CN114832635A - 一种水处理用二维黏土基分离膜的制备方法 - Google Patents

一种水处理用二维黏土基分离膜的制备方法 Download PDF

Info

Publication number
CN114832635A
CN114832635A CN202210479058.3A CN202210479058A CN114832635A CN 114832635 A CN114832635 A CN 114832635A CN 202210479058 A CN202210479058 A CN 202210479058A CN 114832635 A CN114832635 A CN 114832635A
Authority
CN
China
Prior art keywords
clay
separation membrane
dimensional
solution
dimensional clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210479058.3A
Other languages
English (en)
Inventor
张倩倩
唐家东
郭子龙
秦汝楠
谢林翰
邱正垚
金玉红
刘晶冰
汪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210479058.3A priority Critical patent/CN114832635A/zh
Publication of CN114832635A publication Critical patent/CN114832635A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种水处理用二维黏土基分离膜的制备方法,属于功能材料技术领域。采用前驱液混合—抽滤涂覆或浆液刮涂的方法,以多孔亲水性聚合物薄膜(CA、PES、PS、PVDF)为支撑层基底,在其表面自组装交联物插层的二维黏土基超薄致密膜,以实现对有机物大分子的高效截留同时保证水通量。

Description

一种水处理用二维黏土基分离膜的制备方法
技术领域
本发明涉及一种水处理用二维黏土基分离膜的制备方法及其应用。该分离膜利用尺寸限域和电荷排斥双重效应,可以实现溶液中有机物大分子的筛分同时保证良好的水通量,属于功能材料技术领域。
背景技术
纳滤膜是一种新型高精度分离膜,其截留分子量位于超滤膜(10~100nm)和反渗透膜(0.1~1nm)之间,孔径尺寸约为1nm左右。纳滤膜可以有效截留水中的多价盐和有机污染物,食品医药领域内的糖类、农药以及杀虫剂等大分子。目前商业化采用的纳滤膜通常是由双层复合结构组成,一层为起支撑作用的多孔聚合物基底,一层为起分离作用的超薄致密膜。超薄致密膜通常为界面聚合法所得聚酰胺膜,其需要在高压的条件下运行,能耗较高。其次是在酸性条件下,聚酰胺的酰胺键是不耐活性氯,从而导致膜材料的损坏。近年来,二维材料在纳滤膜的设计和性能研究方面取得了重要进展。得益于其层片间堆叠产生的纳米流体通道,同时带来尺寸限域和电荷排斥效应,用于筛分和过滤纳米粒径的污染物。2012年至2014年间,安德烈·海姆报道了水分子在氧化石墨烯(GO)二维纳米通道中超快的传输机理,并发现了GO膜对离子和分子精准的超快筛分特性,证实了其作为水处理纳滤膜的可行性,参见参考文献[1-2]。此后,包括GO、MXene、MoS2以及g-C3N4在内的二维材料在分子离子筛分方面得到广泛研究。参考文献[1]:R.R.Nair,H.A.Wu,P.N.Jayaram,I.V.Grigorieva,A.K.Geim.Unimpeded Permeation of Water through Helium-Leak-Tight Graphene-Based Membranes.Science,2012,335(6067),442-444.参考文献[2]:R.K.Joshi,P.Carbone,F.C.Wang,V.G.Kravets,Y.Su,I.V.Grigorieva,H.A.Wu,A.K.Geim,R.R.Nair.Precise and Ultrafast Molecular Sieving through Graphene OxideMembranes.Science,2014,343(6172),752-754.
虽然上述二维材料在水处理过滤筛分方面取得了一定的研究进展,但材料价格往往较为昂贵,且制备过程有危险性气体产生以及方法较为复杂等原因,不能较好的适用于商业化应用。二维黏土基材料(蒙脱土、高岭土、蛭石、水滑石等等)具有低成本、易制备且环保无污染等特点,二维黏土基分离膜具有纳米尺寸的层间距和丰富的表面电荷,已被证实在纳流体能量转换方面具有广泛应用,参见参考文献[3-4]。因此,利用黏土基二维膜的尺寸限域和电荷排斥作用,有望实现水中高价离子及有机污染物的截留。参考文献[3]:ZhouY,Ding H,Smith A T,et al.Nanofluidic energy conversion and molecularseparation through highly stable clay-based membranes.J.Mater.Chem.A,2019,7(23):14089-14096.参考文献[4]:Cao L,Wu H,Fan C,et al.Lamellar porousvermiculite membranes for boosting nanofluidic osmotic energy conversion[J].J.Mater.Chem.A,2021,9(25):14576-14581.
发明内容
本发明的内容在于提供一种工艺简单且可大面积制备的二维黏土基分离膜的制备方法。为实现上述目的,本发明采用前驱液混合—抽滤涂覆或浆液刮涂的方法,以多孔亲水性聚合物薄膜(CA、PES、PS、PVDF)为支撑层基底,在其表面自组装二维黏土基超薄致密膜,以实现对有机物大分子的高效截留同时保证水通量。
本发明提供了一种二维黏土基分离膜的制备方法,该方法的具体步骤包括:
第一步,以黏土基材料为主体,利用插层交联物进行前驱液修饰:
(1)纳米片剥离:在指定溶液中,将一定质量的二维黏土基材料(蒙脱土、高岭土、蛭石、水滑石等等)进行超声搅拌,使其分散剥离成均匀的纳米片胶体溶液①。
(2)插层修饰:将插层交联物溶于指定溶剂中,配制成均匀分散的胶体溶液②。随后,将一定比例的溶液②加入到溶液①之中,进行搅拌超声,即可得到均匀分散的复合成膜胶体溶液③。
第二步,以多孔聚合物薄膜(CA、PES、PVDF、尼龙)为支撑层基底,取一定体积的上述胶体溶液③,通过真空抽滤自组装的方法在聚合物基底上构筑超薄的二维黏土基分离膜,然后待自然干燥或真空干燥后,即可得到黏土基二维纳滤膜。
步骤(1)指定溶液选自去离子水或有机溶剂中的一种或几种;步骤(2)指定溶剂选自去离子水、有机溶剂中的一种或几种;步骤(2)指定溶剂中还可加入无机盐类、酸或碱。步骤(2)插层交联物指的是具有带正负电荷性质的纳米纤维、纳米粒子等等。
本发明所得分离膜作为纳滤膜用于水中机污染物的过滤。
本发明的优点在于:
1、本发明提供了一种二维黏土基分离膜的制备方法,其制备工艺简单,对环境友好,同时可进行大面积制备。
2、本发明制备出二维黏土基分离膜可以实现有机物大分子污染物的有效截留,同时保证良好的水通量。
附图说明
图1.本发明基于实例1所制备二维黏土基分离膜的实物图
图2.本发明基于实例1所制备黏土基分离膜的平面和截面SEM形貌图
图3.本发明基于实例1所制备黏土基分离膜的小角X射线衍射(XRD)图
图4.本发明黏土基分离膜测试水通量的装置图
图5.本发明基于实例1制备黏土基分离膜的截留率和水通量
具体实施方式
下面结合实施例和附图对本发明的技术方案做进一步的描述:
实施例1:
(1)取0.02g蒙脱土(MMT)分散在20ml去离子水中,对其进行搅拌(800rpm/min)超声剥离,可得到1mg/mL的MMT纳米片分散液。
(2)取1g带负电荷的纤维素纳米纤维(NCNF)溶解于10mL去离子水中,超声破碎20min,可得到1mg/mL的NCNF分散液。
(3)取5mL的NCNF分散液加入到20mL MMT分散液中,然后搅拌(800rpm/min)超声1h,即可得到均匀分散的混合溶液(NCNF:0.2mg/mL,MMT:0.8mg/mL)。
(4)取2~4mL的混合溶液,以多孔醋酸纤维素滤膜为基底进行真空抽滤自组装,真空干燥或自然干燥后,即可得到MMT/NCNF二维分离膜。
实施例2:
(1)取0.02g蒙脱土(MMT)分散在20mL去离子水中,对其进行搅拌(800rpm/min)超声剥离,可得到1mg/mL的MMT纳米片分散液。
(2)取0.1g Kevlar纤维、0.15g KOH以及100mL二甲基亚砜(DMSO),室温下机械搅拌(700rpm/min)1周,得到芳纶纳米(ANF)纤维分散液,将ANF分散液稀释至1mg/mL。
(3)取3mL的ANF分散液加入MMT前驱液中,然后搅拌(600rpm/min)超声3h,即可得到均匀分散的MMT/ANF分散溶液(ANF:0.13mg/mL,MMT:0.87mg/mL)。
(4)取3mL的上述分散液,以多孔有机尼龙滤膜为基底进行抽滤自组装,真空干燥或自然干燥后,即可得到MMT/ANF二维分离膜。
实施例3:
(1)取45mL DMSO和5mL去离子水配制浓度为90%的DMSO溶液,称取0.25g的高岭石加入上述溶液中,60℃水浴下搅拌(600rpm/min)12h;
(2)将上述溶液分别用去离子水和乙醇离心(6000rpm,5min)洗涤数次,将洗涤完的沉淀溶于250mL去离子水中,超声1h使其剥离并分散均匀,得到1mg/mL的高岭土分散液;
(3)取5g氯化铁溶解于8mL去离子水中,制备三氯化铁溶液(625mg/mL)。取0.4mL上述制备三氯化铁溶液缓慢滴入200mL沸腾的去离子水溶液中,得到1.25mg/mL的带正电的Fe(OH)3分散液,将1.25mg/mL的分散液稀释成0.25mg/mL。
(4)取2mL的0.25mg/mL的Fe(OH)3分散液加入到10mL高岭石分散液(1mg/mL)中,然后搅拌(800rpm/min)超声1h,即可得到均匀分散的混合溶液(Fe(OH)3:0.04mg/mL,高岭石:0.96mg/mL)。
(5)取3~4mL的混合溶液,以多孔醋酸纤维素滤膜为基底进行真空抽滤自组装,真空干燥或自然干燥后,即可得到高岭石基二维分离膜。
选择上述实例1制备的水处理用黏土基纳滤膜,采用抽滤装置和紫外分光光度计,将上述实施例制备的纳滤膜进行水通量、截留率测试,下面结合附图对本发明做结构和性能测试说明:
1.黏土基二维分离膜实物图:
通过在醋酸纤维素滤膜(220nm孔径)上抽滤涂覆一层二维黏土材料薄层,可以得到黏土基二维分离膜。
2.黏土基二维分离膜形貌表征图:
本发明所制备的黏土基二维膜平面形貌表现为纳米片之间紧密堆积,从截面可以看出具有明显的二维层状排列结构,其层间的纳米尺寸孔道可用于大分子有机物的筛分。
3.黏土基二维分离膜的小角XRD表征
在水合状态下,测试了黏土基二维分离膜的纳米片层间距。从图3可以看出,水合状态下层间距为1.90nm,可以实现大分子有机污染物的阻挡与筛分。
4.本发明测试水通量装置图:
如图4所示,采用抽滤测试装置,外接真空无油泵,包含进料口、出料口以及滤膜端共同组成水处理装置。
5.本发明基于染料分子的截留率和水通量测试:
通过计算一定时间内进料口与出料口体积变化来计算其水通量,通过紫外分光光度计测试染料分子的透光率计算分离膜的截留率,分别采用细胞色素(3.7×2.5×2.5nm)和伊文思蓝(1.2×3.1nm)两种染料进行测试(测试条件:室温25℃,一个大气压,伊文思蓝浓度为0.002mg/mL,细胞色素c浓度为0.05mg/mL),结果显示黏土基分离膜对细胞色素分子的截留率和水通量分别为97%和28L-1m-2h-1bar-1;对伊文思蓝分子的截留率和水通量为50%和40L-1m-2h-1bar-1。因此,黏土基分离膜对于尺寸在3.7×2.5×2.5nm以上有机大分子可以实现超高的截留率和较高的水通量。

Claims (7)

1.一种水处理用二维黏土基分离膜的制备方法,其特征在于,具体步骤包括如下:
第一步,以黏土基材料为主体,利用插层交联物进行前驱液修饰:
(1)纳米片剥离:在指定溶液中,将一定质量的二维黏土基材料进行超声搅拌,使其分散剥离成均匀的纳米片胶体溶液①;
(2)插层修饰:将插层交联物溶于指定溶剂中,配制成均匀分散的胶体溶液②。随后,将一定比例的溶液②加入到溶液①之中,进行搅拌超声,即可得到均匀分散的复合成膜胶体溶液③;
第二步,以多孔聚合物薄膜为支撑层基底,取一定体积的上述胶体溶液③,通过真空抽滤自组装的方法在聚合物基底上构筑超薄的二维黏土基分离膜,然后待自然干燥或真空干燥后,即可得到黏土基二维纳滤膜。
2.按照权利要求1所述的一种水处理用二维黏土基分离膜的制备方法,其特征在于,二维黏土基材料选自蒙脱土、高岭土、蛭石、水滑石。
3.按照权利要求1所述的一种水处理用二维黏土基分离膜的制备方法,其特征在于,步骤(1)指定溶液选自去离子水、有机溶剂中的一种或几种;步骤(2)指定溶剂选自去离子水、有机溶剂中的一种或几种;步骤(2)指定溶剂中还可加入无机盐类、酸或碱。
4.按照权利要求1所述的一种水处理用二维黏土基分离膜的制备方法,其特征在于,步骤(2)插层交联物指的是具有带正负电荷性质的纳米纤维、纳米粒子等等。
5.按照权利要求1所述的一种水处理用二维黏土基分离膜的制备方法,其特征在于,复合成膜胶体溶液③中插层交联物的浓度0.03~0.3mg/mL,二维黏土基材料的浓度0.7~0.97mg/mL。
6.按照权利要求1-5任一项所述的方法制备得到的分离膜。
7.按照权利要求1-5任一项所述的方法制备得到的分离膜的应用,分离膜作为纳滤膜用于水中机污染物的过滤。
CN202210479058.3A 2022-05-03 2022-05-03 一种水处理用二维黏土基分离膜的制备方法 Pending CN114832635A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210479058.3A CN114832635A (zh) 2022-05-03 2022-05-03 一种水处理用二维黏土基分离膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210479058.3A CN114832635A (zh) 2022-05-03 2022-05-03 一种水处理用二维黏土基分离膜的制备方法

Publications (1)

Publication Number Publication Date
CN114832635A true CN114832635A (zh) 2022-08-02

Family

ID=82567016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210479058.3A Pending CN114832635A (zh) 2022-05-03 2022-05-03 一种水处理用二维黏土基分离膜的制备方法

Country Status (1)

Country Link
CN (1) CN114832635A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364682A (zh) * 2022-08-19 2022-11-22 浙江工业大学 一种纳米异质结构复合膜的制备方法及在染料脱盐中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107722368A (zh) * 2017-09-21 2018-02-23 武汉理工大学 一种表面氧化纤维素纳米纤维/层状双金属氢氧化物复合膜及其制备方法
CN109289544A (zh) * 2018-09-26 2019-02-01 同济大学 一种制备二维蒙脱石/纤维素复合过滤膜的方法
CN112263920A (zh) * 2020-09-03 2021-01-26 大连理工大学 一种大分子染料纳滤膜的制备方法及应用
CN113083036A (zh) * 2021-05-20 2021-07-09 广州大学 一种二维层状复合膜及其制备方法与应用
CN113198332A (zh) * 2021-04-08 2021-08-03 华南理工大学 一种MXene-纳米纤维复合膜及其制备方法和应用
WO2021245464A1 (en) * 2020-06-04 2021-12-09 Kyoto University Graphene oxide-nanoparticle composite membranes, preparation and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107722368A (zh) * 2017-09-21 2018-02-23 武汉理工大学 一种表面氧化纤维素纳米纤维/层状双金属氢氧化物复合膜及其制备方法
CN109289544A (zh) * 2018-09-26 2019-02-01 同济大学 一种制备二维蒙脱石/纤维素复合过滤膜的方法
WO2021245464A1 (en) * 2020-06-04 2021-12-09 Kyoto University Graphene oxide-nanoparticle composite membranes, preparation and uses thereof
CN112263920A (zh) * 2020-09-03 2021-01-26 大连理工大学 一种大分子染料纳滤膜的制备方法及应用
CN113198332A (zh) * 2021-04-08 2021-08-03 华南理工大学 一种MXene-纳米纤维复合膜及其制备方法和应用
CN113083036A (zh) * 2021-05-20 2021-07-09 广州大学 一种二维层状复合膜及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364682A (zh) * 2022-08-19 2022-11-22 浙江工业大学 一种纳米异质结构复合膜的制备方法及在染料脱盐中的应用

Similar Documents

Publication Publication Date Title
Dong et al. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions
Yang et al. Vacuum-assisted assembly of ZIF-8@ GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance
Amiri et al. Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification
Zeng et al. Ultra-high oil-water separation membrane based on two-dimensional MXene (Ti3C2Tx) by co-incorporation of halloysite nanotubes and polydopamine
Bojnourd et al. Preparation and characterization of a nanoclay/PVA/PSf nanocomposite membrane for removal of pharmaceuticals from water
Makhetha et al. Antifouling properties of Cu (tpa)@ GO/PES composite membranes and selective dye rejection
Junaidi et al. Recent development of graphene oxide-based membranes for oil–water separation: A review
Shao et al. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine
Zhang et al. Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance
Li et al. Improved water permeability and structural stability in a polysulfone-grafted graphene oxide composite membrane used for dye separation
Wang et al. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration
Mulungulungu et al. Two-dimensional graphitic carbon nitride-based membranes for filtration process: Progresses and challenges
JP5586029B2 (ja) 濾過フィルターの製造方法及び濾過フィルター
CN108993165B (zh) 一种层状无机材料有机溶剂纳滤复合膜及其制备方法
CN108404689B (zh) 一种氧化石墨烯/聚丙烯酰胺复合过滤薄膜及其制备与应用
Han et al. Two-dimensional WS2 membranes constructed on different substrates for efficient dye desalination
WO2018036553A1 (zh) 一种基于活性炭的全碳膜及其制备方法和应用
Zhang et al. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly (acrylic acid) for effective wastewater treatment
Lim et al. Recent progress and new perspective of MXene-based membranes for water purification: A review
Sahraei et al. Fabrication of cellulose acetate/Fe 3 O 4@ GO-APTS-poly (AMPS-co-MA) mixed matrix membrane and its evaluation on anionic dyes removal
Mohammed et al. Nanofiltration performance of glutaraldehyde crosslinked graphene oxide-cellulose nanofiber membrane
CN114832635A (zh) 一种水处理用二维黏土基分离膜的制备方法
Zhang et al. pH-responsive laminar WSe2 membrane with photocatalytic antifouling property for ultrafast water transport
Choi et al. Carbon nanotube-supported graphene oxide nanoribbon bilayer membrane for high-performance diafiltration
Zheng et al. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination