 202210691576 A CN202210691576 A CN 202210691576A CN 114835499 A CN114835499 A CN 114835499A
Authority
CN
China
Prior art keywords
silicon carbide
inorganic polymer
carbide ceramic
powder
aluminosilicate inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210691576.1A
Other languages
English (en)
Inventor
何培刚
马思齐
贾德昌
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210691576.1A priority Critical patent/CN114835499A/zh
Publication of CN114835499A publication Critical patent/CN114835499A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

具有复杂形状和高成型精度碳化硅陶瓷的制备方法,它为了解决现有制备碳化硅陶瓷工艺复杂、力学性能和精度差、烧结生成有害产物的问题。制备方法:一、向铝硅酸盐无机聚合物粘结剂中加入碳化硅粉体和石墨粉体,在冰水浴条件下持续搅拌,得到混合料浆;向混合料浆中加入分散剂,在冰水浴条件下继续搅拌,得到碳化硅/铝硅酸盐无机聚合物浆料;二、采用3D打印机将碳化硅/铝硅酸盐无机聚合物浆料打印成型,再经过养护和高温烧结。本发明制备得到的碳化硅陶瓷结构具有高精度、高强度等特点,且制备工艺简单、无温室气体排放、凝结与硬化均可在室温条件下进行,避免了坯体过度收缩、变形和开裂等现象。

Description

具有复杂形状和高成型精度碳化硅陶瓷的制备方法
技术领域
本发明涉及一种碳化硅陶瓷的制备方法,通过3D打印成型具有复杂形状和高成型精度的碳化硅陶瓷。
背景技术
陶瓷构件制备的传统工艺包括粉体处理、坯体成型、低温排胶、高温烧结以及切削加工。其制备周期长、制备复杂形状困难的问题一直以来困扰着科研工作者。而无模直写成型相比于传统的制备工艺而言,具有诸多优点,包括制备周期短、可制备形状复杂构件、无需切削加工等。截止目前,关于碳化硅陶瓷材料的直写成型技术仍处于早期试验阶段,利用直写成型该技术获得的特异结构已经被科研学者认可是最有效加工碳化硅陶瓷材料的技术之一,但是在其粘结剂选择、力学性能陡降方面问题仍然突出。此外,现有直写成型碳化硅陶瓷多采用高分子溶剂作为料浆流变改善剂或表面修饰剂,但高分子溶剂的存在将导致样品烧结后需进行排胶、除碳等繁琐操作,并且有机溶剂高温去除后将产生大量有害气体。
发明内容
本发明的目的是为了解决现有制备碳化硅陶瓷工艺复杂、力学性能和精度差、烧结生成有害产物的问题,而提供了一种具有复杂形状和高成型精度碳化硅陶瓷的制备方法。
本发明具有复杂形状和高成型精度碳化硅陶瓷的制备方法按照以下步骤实现:
一、制备碳化硅/铝硅酸盐无机聚合物浆料:
在冰水浴的条件下,将激发溶液和硅铝源粉体混合,超声搅拌后得到铝硅酸盐无机聚合物粘结剂;然后向铝硅酸盐无机聚合物粘结剂中加入碳化硅粉体和石墨粉体,在冰水浴条件下持续搅拌,得到混合料浆;向混合料浆中加入分散剂,在冰水浴条件下继续搅拌,得到碳化硅/铝硅酸盐无机聚合物浆料;
二、3D打印成型及养护:
采用3D打印机将步骤一中的碳化硅/铝硅酸盐无机聚合物浆料打印成型,得到碳化硅/铝硅酸盐无机聚合物坯体,经过养护和干燥处理,然后在温度为1500℃~1800℃的保护气氛通入条件下进行高温烧结,得到具有复杂形状和高成型精度碳化硅陶瓷。
本发明通过铝硅酸盐无机聚合物的加入,有效改善碳化硅浆料的流变性能,使得碳化硅浆料具有良好的成型性能,能够实现各类复杂结构的精密成型,经过室温养护,碳化硅/铝硅酸盐坯体对应的最高精度构件塌落比均可低至3%以下。并且经过1600℃以上高温烧结后,陶瓷构件无开裂、变形,并具有较高强度。证明本发明具有良好的打印效果和精度控制能力。同时,在力学性能方面,碳化硅与铝硅酸盐无机聚合物的比例逐渐降低,其抗压强度逐渐升高,在烧结前,碳化硅与铝硅酸盐无机聚合物的质量比例从9:1降至5:5时,蜂窝构件的抗压强度从70.1MPa提升至155.6MPa;而对于1600℃烧结后形成的碳化硅陶瓷构件,力学性能均有降低,但抗压强度仍在30.5MPa到至76.6MPa之间。而随着烧结温度提高至1800℃,制备的碳化硅陶瓷构件力学性能获得大幅提升。抗压强度在88.9MPa至183.6MPa之间。且本发明不采用有机高分子溶剂作为流变改善剂的原因在于有机高分子溶剂的存在将导致样品烧结后需进行排胶、除碳等操作,并且有机溶剂高温去除后将产生大量有害气体。
本发明制备得到的碳化硅陶瓷结构具有高精度、高强度等特点,且制备工艺简单、无温室气体排放、凝结与硬化均可在室温条件下进行,避免了坯体过度收缩、变形和开裂等现象。
附图说明
图1为实施例一采用的3D打印机中垂直夹具的结构示意图;
图2为实施例一中经烧结后结构完整的碳化硅陶瓷蜂窝构件的照片;
图3为实施例一中碳化硅与铝硅酸盐无机聚合物不同质量比下得到的碳化硅/铝硅酸盐无机聚合物浆料的粘度测试图,其中1代表碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为9:1,2代表碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为8:2,3代表碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为7:3,4代表碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为6:4,5代表碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为5:5;
图4为实施例一中3D打印成型的碳化硅/铝硅酸盐成品、1600℃烧结后的碳化硅陶瓷和1800℃烧结后的碳化硅陶瓷的密度测试图;其中■代表陶瓷坯体,●代表1600℃烧结的碳化硅陶瓷;▲为代表1800℃烧结的碳化硅陶瓷;
图5为实施例一中步骤二制备的碳化硅/铝硅酸盐无机聚合物和碳化硅陶瓷的力学性能对比图,其中A代表陶瓷坯体,B代表1600℃烧结的碳化硅陶瓷;C为代表1800℃烧结的碳化硅陶瓷;
图6为实施例一中碳化硅与铝硅酸盐无机聚合物不同质量比下的塌落比测试图。
具体实施方式
具体实施方式一:本实施方式具有复杂形状和高成型精度碳化硅陶瓷的制备方法按照以下步骤实施:
一、制备碳化硅/铝硅酸盐无机聚合物浆料:
在冰水浴的条件下,将激发溶液和硅铝源粉体混合,超声搅拌后得到铝硅酸盐无机聚合物粘结剂;然后向铝硅酸盐无机聚合物粘结剂中加入碳化硅粉体和石墨粉体,在冰水浴条件下持续搅拌,得到混合料浆;向混合料浆中加入分散剂,在冰水浴条件下继续搅拌,得到碳化硅/铝硅酸盐无机聚合物浆料;
二、3D打印成型及养护:
采用3D打印机将步骤一中的碳化硅/铝硅酸盐无机聚合物浆料打印成型,得到碳化硅/铝硅酸盐无机聚合物坯体,经过养护和干燥处理,然后在温度为1500℃~1800℃的保护气氛通入条件下进行高温烧结,得到具有复杂形状和高成型精度碳化硅陶瓷。
本实施方式步骤一得到的碳化硅/铝硅酸盐无机聚合物浆料的粘度控制在15000~40000Pa·s之间,粘度测试采用流变仪进行测试,流变仪型号为TA Instruments。
本实施方式制备得到了碳化硅陶瓷,浆料中的铝硅酸盐无机聚合物经过高温处理,其与石墨粉发生碳热还原后转换为碳化硅。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中硅铝源粉体为粉煤灰、高岭土、硅灰、矿渣、伊利石粉、黏土、煤矸石粉、废旧玻璃研磨粉、玄武岩中的一种或两种按任意比混合。
本实施方式硅铝源粉体200目筛,粉体的粒径为4~10μm。
具体实施方式三:本实施方式与具体实施方式二不同的是当硅铝源粉体为高岭土或者玄武岩时,硅铝源粉体在空气炉中以700~800℃的温度煅烧1~3h。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中所述激发溶液为强碱溶液与硅溶胶溶液的混合溶液或液态硅酸盐溶液。
本实施方式中所述的硅酸盐为硅酸钠、硅酸钾、硅酸铯、硅酸锂中的一种或多种混合硅酸盐。
具体实施方式五:本实施方式与具体实施方式四不同的是液态硅酸盐溶液模数在1.5~3.5之间。
具体实施方式六:本实施方式与具体实施方式四不同的是强碱溶液中的金属阳离子与硅溶胶溶液中二氧化硅的摩尔比为1:1~1:10。
本实施方式所述的强碱为NaOH、KOH、CsOH或者LiOH。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤一中碳化硅粉体、铝硅酸盐无机聚合物粘结剂和石墨粉体的质量比为(5~9):(1~5):(1~3)。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤一中所述的分散剂为去离子水或质量浓度为20%~50%硅溶胶溶液。
本实施方式分散剂的添加量占碳化硅/铝硅酸盐料浆的0.1-10wt%。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤二中在打印速度为10~40mm/s、打印层厚为0.2~1.6mm及打印平台温度为20~100℃的条件下,进行打印成型。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤二中在温度为20~80℃及湿度为10~90%的条件下,养护1~28天。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是步骤二中高温烧结的时间为1h~6h。
实施例一:本实施例具有复杂形状和高成型精度碳化硅陶瓷的制备方法按照以下步骤实施:
一、制备碳化硅/铝硅酸盐无机聚合物浆料:
a、高岭土在空气炉中以800℃的温度煅烧2h进行高温脱水处理,获得偏高岭土粉体,粉体经200目筛分后去除大颗粒杂质,筛分后获得粒径为70μm的硅铝源粉体;
b、在0℃冰水浴的条件下,向模数为1.25的液态硅酸钠溶液中加入硅铝源粉体,硅酸钠与硅铝源的摩尔比为1:1,超声并机械搅拌30min,得到铝硅酸盐无机聚合物粘结剂;
c、在0℃冰水浴的条件下,将碳化硅粉体加入到铝硅酸盐无机聚合物粘结剂中,以120r/min的转速持续搅拌4min,随后加入与石墨粉,石墨粉体和铝硅酸盐无机聚合物的质量比为1:3,继续搅拌得到混合料浆;
d、在0℃冰水浴的条件下,向混合料浆中加入去离子水,以120r/min的转速持续搅拌4min,得到碳化硅/铝硅酸盐无机聚合物浆料,该碳化硅/铝硅酸盐无机聚合物浆料中去离子水的添加量为0.5wt%;
二、3D打印成型及养护:
e、采用3D打印机,碳化硅/铝硅酸盐无机聚合物浆料填入装料筒中,在挤出压力为60psi的条件下,挤出碳化硅/铝硅酸盐无机聚合物浆料,然后在打印速度为240mm/s、打印层厚为0.75mm及打印底板温度为25℃的条件下,进行打印成型,得到碳化硅/铝硅酸盐坯体;
f、在温度为25℃及湿度为30%的条件下,对碳化硅/铝硅酸盐坯体养护4天,陶瓷坯体;
g、陶瓷坯体在室温下完成干燥,然后在氩气保护下,以1600℃或1800℃高温烧结1h,得到具有复杂形状和高成型精度碳化硅陶瓷。
本实施例步骤一中碳化硅与铝硅酸盐无机聚合物不同质量比下得到的碳化硅/铝硅酸盐无机聚合物浆料的粘度测试图如图3所示。
本实施例步骤二中所用的打印机型号为Ultimaker extend 2+型打印机,在该打印机上设置垂直夹具和装料筒,垂直夹具如图1所示,垂直夹具是沿夹具体的高度方向设置两个夹环,装料筒垂直插入两个夹环3中,并与点胶机及气泵连通,沿夹具体的高度方向分别开有第一通道孔1和第二通道孔2,第一通道孔1和第二通道孔2相互垂直,x轴轨道插入第一通道孔1中,y轴轨道插入第二通道孔2中。垂直夹具能在x轴轨道或者y轴轨道上滑动。
本实施例打印的碳化硅陶瓷的结构为蜂窝结构,实物照片如图2所示。
本实施例分别采用碳化硅粉体与铝硅酸盐无机聚合物粘结剂质量比为9:1、8:2、7:3、6:4、5:5的比例烧结碳化硅陶瓷,然后对养护后碳化硅/铝硅酸盐成品、1600℃烧结后的碳化硅陶瓷和1800℃烧结后的碳化硅陶瓷的密度和力学性能进行对比测试,结果如图4和5所示,由图可知,体积密度根据碳化硅与铝硅酸盐无机聚合物的质量比不同而呈现出不同,烧结前后的密度为1.5g/cm3左右,烧结后的体积密度为1.3g/cm3左右。碳化硅与铝硅酸盐无机聚合物的比例逐渐降低,其抗压强度逐渐升高,在烧结前,碳化硅与铝硅酸盐无机聚合物的比例从9:1降至5:5时,蜂窝构件的抗压强度从从70.1MPa提升至155.6MPa;而对于1600℃烧结后形成的碳化硅陶瓷构件,力学性能均有降低,但抗压强度仍在30.5MPa到至76.6MPa之间。而随着烧结温度提高至1800℃,制备的碳化硅陶瓷构件力学性能获得大幅提升。抗压强度在88.9MPa至183.6MPa之间。
本实施例计算塌落比(碳化硅/铝硅酸盐坯体和养护后碳化硅/铝硅酸盐成品的高度差,高度差与碳化硅/铝硅酸盐坯体高度的比值为塌落比),结果如图6所示,由图6可知,碳化硅/铝硅酸盐成品表现出较低的塌落比,塌落比均低于3%,最低仅为0.7%,表现出较高的成型精度。
本实施例制备的碳化硅陶瓷结构具有高精度、高强度等特点,且制备工艺简单、无温室气体排放、凝结与硬化均可在室温条件下进行,避免了坯体过度收缩、变形和开裂现象。

Claims (10)

1.具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于该制备方法按照以下步骤实现:
一、制备碳化硅/铝硅酸盐无机聚合物浆料:
在冰水浴的条件下,将激发溶液和硅铝源粉体混合,超声搅拌后得到铝硅酸盐无机聚合物粘结剂;然后向铝硅酸盐无机聚合物粘结剂中加入碳化硅粉体和石墨粉体,在冰水浴条件下持续搅拌,得到混合料浆;向混合料浆中加入分散剂,在冰水浴条件下继续搅拌,得到碳化硅/铝硅酸盐无机聚合物浆料;
二、3D打印成型及养护:
采用3D打印机将步骤一中的碳化硅/铝硅酸盐无机聚合物浆料打印成型,得到碳化硅/铝硅酸盐无机聚合物坯体,经过养护和干燥处理,然后在温度为1500℃~1800℃的保护气氛通入条件下进行高温烧结,得到具有复杂形状和高成型精度碳化硅陶瓷。
2.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤一中硅铝源粉体为粉煤灰、高岭土、硅灰、矿渣、伊利石粉、黏土、煤矸石粉、废旧玻璃研磨粉、玄武岩粉中的一种或两种按任意比混合。
3.根据权利要求2所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于当硅铝源粉体为高岭土或者玄武岩时,硅铝源粉体在空气炉中以700~800℃的温度煅烧1~3h。
4.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤一中所述激发溶液为强碱溶液与硅溶胶溶液的混合溶液或液态硅酸盐溶液。
5.根据权利要求4所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于强碱溶液中的金属阳离子与硅溶胶溶液中二氧化硅的摩尔比为1:1~1:10。
6.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤一中碳化硅粉体、铝硅酸盐无机聚合物粘结剂和石墨粉体的质量比为(5~9):(1~5):(1~3)。
7.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤一中所述的分散剂为去离子水或质量浓度为20%~50%硅溶胶溶液。
8.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤二中在打印速度为10~40mm/s、打印层厚为0.2~1.6mm及打印平台温度为20~100℃的条件下,进行打印成型。
9.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤二中在温度为20~80℃及湿度为10~90%的条件下,养护1~28天。
10.根据权利要求1所述的具有复杂形状和高成型精度碳化硅陶瓷的制备方法,其特征在于步骤二中高温烧结的时间为1h~6h。
CN202210691576.1A 2022-06-17 2022-06-17 具有复杂形状和高成型精度碳化硅陶瓷的制备方法 Pending CN114835499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210691576.1A CN114835499A (zh) 2022-06-17 2022-06-17 具有复杂形状和高成型精度碳化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210691576.1A CN114835499A (zh) 2022-06-17 2022-06-17 具有复杂形状和高成型精度碳化硅陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN114835499A true CN114835499A (zh) 2022-08-02

Family

ID=82575066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210691576.1A Pending CN114835499A (zh) 2022-06-17 2022-06-17 具有复杂形状和高成型精度碳化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114835499A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084900A (zh) * 2015-08-10 2015-11-25 哈尔滨工业大学 碳化硅陶瓷材料的制备方法
US20160304402A1 (en) * 2014-08-22 2016-10-20 The Board Of Trustees Of The University Of Illinois Refractory composite comprising a geopolymer and method of making a refractory composite
CN106587780A (zh) * 2016-12-20 2017-04-26 哈尔滨工业大学 用于3d打印的铝硅酸盐聚合物复合材料的制备及打印方法
CN106946581A (zh) * 2017-04-20 2017-07-14 哈尔滨工业大学 一种使用3d打印技术制备导电石墨烯/无机聚合物复合材料的方法
CN108136496A (zh) * 2015-10-09 2018-06-08 赛丹思科大学 3d打印原料及其应用
US20180371119A1 (en) * 2015-11-06 2018-12-27 VINCE Reed Process for providing inorganic polymer ceramic-like materials
WO2019160405A1 (en) * 2018-02-15 2019-08-22 Concr3De B.V. Additive manufacturing of an inorganic geopolymer object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304402A1 (en) * 2014-08-22 2016-10-20 The Board Of Trustees Of The University Of Illinois Refractory composite comprising a geopolymer and method of making a refractory composite
CN105084900A (zh) * 2015-08-10 2015-11-25 哈尔滨工业大学 碳化硅陶瓷材料的制备方法
CN108136496A (zh) * 2015-10-09 2018-06-08 赛丹思科大学 3d打印原料及其应用
US20180371119A1 (en) * 2015-11-06 2018-12-27 VINCE Reed Process for providing inorganic polymer ceramic-like materials
CN106587780A (zh) * 2016-12-20 2017-04-26 哈尔滨工业大学 用于3d打印的铝硅酸盐聚合物复合材料的制备及打印方法
CN106946581A (zh) * 2017-04-20 2017-07-14 哈尔滨工业大学 一种使用3d打印技术制备导电石墨烯/无机聚合物复合材料的方法
WO2019160405A1 (en) * 2018-02-15 2019-08-22 Concr3De B.V. Additive manufacturing of an inorganic geopolymer object

Similar Documents

Publication Publication Date Title
Nematollahi et al. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer
CN111233485B (zh) 基于高固含量硅系浆料3d打印直写成型复杂结构陶瓷的方法
CN110683789B (zh) 一种精密设备用环氧树脂混凝土、其制品及制备方法
Nematollahi et al. Properties of extrusion-based 3D printable geopolymers for digital construction applications
CN109384437B (zh) 可供3d打印的混杂纤维水泥基复合材料及其制备方法
CN113773028A (zh) 地聚物混凝土及其制备方法
KR102267021B1 (ko) 고비중 해양 콘크리트 구조물
CN106747543B (zh) 氧化铝短纤维增强高断裂功瓷质陶瓷砖及其制备方法
CN114890758A (zh) 一种用于3d打印的水泥基材料
CN111517740B (zh) 一种用于3d打印的水泥基复合材料及其制备方法
CN114835499A (zh) 具有复杂形状和高成型精度碳化硅陶瓷的制备方法
RU2348589C2 (ru) Композиционный материал с высокой износостойкостью, включающий дробь на основе стали, и способ получения такого материала
CN111393156A (zh) 堇青石多孔陶瓷的制备方法
CN114014594B (zh) 一种全固废超高性能地聚合物混凝土及其制备方法
CN112645713B (zh) 一种高强韧陶瓷复合材料及其制备方法
CN113831078A (zh) 一种固废综合利用生产的复合生态地铺石及其制备方法
CN112645640A (zh) 具有光学温度传感功能的复合材料铸件及其制备方法
CN113277825A (zh) 耐高温混凝土及其制备方法
JP5190187B2 (ja) コンクリート管の製造方法およびコンクリート管
CN109851372B (zh) 一种高温耐金属侵蚀浇注料及制备和成型方法
CN114804755B (zh) 一种高强抗裂再生混凝土及其制备方法
CN114409302B (zh) 一种耐高温韧性油井水泥外掺料及其制备方法
CN108147780A (zh) 一种泡沫陶瓷浆料及其制备方法
CN116063039B (zh) 一种复合保温砌块及其制备方法
CN117361976A (zh) 一种黄河砂超高韧性水泥基复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination