CN114828764A - 电外科器械和设备 - Google Patents
电外科器械和设备 Download PDFInfo
- Publication number
- CN114828764A CN114828764A CN202080087045.0A CN202080087045A CN114828764A CN 114828764 A CN114828764 A CN 114828764A CN 202080087045 A CN202080087045 A CN 202080087045A CN 114828764 A CN114828764 A CN 114828764A
- Authority
- CN
- China
- Prior art keywords
- microwave
- energy
- coaxial cable
- electrosurgical instrument
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/042—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
- A61B2018/00583—Coblation, i.e. ablation using a cold plasma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00779—Power or energy
- A61B2018/00785—Reflected power
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/183—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
- A61B2018/1853—Monopole antennas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1861—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/007—Auxiliary appliance with irrigation system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/007—Aspiration
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Surgical Instruments (AREA)
Abstract
各种实施方案提供了一种电外科器械,所述电外科器械包括:细长探针,所述细长探针包括用于输送射频(RF)和/或微波频率电磁(EM)能量的同轴电缆和连接在所述同轴电缆的远端处以用于接收所述RF和/或微波能量的探针尖端;气体通路,所述气体通路用于将气体输送通过所述细长探针而到达所述探针尖端;以及清创设备,所述清创设备用于对生物组织进行清创。所述同轴电缆包括内导体、外导体和将所述内导体与所述外导体分离的介电材料。所述探针尖端包括连接到所述同轴电缆的所述内导体的第一电极和连接到所述同轴电缆的所述外导体的第二电极。所述第一电极和所述第二电极被布置为跨从所述气体通路接收到的气体的流动路径从所述接收到的RF和/或微波频率EM能量产生电场,以在所述探针尖端外侧的区域中产生热或非热等离子体。
Description
技术领域
本发明涉及一种电外科设备,其中使用射频和/或微波频率能量来经由非热等离子体对生物组织进行灭菌和经由热等离子体对生物组织进行表面重修。另外地,电外科设备包括用于例如在灭菌和/或表面重修之前对生物组织进行清创的构件。具体的实施方案还能够使用非电离辐射对生物组织进行表面重修。各种实施方案可适用于开放手术中,或者适合于顺着窥视装置(诸如腹腔镜或内窥镜)的器械通道向下的插入。
背景技术
氩等离子体凝固术(APC)或氩束凝固术(ABC)是用于以不需要递送等离子体的外科探针与病变部之间物理接触的方式控制表面出血的已知的外科技术。APC可用内窥镜执行,借此氩气射流被引导通过穿过内窥镜的探针。氩气在其被发射时的电离产生等离子体,该等离子体致使凝固。
为了激发等离子体,可期望具有高电场(例如,通过直接地施加高电压或设立致使高电压存在的高阻抗条件)。典型地,这通过在短持续时间内(例如,在1ms至10ms的范围内)在分开小距离(例如,小于1mm)的作用电极和返回电极之间施加高RF电压脉冲(例如,500V至2kV)来完成。高电场可分解气体以引发等离子体。在WO 2009/060213中讨论的一个实施方案中,使用反激电路来设立高电压(高阻抗)条件,该反激电路使用例如以100kHz运行的低频(例如,射频)振荡器电路和变压器,该变压器的初级绕组由合适的驱动器和开关装置(例如,栅极驱动芯片和功率MOSFET或BJT)连接到低电压振荡器电路。该布置产生激发或以其他方式引发等离子体的高电压脉冲或尖峰。一旦被激发,阻抗就下降,并且可通过微波能量的供应来维持等离子体。
灭菌是摧毁或消灭所有形式的生命(尤其是微生物)的行动或过程。在等离子体灭菌的过程期间,产生活性剂。这些活性剂是高强度紫外线光子和自由基,它们是具有化学上不成对电子的原子或原子组合物。等离子体灭菌的有吸引力的特征是可在相对低的温度(诸如体温)下实现灭菌。等离子体灭菌还具有对操作员和患者来说安全的益处。
组织表面重修或再上皮化是皮肤和粘膜替代伤口中受损或丢失的表层上皮细胞的过程。在伤口的边缘处的上皮细胞在受伤之后几乎立即地增生以覆盖裸露区域。上皮化是伤口愈合的重要组成部分并且用作成功的伤口闭合的定义参数。在缺少再上皮化的情况下,伤口不能被认为是愈合的。
清创是对死亡、受损或感染的组织进行医学去除以提高剩余的健康组织的愈合潜力。去除可能是外科、机械、化学和自溶(自消化)的。清创是烧伤和其他严重伤口的愈合过程的重要部分。
一直需要改善用于治疗伤口和用于减少伤口愈合时间的器械和设备。还一直需要改善用于对生物组织进行清创、灭菌和表面重修的器械和设备。
发明内容
最一般地,本发明提供了一种电外科器械,所述电外科器械包括将非热等离子体和热等离子体递送到生物组织上的构件。而且,该器械包括用于对生物组织进行清创的构件。因此,电外科器械可以是用于对伤口进行清创、灭菌和表面重修的伤口治疗设备或装置。另外地或替代地,电外科器械可用于其他治疗(例如,清创、灭菌和/或再上皮化)应用,例如治疗身体感染,诸如耳部感染(例如,中耳炎)或尿路感染。另外,电外科器械可用于治疗身体治疗部位(例如,对其进行清创、灭菌和/或表面重修)来接纳医学植入物(诸如金属植入物)和用于对此类植入物进行清创和/或灭菌。
用于清创的构件可包括以下一者或多者:粘合剂区域,该粘合剂区域用于刮擦或刷洗生物组织;可展开清创工具,该可展开清创工具用于刮擦或刷洗生物组织;以及液体通路,该液体通路用于向生物组织注射液体/从生物组织提取液体。该功能性可用于从伤口去除死亡、受损或感染的组织和用于从伤口去除异物(例如,灰尘、沙砾、污染物)。这种功能性可帮助伤口愈合。另外地,该功能性可用于从感染的部位(例如,在耳或尿路中)去除感染的组织和/或黏液。另外,该功能性可用于从身体治疗部位去除感染的组织来接纳医学植入物和用于从该植入物本身去除感染的组织。
非热等离子体功能性可用于对生物组织进行灭菌。例如,在对伤口进行清创之后,非热等离子体可用于杀死或显著地减少该伤口中的细菌。这种功能性可帮助伤口愈合。另外地,该功能性可用于从身体感染部位(诸如在耳或尿路中的感染部位)去除或减少细菌。另外,该功能性可用于去除或减少在身体植入物部位(诸如用于接纳医学植入物的部位)中的细菌和用于去除或减少在植入物本身上的细菌。
热等离子体功能性可用于对生物组织进行表面重修(又称再上皮化)。例如,在对伤口进行清创并然后进行灭菌之后,可使用热等离子体对伤口进行表面重修,以便闭合伤口创面和促进伤口愈合。
另外,该器械可包括用于将非电离微波辐射递送到生物组织的构件。该功能性可用于对生物组织进行表面重修,以促进伤口愈合。例如,非电离辐射可产生表面消融效应,这使组织进行表面重修。非电离微波能量可用作热等离子体的替代型式。例如,在对伤口进行清创并然后进行灭菌之后,可使用非电离微波能量对伤口进行表面重修,以便促进伤口愈合。
根据本发明,提供了一种电外科器械(例如,伤口治疗装置),该电器械包括:细长探针,该细长探针包括用于输送射频(RF)和/或微波频率电磁(EM)能量的同轴电缆和连接在该同轴电缆的远端处以用于接收RF和/或微波能量的探针尖端;气体通路,该气体通路用于将气体输送通过细长探针而到达探针尖端;以及清创设备,该清创设备用于对生物组织(例如,在探针尖端外侧、即在探针尖端的远端处或附近的区域中)进行清创,其中同轴电缆包括内导体、外导体和将内导体与外导体分离的介电材料,其中探针尖端包括连接到同轴电缆的内导体的第一电极和连接到同轴电缆的外导体的第二电极,并且其中第一电极和第二电极被布置为跨从气体通路接收到的气体的流动路径从接收到的RF和/或微波频率EM能量产生电场,以在探针尖端外侧的区域(例如,在探针尖端的远端处或附近的区域)中产生热或非热等离子体。在使用中,探针尖端被连接以从发生器接收射频(RF)和/或微波频率能量,并且还限定气体的流动路径。
在第一配置中,探针尖端限定双极(例如,同轴)结构以跨气体的流动路径从接收到的RF和/或微波频率能量产生高电场来激发等离子体并使其持续。例如,可使用RF能量的短脉冲(例如,具有10ms或更少的持续时间,例如在1ms与10ms之间)来激发等离子体。等离子体的出口在探针尖端的远端处,并且因此被递送到在探针尖端外侧的区域中。
第一电极和第二电极可相对于彼此移动成第二配置,在该第二配置中,第一电极向远侧延伸超过第二电极以形成用于从探针尖端向外发射微波EM场的辐射结构。在第二配置中,探针尖端限定天线结构以将非电离微波能量发射到组织中。该非电离微波能量可用于对组织进行表面重修,例如,在组织已经被清创和/或灭菌之后。天线结构可以是辐射单极天线,其可采用能够从接收到的微波频率能量向外(即,远离探针)发射电场的柱体、球体、硬金属线或螺旋线或绕杆式天线的形式。因此,在第一配置中,该装置可使用RF能量和微波能量中的一者或两者,而在第二配置中,该装置主要地使用微波能量。用于激发等离子体的RF能量的波形可以是高振幅脉冲。
可在没有第一电极和第二电极的相对移动的情况下产生非电离微波场,例如在缺少气体的情况下仅通过递送微波能量来产生。然而,如果第二电极设置在第一电极后面,即,第一电极从第二电极向远侧突出,则可在由环路环绕的区域中产生更均匀的场效应。
第一电极和第二电极形成用于由同轴电缆输送的RF信号的作用电极和返回电极。
在第一配置中,可使用RF或微波能量来激发等离子体。可使用微波能量在等离子体被激发之后使该等离子体持续。该布置可提供优于常规的电外科系统中使用的RF等离子体的优点,在该常规的电外科系统中,电场可能因电缆的电容和由组织变化导致的负载而崩溃。
等离子体的阻抗优选地在微波能量的频率下与施加器(以及能量递送系统)的阻抗匹配,以使得由微波源产生的微波能量能够高效地传递到等离子体中。在使用微波能量的情况下,可(静态地或动态地)调谐施加器和/或发生器以确保等离子体匹配到由组织呈现的负载中。在微波频率下,电缆形成分布式元件传输线,其中施加器与能量源之间的阻抗匹配由微波发生器的源阻抗、电缆(传输线)的特性阻抗、施加器结构本身的阻抗和组织的阻抗确定。如果电缆的特性阻抗与源的输出阻抗相同,则扣除由电缆引起的衰减(电介质和导体损耗),所有的微波功率将被递送到施加器中。如果施加器和组织的阻抗与电缆的特性阻抗相同,则在源处可用的最大功率将被传递到等离子体/组织负载中。可对施加器结构进行调整,以便维持施加器与等离子体/组织负载之间的最佳阻抗匹配,如以下所说明。也可在发生器处或在第一电缆的远端与第二(器械)电缆的近端之间的接口处进行调整。这些调整可以是匹配网络的电容和/或电感的变化的形式,即,短线调谐。
气体可以是氩气,或者是任何其他合适的气体,例如二氧化碳、氦气、氮气、空气与这些气体中的任一者的混合物(即,10%空气/90%氦气)。用于激发等离子体的高电场可能是由在探针尖端处针对RF EM能量或微波EM能量创建高阻抗条件导致的。这可通过为第一电极和第二电极选择合适的几何形状来实现。例如,在第一配置中,一块绝缘介电材料(诸如石英或其他类似低损耗材料)可位于第一电极与第二电极之间。这减小了在绝缘介电材料内部的电场并且导致在绝缘介电材料旁边的填充气体的间隙中的电场的随之增大。在第一配置中,第二电极可被布置为延伸超过第一导体(例如,在第一导体更远侧)以确保不发射非电离辐射。
在优选实施方案中,器械能够接收RF和微波EM能量两者。RF EM能量可用于激发等离子体,并且可作为高电压脉冲被接收。微波EM能量用于使等离子体持续,即,将功率递送到等离子体中以维持电离的状态。这也可作为脉冲被接收。可以产生准连续等离子体束的方式重复地激发等离子体。该布置优于仅使用RF EM能量的常规APC装置的优点在于等离子体将不因电容性负载或从干燥环境改变为润湿环境而崩溃。此外,器械的双重配置性质使得该器械能够切换到适合于使用非电离微波能量进行组织表面重修的状态,其中第二电极(以及绝缘介电材料)被抽回到暴露第一电极的距离,使得其充当辐射微波单极天线结构,如以下所讨论。
在常规的RF等离子体装置中,电缆电容和高电压需要高RF驱动电流来维持等离子体。例如,可将熟知的方程应用于在400kHz下的四分之一循环,其中dt是(2.5/4)μs=625ns。如果电缆的电容是300pF并且所要求的峰电压是400V,则I=300×400/625=0.192A,这相对高。微波信号具有低得多的电压,例如约20V,并且因此克服该缺点。
也可使用微波频率能量来激发等离子体,例如通过使用微波谐振器或阻抗变压器(即,将低电压变换为更高电压以使用在操作频率下有四分之一波(或其奇数倍)长的更高阻抗传输线来激发等离子体的四分之一波变压器)来激发等离子体。一旦已经激发等离子体并且要求使等离子体持续,该高阻抗线就可被接通以激发等离子体和被切断(即,返回到更低阻抗线)。功率PIN或变容二极管可优选地用于在两种状态之间切换,但可使用同轴或波导开关。
细长探针可包括包围同轴电缆的套筒。套筒可起保护同轴电缆的作用,但是也可限定气体通路例如,限定为在套筒的内表面与同轴电缆的外表面之间的空间。气体通路可具有输入端口,该输入端口位于套筒的近端处以用于连接到气体源(例如,加压气体罐等)。
套筒还可以是用于引起第一电极与第二电极之间的相对移动的构件。第一电极与第二电极之间的相对移动可通过使导电(例如,金属)导管在微波同轴电缆之上滑动来实现,该微波同轴电缆的外导体也可以是金属的。在该配置中,导管(或者在同轴电缆上滑动的管)的内表面必须与同轴电缆的外导体进行良好的电接触。这可通过提供可相对于第二电极或同轴电缆的外电极滑动并准许气体从中流过的透气导电结构来实现。透气导电结构可以是以下任一者:导电网;径向地延伸的导线或弹簧的笼;以及多个周向地间隔的径向地突出的凹痕。因此,透气导电结构可提供多个(例如,四个或更多个)周向连接,或者将需要进行点接触以确保针对微波信号进行良好的电连接。该解决方案可在具有足够的连接点之间提供平衡,以创建适当的环境来传播微波能量、允许足够的气体流动并且允许外导管相对容易地在同轴电缆上移动。
在一个实施方案中,第二电极可安装在或形成在套筒的远端处,并且套筒可相对于同轴电缆回缩。换句话说,套筒可能够被拉回以露出在探针尖端处的第一电极。套筒可与同轴电缆同轴。因此,在第一配置中,第一电极和第二电极可彼此同轴。第二电极可以是在套筒的远端上的环状导电材料带。以上提及的介电材料可以是在套筒上安装在环状带内侧的石英套环。替代地或另外地,介电材料可以是内电极的部分,如以下所讨论。
回缩套筒可包括两个或更多个伸缩部段。伸缩部段之间可具有液密密封件以防止气体逸出。可滑动外套筒可使用机械或机电系统(即,机械滑块、线性马达或步进马达布置)进行回缩或延伸。如以下所说明,外套筒相对于同轴电缆的外导体的位置可由使用反射功率进行的回波损耗或阻抗匹配/不匹配测量或使用在发生器内或探针内的检测器的正向和反射功率测量(即,反射计或VSWR电桥测量)来确定。
第一电极可以是被耦合以从同轴电缆接收RF和/或微波EM能量的辐射微波单极天线结构。同轴电缆的外导体可接地以形成不平衡馈送,或者可浮动以形成对天线的平衡馈送,即,其中两个导体上的电压正在上升和下降。优选地,第一电极被成形为充当用于发射对应于接收到的微波EM辐射的微波场的微波天线。例如,单极辐射结构可包括介电材料柱体,该介电材料柱体具有半球形远端,该半球形远端包围同轴电缆的内导体的突出超过外导体并延伸穿过该介电材料柱体以在其半球形远端处突出的一段。其他远端形状是可能的,例如球形端或平直端。柱体可由低损耗陶瓷材料制成。介电柱体的存在可改善向组织中的能量递送,例如通过减少反射功率的量来改善。从柱体的半球形远端突出的该段内导体的端部可以是圆形的,例如被成形为半球形,以提供更均匀的发射场。
探针可用于开放手术(例如,是手持的)或腹腔镜手术中,或者可被设定尺寸为可插入穿过窥视装置,例如穿过过内窥镜、胃镜、支气管镜等的器械通道。例如,同轴电缆可具有2.5mm或更小、优选地2.2mm或更小的直径。套筒可具有小于2.6mm、优选地小于2.5mm的外径。对于更大的腹腔镜器械,外径可以是3mm或更大,并且可使用更大直径的同轴电缆。在一个实施方案中,探针可以是约30cm长。
清创设备可包括在器械的探针尖端的远侧外表面上的研磨区域,以用于对在探针尖端外侧(即,在探针尖端处或附近)的区域中的生物组织进行清创。例如,操作员可操纵探针尖端的位置和/或取向以使研磨区域与需要清创的生物组织(例如,伤口或其他治疗部位(例如,身体感染部位或身体植入部位))进行接触。研磨区域可用于刮擦或刮划生物组织的表面以进行清创。研磨区域可以是直接地施加到器械的外表面的涂层。替代地,研磨区域可以是单独地制造并然后结合到器械(例如,经由粘合剂或机械固定)的贴片。研磨区域可以是任何形状,例如正方形、矩形、圆形、椭圆形、规则形状或不规则形状。而且,研磨区域可覆盖器械的整个圆周,并且因此是实质上环状或环形的。替代地,研磨区域可仅覆盖圆周的一部分。研磨区域可在探针尖端的远端面上。研磨区域可包括用于抓取和去除生物材料和异物以清洁伤口或其他治疗部位(例如,身体感染部位或身体植入部位)的具有锋利尖点或边缘的研磨元件。
另外地或替代地,清创设备可包括可展开清创工具,例如,刷或垫。在一个实施方案中,探针尖端包括用于接纳清创工具的保持器(例如,凹陷部或腔),并且清创工具可在收起位置与展开位置之间移动,在该收起位置,清创工具被封闭(例如,包含、容纳)在保持器内,在该展开位置,清创工具突出到在探针尖端外侧的区域中来对生物组织进行清创。在这种情况下,套筒可包括可旋转编织电缆以准许对清创设备的取向进行调整。保持器的开口可在细长探针的远端面上,使得清创工具直接地展开到在探针尖端外侧的区域中,即,向其中递送等离子体(热或非热)或非电离辐射的区域。清创工具和保持器可被容纳在引导结构内,该引导结构结合到细长探针的外表面。替代地,保持器和清创工具可集成到细长探针的内部结构中。在一个实施方案中,电外科器械包括用于使清创工具在收起位置与展开位置之间移动的展开机构。展开机构可包括位于探针的近端处的致动器(例如,杠杆、拉线或拉臂),例如,用手(例如,经由手柄)移动的滑动或旋转机构。然而,本文还设想以自动化方式控制可展开清创工具的移动,例如使用机电机构(例如,包括线性马达、步进马达、压电致动器和磁致伸缩致动器)进行控制。例如,在一个实施方案中,可存在控制器,该控制器被布置为自动地移动清创工具。
另外地或替代地,清创设备可包括用于将液体输送通过细长探针并进入或离开在探针尖端外侧的区域来对生物组织进行清创的液体通路。注射或供应到治疗部位中的液体可以是水、盐水或适合于清创的一些其他液体,例如以用于通过移出:死亡、受损或感染的组织或者可能妨碍愈合的异物(诸如沙砾、灰尘和其他污染物)来清洁/冲洗治疗部位(例如,伤口、感染部位、植入部位)。因此,从治疗部位提取的液体包括固体,诸如:死亡、受损或感染的组织,或者异物,诸如沙砾、灰尘和其他污染物。在一个实施方案中,细长探针包括包围套筒的护套,并且液体通路是在护套的内表面与套筒的外表面之间的空间。护套可在结构上类似于套筒,就是说,套筒可提供内套筒,并且护套可提供外套筒。液体通路可具有输入端口,该输入端口位于护套的近端处以用于连接到液体源(例如,贮罐或容器等)。护套可具有与以上提及的套筒类似的构造,以便第一电极可相对于第二电极移动。就是说,在第一电极相对于第二电极移动时,护套和套筒可一起移动。具体地,护套可与同轴电缆同轴,并且护套可相对于同轴电缆回缩。回缩护套可包括两个或更多个伸缩部段。伸缩部段间可具有液密密封件以防止液体逸出。可滑动外护套可使用机械或机电系统(即,机械滑块、线性马达或步进马达布置)进行回缩或延伸。
在缺少护套的另一个实施方案中,套筒的内表面与同轴电缆的外表面之间的空间被分隔或分割成气体通路和液体通路。例如,一个或多个分隔结构或元件可存在于该空间内部以将其分割成气体和液体通路,使得流体不能从气体通路传递到液体通路,反之亦然。在这种情况下,气体和液体通路可连接到在探针的近端中的相应的端口。这种配置在需要保持探针的外轮廓尽可能小(例如,薄)的情况下(例如,在探针将顺着窥视装置的器械通道插入的情况下)可能是有利的。将理解,在存在护套的情况下,护套可限定器械的外轮廓。然而,当不存在护套时,套筒可限定器械的外轮廓。
另外地,液体通路可被分隔或分割成两个或更多个通道。在这些通道中,至少一些(又称第一通道)用于将液体从细长探针的近端输送到细长探针的远端、离开探针尖端的远端,并且进入在探针尖端外侧的区域中的治疗部位。而且,通道中的至少一些(又称第二通道)用于将液体和固体(例如,生物材料或异物)从在探针尖端外侧的区域中的治疗部位输送到探针尖端的远端中并通过细长探针从其远端输送到其近端。
本发明还可被表达为一种电外科设备,该电外科设备包括:射频(RF)信号发生器,该RF信号发生器用于产生具有第一频率的RF电磁(EM)辐射;微波信号发生器,该微波信号发生器用于产生具有高于第一频率的第二频率的微波EM辐射;如上所述的电外科器械,该电外科器械被连接以接收RF EM辐射和微波EM辐射;馈送结构,该馈送结构用于将RF EM辐射和微波EM辐射输送到细长探针,该馈送结构包括用于将细长探针连接到RF信号发生器的RF通道和用于将细长探针连接到微波信号发生器的微波通道;气体馈送器,该气体馈送器被连接以向电外科器械供应气体,其中该设备可操作以对在探针尖端外侧(例如,在探针尖端的远端处或附近)的区域中的生物组织进行清创,并且其中该设备可操作以在探针尖端外侧的区域中递送热或非热等离子体(例如,以对组织进行灭菌(经由非热等离子体)或对组织进行表面重修(经由热等离子体))。
第一电极和第二电极可相对于彼此移动成第二配置,在该第二配置中,第一电极向远侧延伸超过第二电极以形成用于从探针尖端向外发射微波EM场的辐射结构,其中该设备可操作以在第一电极和第二电极呈第二配置而未被供应气体时从探针尖端向外发射非电离电场。
该设备可包括激发信号发生电路,该激发信号发生电路被布置为致使一个(或多个)RF EM辐射脉冲被递送到探针以跨流动路径产生高电场来激发等离子体,其中激发信号发生电路包括控制电路,该控制电路被布置为使用在微波通道上的微波EM辐射脉冲的可检测特性来触发RF EM辐射脉冲的产生。因此,RF EM辐射用于激发等离子体,而微波EM辐射用于使等离子体持续。通过协调RF激发脉冲与微波EM辐射脉冲的递送,如上所述,该设备能够以更大的确定性激发等离子体。
该设备还可包括:微波信号检测器,该微波信号检测器用于对在微波通道上的正向和反射功率进行采样并从中产生微波检测信号,该微波检测信号指示由探针递送的微波功率;以及控制器,该控制器与微波信号检测器进行通信以接收微波检测信号,其中控制器可操作以选择微波EM辐射的第一能量递送轮廓,微波EM辐射的第一能量递送轮廓用于对组织的灭菌(经由非热等离子体产生),其中控制器包括被编程为输出用于微波信号发生器的第一微波控制信号的数字微处理器,第一微波控制信号用于设定微波EM辐射的第一能量递送轮廓,并且其中控制器被布置为基于接收到的微波检测信号来确定第一微波控制信号的状态。该布置可用于测量反射微波信号,借此,微波检测信号表示等离子体是否已经被激发。信号检测器还可被布置为持续地监测正向和反射微波EM辐射,以确保在等离子体递送期间维持最佳阻抗匹配。微波信号检测器可包括正向和反射信号检测器(例如,在微波通道上的合适的定向功率耦合器)。检测器可被布置为仅检测信号幅度,例如,它们可以是二极管检测器。替代地,检测器可被布置为检测幅度和相位,例如,它们可以是外差检测器。因此,微波检测信号可表示回波损耗或阻抗匹配信息。电外科器械的第一电极和第二电极的相对位置可由控制器在灭菌模式下(即,当正在产生非热等离子体时)调整,直到达到设定的回波损耗阈值,即,8dB、10dB或12dB。
控制器可以类似的方式操作以经由热等离子体产生来选择用于组织表面重修的第二能量递送轮廓。具体地,控制器可操作以选择微波EM能量的第二能量递送轮廓,该微波EM能量的第二能量递送轮廓用于组织的表面重修(经由热等离子体产生)。而且,数字微处理器可被编程为输出用于微波信号发生器的第二微波控制信号,该第二微波控制信号用于设定微波EM能量的第二能量递送轮廓。
控制器可以类似的方式操作以经由非电离辐射(即,无气体)来选择用于组织表面重修的第三能量递送轮廓。在一个实施方案中,第三能量递送轮廓可与第一能量递送轮廓相同。
控制器可以类似的方式操作以选择RF EM能量的能量递送轮廓。RF EM能量的可用轮廓可包括用于跨流动路径产生高电场来激发等离子体的激发脉冲。
该设备可包括移动机构,该移动机构用于引起第一电极与第二电极之间的相对移动,其中控制器被布置为基于接收到的微波检测信号来将控制信号传达到移动机构。移动机构可以是机械的,并且可手动地控制,例如由器械的操作员控制。移动机构可包括位于器械的远端处的致动器(例如,杠杆或拉臂),例如,用手移动的滑动或旋转机构。
然而,本文还设想以自动化方式控制第一电极和第二电极的相对移动(即,设定第一配置和第二配置),例如使用机电机构进行控制。例如,在一个实施方案中,可存在配置控制器,该配置控制器被布置为自动地移动套筒(以及护套(如果存在的话))并操作气体供应。
此外,控制器可被布置为自动地操作移动机构作为用于控制与等离子体的阻抗匹配的手段。在微波通道上的反射和正向功率测量可用于基于回波损耗测量或阻抗匹配通过手移动或借助机电致动器(PZT致动器、磁致伸缩致动器、步进马达、线性马达)来控制外导管(或套筒)相对于内同轴电缆(或附接到同轴电缆的内电极)的位置。
配置控制器可连接到阀以控制气体供应,例如在器械移动到第二配置时切断该供应和在器械移动到第一配置时接通该供应。阀可以是器械的部分,例如集成在套筒与同轴电缆之间,或者它可位于器械外部,例如在气体馈送器中。
此外,结合以上提及的微波信号检测器,配置控制器可被布置为基于微波检测信号在存在等离子体时控制在第一配置中套筒的位置以最小化反射微波信号。换句话说,配置控制器包括用于微调在第一配置中套筒的位置以促成等离子体的有效递送的反馈布置。
如以上所提及,该器械被布置为产生用于灭菌的非热等离子体和用于组织表面重修的热等离子体。对于具有直径在3mm与5mm之间(即,同轴结构内的外导体的内径具有在3mm与5mm之间的直径)的等离子体产生区域和紧密地装配在内部的壁厚度在0.25mm与1mm之间的石英管的同轴施加器结构,并且在内导体的外径在0.75mm与4mm之间(从而允许供气体在内导体与石英管的内壁之间的区域中流动的空间)的情况下,可通过在占空比小于40%(例如,28%)的脉冲模式下操作发生器来产生适合于消毒或灭菌的非热等离子体。在一个实施方案中,在140ms的总周期内,单个微波脉冲中的rms功率是50W并且脉冲接通时间是40ms,即,在2.45GHz下,递送到等离子体中的平均功率是14.28W。在一个实施方案中,用于产生非热等离子体的该信号是微波EM能量的前述第一能量递送轮廓。当在该配置中使用RF激发脉冲时,RF激发脉冲的持续时间是约1ms,并且正弦振荡的频率是100kHz。振幅是约1kV峰值(707Vrms)。RF功率小于微波功率的10%。RF脉冲与微波突发或脉冲同步并在微波突发或脉冲的上升沿上被触发。
为了产生热等离子体,对于该特定施加器几何形状,占空比可增加到例如50%,或者连续波(CW)和/或rms功率电平可增加到例如75W或100W(如果几何形状减小或增大,则将会相应地调整微波功率和RF激发脉冲的振幅)。在一个实施方案中,用于产生热等离子体的该信号是微波EM能量的前述第二能量递送轮廓。RF与微波功率的比率将优选地保持恒定,例如,对于非热等离子体和热等离子体,小于10%。
电外科设备还可包括液体馈送器,该液体馈送器被连接以向该电外科器械供应液体或从该电外科器械提取液体。而且,该设备可操作以向在探针尖端外侧的区域供应液体和从该区域提取液体来对生物组织进行清创。液体馈送器可包括容器或贮罐,该容器或贮罐用于保持:(i)要注射到治疗部位的液体,以及(ii)从治疗部位提取的液体和固体(例如,异物、生物材料)。而且,液体馈送器可包括用于在容器与电外科器械之间输送液体的液体供应源。另外,液体馈送器可包括控制阀以控制液体流入/流出电外科器械的方向和速率。控制阀可以是器械的部分,例如集成在套筒与同轴电缆之间(如果不存在护套的话),或者集成在护套与套筒之间(如果存在护套的话),或者阀可位于器械外部,例如在液体供应源中。
另外地,液体馈送器还可包括用于经由液体通路的第一通道向电外科器械供应液体的注射装置和用于经由液体通路的第二通道从电外科器械提取液体的抽吸装置。注射装置可包括压缩机或泵,该压缩机或泵以相对高的压力将液体压入电外科器械中,使得液体具有足够的力来从治疗部位(例如,伤口、感染部位、植入部位)移出异物(例如沙砾、灰尘、污染物)或生物物质(死亡、受损或感染的组织或细胞)。注射装置将液体注射到电外科器械中的力可以是计算机可控制的,例如经由EM能量和气体产生设备的控制器进行控制。抽吸装置可包括压缩机或泵,该压缩机或泵将液体(以及固体)从治疗部位强制地抽吸到电外科器械的远侧尖端中。例如,注射液体的第一步骤可用于从治疗部位(例如,伤口、感染部位、植入部位)移出材料并清洁治疗部位,然后,抽吸液体和固体的第二步骤可用于从治疗部位抽吸出带有移出的材料的脏液体。
在一个实施方案中,电外科设备包括用于操作电外科器械上的可展开清创工具的展开机构。例如,控制器可被布置为将清创信号传达到展开机构来使清创工具在收起位置与展开位置之间移动。就是说,展开机构可以是计算机控制的。然而,替代地,清创机构可被手动地操作,例如经由拉线和手柄进行操作。展开机构可部分地或完全地是器械的一部分。替代地,展开机构可部分地或完全地位于器械外部。
在本文中,射频(RF)可意指在10kHz至300MHz的范围内的稳定的固定频率,并且微波频率可意指在300MHz至100GHz的范围内的稳定的固定频率。RF能量的频率应当具有足够高以防止能量导致神经刺激并且足够低以防止能量导致组织变白或不必要的热余裕或损害组织结构。RF能量的优选标定频率包括以下任一者或多者:100kHz、250kHz、400kHz、500kHz、1MHz、5MHz。微波能量的优选标定频率包括915MHz、2.45GHz、5.8GHz、14.5GHz、24GHz。
附图说明
以下参考附图来讨论本发明的实施方案,在附图中:
图1是适合于与本发明一起使用的已知的功率递送系统;
图2是作为本发明的实施方案的电外科设备的示意图;
图3A是作为本发明的实施方案的电外科器械的示意性横截面图;
图3B是图3A的电外科器械沿线A-A截取的示意性横截面图;
图4A是作为本发明的另一个实施方案的电外科器械呈第一配置的示意性横截面图;
图4B是图4A的电外科器械呈第二配置的示意性横截面图;并且
图5A是作为本发明的另外的实施方案的电外科器械呈收起配置的示意性横截面图;并且
图5B是图5A的电外科器械呈展开配置的示意性横截面图。
具体实施方式
图1示出了WO 2012/076844中公开的适用于本发明的功率递送系统100的示意图。
系统100包括RF阵容(line-up)102和微波阵容104,它们分别形成RF通道和微波通道的部分。
RF阵容102包含用于以适合于激发等离子体的功率电平产生和控制RF频率电磁信号的部件,如下所述。在该实施方案中,该RF阵容包括RF振荡器1001、功率控制器1002、放大器单元(这里包括驱动放大器1003和功率放大器1004)、变压器1005和RF信号检测器1006。
微波阵容104包含用于以适合于治疗生物组织(例如,进行灭菌或表面重修)的功率电平产生和控制微波频率电磁信号的部件。在该实施方案中,该微波阵容包括锁相振荡器1007、信号放大器1008、可调整信号衰减器(例如,基于模拟或数字PIN二极管的衰减器衰减器)1009、放大器单元(这里是驱动放大器1010和功率放大器1011)、正向功率耦合器1012、环行器1013和反射功率耦合器1014。环行器1013将正向信号与反射信号隔离,以减少存在于耦合器1012、1014处的不想要的信号分量,即,它增加了耦合器的方向性。环行器还保护在高功率输出级内的晶体管,例如功率GaN或GaAs晶体管。优选的是,在端口1与3、2与1和3与2之间的隔离尽可能高,即,大于15dB,或者更优选地大于20dB。
RF阵容102和微波阵容104与控制器106进行通信,该控制器可包括信号调节和通用接口电路108、微控制器110和看门狗1015。看门狗1015可监控可能造成系统不按其预期规范执行(即,系统因输出或治疗时间大于用户所需的时间而将错误剂量的能量递送到患者组织中)的一系列潜在的错误条件。看门狗1015包括独立于微控制器110的微处理器,以确保微控制器正确地运行。看门狗1015可例如监控来自DC电源的电压电平或由微控制器110确定的脉冲定时。控制器106被布置为将控制信号传达到RF阵容102和微波阵容104中的部件。在该实施方案中,微处理器110被编程为分别针对功率控制器1002和可调整信号衰减器1009输出RF控制信号CRF和微波控制信号CM。这些控制信号用于设定分别从RF阵容102和微波阵容104输出的RF EM辐射和微波EM辐射的能量递送轮廓。特别地,功率控制器1002和可调整信号衰减器1009能够控制输出辐射的功率电平。此外,功率控制器1002和可调整信号衰减器1009可包括能够设定输出辐射的波形(例如,脉冲宽度、占空比和振幅等)的开关电路。
微处理器110被编程为基于来自RF信号检测器1006以及正向功率耦合器1012和反射功率耦合器1014的信号信息来输出RF控制信号CRF和微波控制信号CM。RF信号检测器1006输出指示RF通道上的RF EM辐射的电压和电流(以及可选地在电压与电流之间的相位)的一个或多个信号SRF。在该实施方案中,可仅通过相位信息的测量来控制RF和微波发生器,该相位信息可从RF通道(从采样的电流和电压信息)或微波通道(从采样的正向和反射功率信息)获得。正向功率耦合器1012输出指示正向功率电平的信号SM1,并且反射功率耦合器1014输出指示反射功率电平的信号SM2。来自RF信号检测器1006以及正向功率耦合器1012和反射功率耦合器1014的信号SRF、SM1、SM2被传达到信号调节和通用接口电路108,在该信号调节和通用接口电路中,这些信号被适配为适合于传递到微处理器110的形式。
用户接口112(例如,触摸屏面板、键盘、LED/LCD显示器、薄膜小键盘、脚踏开关等)与控制器106通信以向用户(例如,外科医生)提供关于治疗的信息并准许手动地选择或控制治疗的各种方面(例如,递送到患者的能量的量或能量递送的轮廓),例如经由合适的用户命令来选择或控制。该设备可使用也连接到控制器106的常规脚踏开关1016进行操作。
分别由RF阵容102和微波阵容104产生的RF和微波信号被输入到信号组合器114,该信号组合器将RF和微波EM辐射沿电缆组件116分开地或同时地输送到探针118。在该实施方案中,信号组合器114包括双工器(duplexer)-双工器(diplexer)单元,该双工器-双工器单元允许在微波频率和RF频率下沿电缆组件116(例如,同轴电缆)将能量传输到探针(或者施加器)118,从该探针(或者施加器),该能量被递送(例如,辐射)到进入窥镜(例如,内窥镜)的器械通道中的患者的生物组织中或另一个表面中。
信号组合器114还准许沿电缆组件116从探针118返回的反射能量传递到微波阵容102和RF阵容104中,例如由包含在其中的检测器检测。如以下所说明,该设备可包括在RF通道上的低通滤波器146和在微波通道上的高通滤波器166,使得仅反射RF信号进入RF阵容102,并且仅反射微波信号进入微波阵容104。
最后,该设备包括电源单元1017,该电源单元从外部源1018(例如,主电源)接收电力并将其变换为用于该设备中的部件的DC电源信号V1至V6。因此,用户接口接收功率信号V1,微处理器110接收功率信号V3,RF阵容102接收功率信号V3,微波阵容接收功率信号V4,信号调节和通用接口电路108接收功率信号V5,并且看门狗1015接收功率信号V6。
图2示出了作为本发明的实施方案的电外科设备200的示意图。设备200包括电外科器械202,该电外科器械能够从其远端递送等离子体或非电离电磁(EM)辐射。以下描述了器械202的结构的示例。
器械202连接到功率递送系统,该功率递送系统可如参考图1所描述的那样。然而,在图2的实施方案中,功率递送系统包括被连接以经由馈送结构208向器械202的近端递送功率的射频(RF)辐射源204和微波辐射源206。馈送结构208可包括如以上所讨论的信号组合器单元210。RF源204和微波源206可被布置为分别基于来自控制器(未示出)的控制信号CRF和CM来输出RF信号和微波信号。
器械202还被连接以接收气体,例如经由供应管线212从加压气体源214接收。在供应管线212上的控制阀216可被布置为例如基于来自控制器的控制信号Cg来控制由器械202接收的气体的流量。可期望在激活RF和/或微波能量源之前激活气体控制阀和/或流量控制器,以便确保在激活所述能量源时存在气体,因为在可产生等离子体之前,等离子体形成区域中必须存在气体。可能优选的是,在等离子体形成区域中包括气体传感器,并且来自该传感器的信号用于控制气体流量阀。该系统还有助于控制气体利用率并防止患者填充氩气(或者其他)气体。
RF和微波测量信息也可用于控制气体控制器,即,当无法使用发生器内的电压/电流和/或正向/反射功率监控电路来检测RF和/或微波功率时,可关闭气体控制阀。可能优选的是,在关断气体供应源之前,等待设定的时间段,即,20ms或200ms。该布置充当安全特征并充当控制气体使用的手段。
器械202还被连接以接收液体(例如,水、盐水),例如经由供应管线220从贮罐或容器218接收。器械202还可被配置为经由供应管线220向容器218提供液体和固体(例如,从治疗部位移出的生物材料和异物)。供应管线220上的控制阀222可被布置为控制由器械202从容器218接收的液体的流量和/或由容器218从器械202接收的液体(以及固体)的流量。控制阀222可操作以控制流动方向和/或流率。例如,流动的方向和幅度可基于来自控制器的控制信号CL。以此方式,器械202可将液体(例如,水、盐水)从容器218注射到在器械202的远端处的治疗部位中。该液体可用于对治疗部位(例如,伤口、感染部位、植入部位)处的生物组织进行清创。另外地或替代地,清创可涉及从治疗部位提取液体、异物和/或生物材料(例如,组织、细胞)并将其提取到容器218中。容器218和供应管线220可被分割成两个或更多个区,其中第一区用于将液体从液体容器218提供到器械202,并且第二区用于将液体和固体从器械202提供到容器218。第一区可与第二区分隔,使得防止一个区中的固体和/或液体进入另一个区。
器械202可包括外套筒或护套221,该外套筒或护套将同轴电缆和气体从其近端载送到远端以将等离子体(例如,非热和热)或非电离辐射递送到在器械202的远端处或恰好超过该远端的治疗部位处的生物组织中。而且,套筒或护套221可在其近端和远端之间输送液体(包括固体)以用于清创目的。此外,器械202可包括在远侧外表面上的用于对治疗部位中的生物组织进行清创的研磨区域226。就是说,研磨区域226可用于从治疗部位(例如,伤口、感染部位、植入部位)刮掉死亡、受损或感染的组织和/或异物(例如,沙砾、灰尘、污染物)。研磨区域226可覆盖器械远侧尖端的整个圆周(例如,它可以是大致环状或环形的)或仅覆盖其一部分(例如,如图2所示)。研磨区域226被示出为实质上矩形的,但是在一些其他实施方案中,它可以是不同的形状,例如圆形、椭圆形、三角形、规则形状或不规则形状。研磨区域226可定位在探针尖端的侧表面或端面上。
图3A示出了根据本发明的电外科器械300的第一实施方案。器械300包括由被管状套筒318包围的中心同轴电缆302组成的细长探针。同轴电缆302的近端(在图3A的左侧示出)终止于合适的连接器306处,该连接器被适配成连接到供应RF和微波信号的馈送结构。同轴电缆302将RF和微波信号输送到器械的远端(在图3A的右侧)。
同轴电缆302的远端终止于绝缘元件308,诸如定位在同轴电缆的主体与柱形封盖之间的玻璃珠或陶瓷盘,以防止发生短路或击穿。替代地,电缆302的电介质311可延伸超过电缆302的外导体310例如0.1mm至0.2mm。同轴电缆的外导体310停止在绝缘元件308处,但是电缆302的内导体312继续穿过绝缘元件308并突出超过绝缘元件308选定的长度(使用模拟),以实现用于组织表面重修(又称再上皮化)的最佳阻抗匹配。突出长度由柱形陶瓷(或其他合适的介电或磁性材料)封盖314包围,该封盖在其远端处终止于圆顶316(例如,半球体)中。内导体312从圆顶316略微地突出。内导体312和柱形封盖用作器械的第一电极。
套筒318包围同轴电缆302以在同轴电缆302的外表面与套筒318的内表面之间限定环状空间320。径向支撑元件或间隔物(未示出)可用于将同轴电缆302定位在套筒内。环状空间320可用于将气体输送到器械的远端。基片318在其侧表面中具有连接到气体供应管线的端口322。在套筒318与连接器306之间的接合处设置气密密封件324,该气密密封件可以是O形环等,以便最小化气体逸出。因此,引入到端口322中的气体沿环状空间320流动以在其远端处离开器械。
套筒318具有沿其长度直至其远端的导电内表面321。例如,套筒可包括在其外表面上具有聚酰亚胺衬里的不锈钢轴。该套筒的导电内表面321电连接到同轴电缆302的外导体310。在该实施方案中,这借助安装在环状空间320内的导电网328来完成。网是多孔的,并且因此准许气体从中流过,同时还提供电连接。这也可使用弹簧或多个小金属线实现,该弹簧或多个小金属线电连接(即,焊接或压接或捕捉)到导体或电极310和321的一个或两个表面。围绕导体的圆周设置至少两个(理想地至少四个)周向接触点可确保足够良好的电接触以使微波能量不受削弱地传播。还可以并且优选的是在导体中的一者中/上有多个凹痕或部分卷曲(例如,约一半),以便进行所需的必要的电接触,同时还使得气体能够流动到装置的形成等离子体的等离子体产生区域或远端上。
套筒的导电内表面321还被沿其远侧长度的绝缘管330(例如,由石英、陶瓷等制成)覆盖,该绝缘管可与柱形封盖314纵向地重叠。导电内表面321和绝缘管330用作器械的第二电极。
管状套筒318由外护套340包围,该外护套包围套筒318以在套筒318的外表面与护套340的内表面之间限定环状空间342。如前所述,径向支撑元件或间隔件(未示出)可用于将套筒318定位在护套340内。环状空间342可用于将液体输送到器械的远端(例如,输送到在远端处的治疗部位)。另外地,环状空间342可用于将液体(例如,水、盐水)和/或固体(例如,异物(例如,灰尘)、生物材料(例如,细胞))从器械的远端(例如,从在远端处的治疗部位)输送到近端。护套340在其侧表面中具有连接到供液管线的端口344。在护套340与连接器306之间的接合处设置液密密封件346,该液密密封件可以是O形环等,以便最小化液体逸出。因此,引入到端口344中的液体沿环状空间342流动以在其远端处离开器械。具体地,一个或多个出口348设置在环状空间342的远端中,使得液体可流出器械300并进入在器械的远端处的治疗部位。另外地,液体和固体可经由出口348被抽吸到环状空间342中。出口348可以是大体上圆形的,并且可实质上均匀地周向地间隔开。然而,将理解,出口348的任何形状、数量或分布都是可能的,只要它们准许液体流出器械的远端,并且准许液体和固体(例如,异物(例如,沙砾、灰尘、污染物)和生物材料(例如,组织、细胞))流入远端即可。
图3B是沿图3A中的线A-A截取的横截面图。如从图3B中看出,环状空间342被分隔或分割成多个通道。在所示的实施方案中,分隔元件或结构或分隔物347A和347B将环状空间342分隔成两个通道。以此方式,通道中的一者可用于将液体(以及固体)从治疗部位输送到器械的远端中,并且返回到容器或贮罐(例如,容器218)以进行存储和/或处置。而且,通道中的另一者可用于将液体从容器或贮罐输送通过器械、离开远端并且进入治疗部位。因此,可将液体注射到治疗部位,例如,以对治疗部位中的伤口或感染/植入部位进行清创,然后可将包含固体(例如,异物(例如,沙砾或灰尘)和生物材料(例如,细胞或组织))的脏液体从治疗部位抽吸出去以对伤口或感染/植入部位进行清洁。将理解,在一些其他实施方案中,环状空间342可被分隔为多于两个通道,例如4、6、8或10个通道。在这种情况下,一个或多个通道可将液体引入到治疗部位,并且/或者一个或多个通道可从治疗部位提取液体(以及固体)。另外地,在一些实施方案中,环状空间342未被分隔,而是提供既用于将液体引入到治疗部位中又用于从治疗部位提取液体或固体的单个通道。
护套340设置有例如由聚酰亚胺等形成的外保护鞘304。保护鞘304终止于其远端处。在一个实施方案中,终止部可包括由合适的绝缘体(例如,低损耗微波陶瓷、PTFE、PEEK、尼龙等)制成的环状结构。
该器械被布置为通过采取以下步骤来在探针尖端外侧的区域(例如,在探针尖端处或刚好超出探针尖端的治疗部位)中产生等离子体(例如,非热或热等离子体):
-向器械的远侧区域(即,向在石英管330与柱形封盖314之间的区域)供应气体,
-将RF能量脉冲发送通过同轴电缆,以通过在远侧区域中产生高电场来在该区域处的气体中激发等离子体,以及
-将微波能量脉冲发送通过同轴电缆,以使等离子体持续或维持来确保进行适当的治疗。
RF脉冲可由微波脉冲的特性(例如,上升沿)自动地触发,使得激发脉冲和使脉冲持续始终同步。RF脉冲被布置为具有适合于设立用于激发等离子体的电场的电压。电压可在150V与1500V峰值之间、更优选地在250V与750V峰值之间。RF脉冲的频率可在100kHz与1MHz之间,并且可包括经时间选通(例如,基于检测到的微波脉冲)例如以具有在0.5μs与10ms之间的持续时间的正弦波形或信号窗口或突发。
可监控递送的微波功率(例如,通过测量正向和反射微波信号),以便检查等离子体的状态。
在以上实施方案中,等离子体由RF信号激发。在其他实施方案中,等离子体可仅由微波信号激发,因为内导体与外导体之间的紧密接近使得能够从微波信号产生高电场。例如,如果可将25W的CW微波功率递送到器械的远端,则这可产生足够高的电场。使用微波场激发等离子体的一种可能的方法是在激发等离子体时减小等离子体产生区域内的两个导体之间的距离,并且然后在等离子体已经被激发后再次增大该距离以产生最佳环境(阻抗)来使等离子体持续。
电外科器械300可提供伤口治疗设备。最初,器械300可用于执行对伤口的清创。例如,操作员可指示控制器(例如,控制器106,经由用户接口112)激活液体控制阀(例如,阀222),以便从容器(例如,218)注射液体(例如水、盐水)经由供应管线(例如,220)在端口344处进入器械300的远端。然后,液体在环状空间342中输送并在远侧尖端处经由出口348离开器械。由此,将输出液体注射到位于远端外侧(例如,在远端处或恰好超过远端)的治疗部位中。注射的液体可用于对治疗部位中的伤口进行清创。例如,注射的液体可从伤口移出死亡、受损或感染的组织。而且,注射的液体可从伤口移出异物(例如,灰尘、沙砾、污染物)。该操作可能足以完成清创过程。然而,在一些情况下,另外的操作可能是优选的或必要的。例如,顺序地或同时地,操作员可致使设备进一步控制液体控制阀,使得液体(以及固体)从伤口被抽吸出并经由出口348进入器械300的远端。该液体和固体混合物然后可在环状空间343中输送通过器械并返回到容器(例如,容器218)。在一个实施方案中,使用相同的流体通路以首先将液体注射到伤口中且其次从伤口提取液体和固体。然而,如以上参考图3B所说明,环状空间342可被分割成多个通道,使得不同通道用于(顺序地或同时地)注射液体和提取液体(带有固体)。而且,供应管线、液体控制阀和容器可具有用于注射液体和提取液体(带有固体)的单独空间或区。
在清创之后,器械300然后可用于对生物组织进行灭菌,例如对治疗部位中的伤口进行灭菌。具体地,操作员(例如,经由控制器106和用户接口112)可控制RF阵容(例如,阵容102)和气体馈送器(例如,气体容器214、阀216和气体供应源212),以在器械的远端处(例如,在第一电极与第二电极之间)将气体与激发信号结合,以便激发等离子体。然后,可使用微波阵容(例如,微波阵容104)来使非热等离子体持续。
例如,可通过在占空比小于40%(例如,28%)的脉冲模式下操作MW发生器来产生适合于消毒或灭菌的非热等离子体。在一个实施方案中,在140ms的总周期内,单个微波脉冲中的rms功率是50W并且脉冲接通时间是40ms,即,在2.45GHz下,递送到等离子体中的平均功率是14.28W。当在该配置中使用RF激发脉冲时,RF激发脉冲的持续时间可以是约1ms,并且正弦振荡的频率可以是100kHz。振幅可以是约1kV峰值(707Vrms)。RF功率可小于微波功率的10%。RF脉冲可与微波突发或脉冲同步并在微波突发或脉冲的上升沿上被触发。
以此方式,可在器械300的远端处产生非热等离子体,并且该非热等离子体可被递送到在远端处或恰好超过该远端的治疗部位。因此,可将非热等离子体引导到新清创的伤口,以便例如通过杀死伤口中的细菌来对伤口进行灭菌或清洁。该伤口灭菌过程可用于减少伤口将被感染的机会,这继而又可增加伤口愈合的机会。
在清创和灭菌之后,器械300然后可用于对生物组织进行表面重修,例如对在治疗部位中的伤口进行表面重修。具体地,操作员(例如,经由控制器106和用户接口112)可控制微波阵容(例如,微波阵容104)和气体馈送器(例如,气体容器214、阀216和气体供应源212)以形成热等离子体。如前所述,该步骤可在激发等离子体的步骤之后。为了产生热等离子体,占空比可增加到例如50%,或者连续波(CW)和/或rms功率电平可增加到例如75W或100W(微波功率和RF激发脉冲的振幅将需要基于器械300的精确几何形状/尺寸来调整)。RF与微波功率的比率将优选地保持恒定,例如,对于非热等离子体和热等离子体,小于10%。
以此方式,可在器械300的远端处产生热等离子体,并且该热等离子体可被递送到在远端处或恰好超过该远端的治疗部位。因此,可将热等离子体引导到新灭菌的伤口,以便对伤口进行表面重修。与简单地等待伤口自然愈合相比,该伤口表面重修过程可用于加速伤口愈合。
鉴于以上情况,电外科器械300提供了可对伤口进行清创、灭菌和表面重修的伤口治疗设备。将理解,从灭菌到表面重修的转变涉及从产生/施加非热等离子体到产生/施加热等离子体的转变。还应当理解,从非热等离子体到热等离子体的这种转变可通过增加占空比和/或增加用于形成等离子体的脉冲微波能量信号的功率来执行。例如,低于40%的占空比可用于产生非热等离子体,而高于50%的占空比可用于产生热等离子体。另外地或替代地,低于50W的脉冲功率(或者低于15W的平均功率)可用于产生非热等离子体,而高于75W的脉冲功率(或者高于30W的平均功率)可用于产生热等离子体。
将理解,虽然图3A和图3B的电外科器械可用于伤口治疗,但是该器械还可用于其他应用,诸如治疗例如在耳和尿路中的感染部位。例如,液体通路342可用于从感染部位提取感染的组织和/或黏液。另外,液体通路342可用于从医学植入物(例如,金属植入物)和对应的身体植入部位提取感染的组织。随后,可使用非热等离子体对感染部位、植入部位和/或植入物进行灭菌。
图4A和图4B是作为本发明的另一个实施方案的电外科器械350的示意性横截面图。与图3A共同的部件被赋予相同的附图标记,并且不再进行描述。
图4A和图4B中的实施方案与图3A和图3B的实施方案的不同之处在于第一电极和第二电极可相对于彼此移动。
在该实施方案中,套筒318和护套340被布置为相对于同轴电缆302在纵向方向上滑动。为了实现这一点,套筒318以伸缩方式滑动地安装在近侧基片354内。O形环325可装配在滑动接口处以维持液密(例如,气密)密封。而且,护套340以伸缩方式滑动地安装在近侧基片354内。O形环358可装配在滑动接口处以维持不透流体(例如,液密)密封。拉线(未示出)可延伸穿过连接器306以辅助套筒318和护套340相对于同轴电缆定位。拉线可手动地操作,或者可连接到自动化控制机构,例如步进马达或线性马达,该自动化控制机构可例如基于来自控制器的控制信号来自动地控制套筒318和护套340的位置。套筒318和护套340可作为一个单一单元一起移动。
可滑动套筒和护套准许器械采用两种配置。在第一配置中,如图4A所示,套筒318的导电内表面321与柱形封盖314纵向地对齐。该配置设立高阻抗区域,该高阻抗区域在向器械供应RF或微波信号时表现出高电场。在该配置中,器械可被适配成从探针的远端递送等离子体,例如用于表面重修的热等离子体或用于灭菌的非热等离子体。该操作模式对应于图3A所示的装置。
微处理器(例如,微处理器110)可被布置为输出控制信号以基于在控制器中根据微波检测信号确定的检测到的回波损耗或阻抗不匹配来调整滑动套筒和护套相对于同轴电缆的位置。该控制可在正在产生等离子体时进行,例如以维持预设的所要求的匹配或回波损耗,例如10dB(90%的微波能量被递送到等离子体中)。
在第二配置中,如图4B所示,套筒318和护套340相对于同轴电缆302向后滑动以暴露柱形封盖314在装置的远端处的一段。暴露端用作辐射单极微波天线。在该配置中,微波信号在缺少气体的情况下被供应到同轴电缆。在非电离辐射场处发射微波信号。在远侧辐射单极处递送的非电离微波功率电平可在2.5W与50W连续波功率之间;该电平可取决于进行表面重修的组织的特性,例如,治疗部位(例如,伤口或感染/植入部位)的深度。功率电平还取决于用于将微波能量从发生器递送到施加器或天线的微波传输电缆的性质。
微波能量可作为脉冲序列或微波能量突发来递送,借此机械力跟随或嵌入在微波凝固能量的突发中。例如,一种激活轮廓可包括施加10W的微波功率10秒。
柱形封盖314的远端可终止于导电圆顶中,这有助于确保在探针尖端外侧的区域中的功率密度不会太高度地集中在柱形封盖314的远端处。
鉴于以上情况,除了或代替经由热等离子体(即,电离气体)进行表面重修,器械300可用于产生非电离微波能量或辐射以用于组织表面重修。在这种情况下,该设备可被控制(例如,经由控制器106和用户接口112)以关断气体馈送器(例如,气体容器214、阀216和气体供应源212),使得气体不被提供到器械300的远端。另外地,微波阵容(例如,微波阵容104)可被控制(例如,经由控制器106和用户接口112)以在远侧尖端处提供非电离辐射场。在一个实施方案中,用于产生非热等离子体(有气体)的相同微波信号可用于产生非电离辐射场(无气体)。这种类型的微波信号或微波能量轮廓可能是期望的,因为它与例如用于产生热等离子体的信号相比更弱。较弱的信号可能有益于表面重修,因为较强的信号可能造成可妨碍愈合的凝固水平(例如,浅或深)。就是说,如上所讨论,将理解,在一些其他实施方案中,可使用不同形式的微波能量分布,例如具有高于40%的占空比和/或高于50W的脉冲功率(或高于15W的平均功率)的脉冲信号。
鉴于以上情况,电外科器械350提供伤口治疗设备或装置,该伤口治疗设备或装置可执行伤口清创和灭菌,并且还可经由以下两个单独且不同的机制进行表面重修:热等离子体和非电离微波能量。
图5A和图5B是作为本发明的另外的实施方案的电外科器械400的示意性横截面图。与图3A共同的部件被赋予相同的附图标记,并且不再进行描述。
图5A和图5B的实施方案与图3A的实施方案的不同之处在于器械包括可展开清创工具402。具体地,器械400包括用于接纳清创工具402的腔、凹陷部或保持器404。在图5A和图5B的实施方案中,保持器404在器械400的远端中,并且在远端面上具有开口,该开口面向与发射等离子体和非电离辐射实质上相同的方向。然而,在一些其他实施方案中,将理解,保持器404可定位在器械400上的其他地方。器械400还包括从清创工具402延伸到在探针的近端处的手柄408的拉线406。如图5A和图5B所示,拉线406可被容纳在引导结构407内,该引导结构附接到器械400的外表面并且在使用期间保护该线不被物体勾住。然而,在另一个实施方案中,引导结构407可与护套340或套筒318集成,使得器械400的外轮廓与图3A至图4B的实施方案相比未改变。在任何情况下,手柄408都可由用户操作以相对于保持器404移动清创工具402。就是说,用户可相对于器械400纵向地移动手柄408(如箭头410所指示),以便引起清创工具402相对于保持器404的对应的纵向移动(如箭头412所指示)。以此方式,手柄408可用于使清创工具402在收起位置(如图5B所示)与展开位置(如图5A所示)之间移动,在该收起位置,清创工具402被封闭在保持器406内,在该展开位置,清创工具402突出到在探针尖端外侧的区域中来对生物组织进行清创。在一个实施方案中,保持器404被设定尺寸为使得在收起位置,清创工具402被完全地封闭在保持器402内,即,工具根本不从保持器突出。此外,在一个实施方案中,拉线406被设定尺寸为使得清创工具402与保持器402完全地间隔开,即,整个工具从保持器突出。然而,在一些其他实施方案中,各种部件可被设定尺寸为使得工具在展开位置仅部分地从保持器突出。
在图5A和图5B中,清创工具包括具有多个弹性可变形刷毛的刷。当在展开位置时,刷毛可用于例如经由刷拭或刮擦动作从治疗部位(例如,伤口、感染/植入部位、植入物)去除死亡、受损或感染的组织。而且,刷毛可用于例如经由刷拭或刮擦动作从治疗部位去除异物(例如,沙砾、灰尘、污染物)。然而,在一些其他实施方案中,清创工具可以是除刷之外的东西,诸如,例如具有研磨涂层或表面的可展开构件(例如,垫)或涂覆有纱布型材料的可展开构件。在这种情况下,使用清创工具进行清创的方法与关于刷的相同。
在图5A和图5B的实施方案中,用于可展开工具402的展开机构包括拉线406和手柄408。因此,图5A和图5B的展开机构是手动展开机构。然而,将理解,在一些其他实施方案中,可提供自动或计算机控制的展开机构。例如,这种自动展开机构可包括可操作地耦合到控制器(例如,控制器106)的机电致动器(PZT致动器、磁致伸缩致动器、步进马达、线性马达),并且该致动器可被配置为在使用中基于来自控制器的控制信号来使清创工具402在收起位置和展开位置之间移动。致动器可使用类似于拉线406的拉线机械地移动工具。
图5A和图5B的实施方案具有可展开清创工具402和用于注射/提取清创液体的液体通路342两者。因此,图5A和图5B的实施方案具有用于对治疗部位(例如,伤口、感染/植入部位、植入物)进行清创的两个单独且不同的机构。然而,将理解,在提供可展开工具402的情况下,液体通路342以及用于注射和提取液体的所有相关联机构是可选的,即,它们可能不存在。
将理解,来自上述实施方案中的一者的一个或多个特征可与来自上述实施方案中的一个或多个其他实施方案的一个或多个特征进行组合以形成落入所附权利要求书的范围内的新实施方案。例如,图2的实施方案包括在器械的远端处的研磨区域226,以用于对治疗部位(例如,伤口、感染/植入部位)进行清创。将理解,图3A、图3B、图4A、图4B、图5A和图5B的实施方案中的任一者或多者也可包括研磨区域226。另外地,上述实施方案公开了三种单独清创设备:(i)在器械的远端处的研磨区域,例如图2,(ii)用于注射/提取清创液体和固体的液体通路,例如图3A至图5B,以及(iii)可展开清创工具,例如图5A和图5B。将理解,在一些实施方案中,可仅存在这些清创设备中的一者;然而,在一些其他实施方案中,可存在这些清创设备中的任两者,并且在一些另外的实施方案中,可存在所有三个清创设备。将理解,在缺少液体通路的情况下,器械的外表面可由套筒318而不是由护套340限定。此外,在另一个实施方案中,图4A和图4B的实施方案的可移动电极可被包括在图5A和图5B的可展开清创工具实施方案中。
在前述描述中或在所附权利要求书中或在附图中公开的以它们的具体形式或者就用于执行所公开的功能的手段或用于获得所公开的结果的方法或过程表达的特征可视情况单独地或以此类特征的任何组合用于以它们的多样化形式实现本发明。
虽然已经结合以上描述的示例性实施方案描述了本发明,但是当给出本公开时,许多等效修改和变型对本领域技术人员来说将是显而易见的。因此,以上阐明的本发明的示例性实施方案应被认为是说明性的,而不是限制性的。在不脱离本发明的精神和范围的情况下,可对所描述的实施方案作出各种改变。
为了避免任何疑问,本文提供的任何理论解释都是为了提高读者的理解而提供的。发明人不希望受这些理论解释中的任一者束缚。
贯穿本说明书,包括所附权利要求书,除非上下文另有要求,否则字词“具有(have)”、“包含(comprise)”和“包括(include)”以及诸如“具有(having)”、“包含(comprises/comprising)”和“包括(including)”的变型将被理解为暗示包括陈述的整数或步骤或者整数或步骤的群组,但不排除任何其他整数或步骤或者整数或步骤的群组。
必须注意,除非上下文另有清楚规定,否则如在说明书和所附权利要求书中所使用,单数形式“一个”、“一种”和“所述”包括复数指称物。范围在本文中可被表达为从“约”一个特定值起和/或至“约”另一个特定值止。当表达这种范围时,另一个实施方案包括从一个特定值起和/或至另一个特定值止。类似地,在通过使用先行词“约”将值表达为近似值时,将理解,特定值形成另一个实施方案。与数值有关的术语“约”是可选的并且意指例如+/-10%。
本文使用的字词“优选的”和“优选地”是指在一些情况下可提供某些益处的本发明的实施方案。然而,将了解,在相同或不同情况下,其他实施方案也可以是优选的。因此,对一个或多个优选实施方案的叙述不意指或暗示其他实施方案是无用的,并且不意图将其他实施方案排除在本公开的范围或权利要求书的范围之外。
Claims (25)
1.一种电外科器械,所述电外科器械包括:
细长探针,所述细长探针包括用于输送射频(RF)和/或微波频率电磁(EM)能量的同轴电缆和连接在所述同轴电缆的远端处以用于接收所述RF和/或微波能量的探针尖端;
气体通路,所述气体通路用于将气体输送通过所述细长探针而到达所述探针尖端;以及
清创设备,所述清创设备用于对生物组织进行清创,
其中所述同轴电缆包括内导体、外导体和将所述内导体与所述外导体分离的介电材料,
其中所述探针尖端包括连接到所述同轴电缆的所述内导体的第一电极和连接到所述同轴电缆的所述外导体的第二电极,并且
其中所述第一电极和所述第二电极被布置为跨从所述气体通路接收到的气体的流动路径从所述接收到的RF和/或微波频率EM能量产生电场,以在所述探针尖端外侧的区域中产生热或非热等离子体。
2.根据权利要求1所述的电外科器械,其中所述第一电极和所述第二电极能够相对于彼此移动成第二配置,在所述第二配置中,所述第一电极向远侧延伸超过所述第二电极以形成用于从所述探针尖端向外发射微波EM场的辐射结构。
3.根据任一前述权利要求所述的电外科器械,其中所述清创设备包括在所述探针尖端的远侧外表面上的研磨区域,以用于对在所述探针尖端处的生物组织进行清创。
4.根据任一前述权利要求所述的电外科器械,其中所述清创设备包括清创工具,并且其中所述探针尖端包括用于接纳所述清创工具的保持器,所述清创工具能够在收起位置与展开位置之间移动,在所述收起位置,所述清创工具被封闭在所述保持器内,在所述展开位置,所述清创工具突出到在所述探针尖端外侧的所述区域中来对生物组织进行清创。
5.根据任一前述权利要求所述的电外科器械,其中所述细长探针包括包围所述同轴电缆的套筒,所述气体通路是在所述套筒的内表面与所述同轴电缆的外表面之间的空间。
6.根据权利要求5所述的电外科器械,其中所述第二电极形成在所述套筒的远端上,并且所述套筒能够相对于所述同轴电缆回缩。
7.根据权利要求5或6所述的电外科器械,其中所述套筒包括可旋转编织电缆以准许对所述清创设备的取向的调整。
8.根据任一前述权利要求所述的电外科器械,其中所述清创设备包括用于将液体输送通过所述细长探针并进入或离开在所述探针尖端外侧的所述区域来对生物组织进行清创的液体通路。
9.根据在从属于权利要求5至7中任一项时的权利要求8所述的电外科器械,其中所述细长探针包括包围所述套筒的护套,所述液体通路是在所述护套的内表面与所述套筒的外表面之间的空间。
10.根据在从属于权利要求5至7中任一项时的权利要求8所述的电外科器械,其中所述套筒的所述内表面与所述同轴电缆的所述外表面之间的所述空间被分割成所述气体通路和所述液体通路。
11.根据权利要求8至10中任一项所述的电外科器械,其中所述液体通路被分割成用于将液体输送通过所述细长探针而进入在所述探针尖端外侧的所述区域的第一通道和用于将液体输送通过所述细长探针而离开在所述探针尖端外侧的所述区域的第二通道。
12.根据任一前述权利要求所述的电外科器械,其中所述第一电极是被耦合以从所述同轴电缆接收RF和/或微波EM能量的辐射微波单极天线结构。
13.根据任一前述权利要求所述的电外科器械,其中所述第一电极和所述第二电极形成用于由所述同轴电缆输送的RF信号的作用电极和返回电极。
14.根据任一前述权利要求所述的电外科器械,其中所述同轴电缆的外电极由透气导电结构连接到所述第二电极,所述透气导电结构能够相对于所述第二电极或所述同轴电缆的外电极滑动并准许气体从中流过。
15.根据任一前述权利要求所述的电外科器械,其中所述探针能够插入穿过窥视装置的器械通道。
16.一种电外科设备,所述电外科设备包括:
射频(RF)信号发生器,所述RF信号发生器用于产生具有第一频率的RF电磁(EM)辐射;
微波信号发生器,所述微波信号发生器用于产生具有高于所述第一频率的第二频率的微波EM辐射;
根据任一前述权利要求所述的电外科器械,所述电外科器械被连接以接收所述RF EM辐射和所述微波EM辐射;
馈送结构,所述馈送结构用于将所述RF EM辐射和所述微波EM辐射输送到所述细长探针,所述馈送结构包括用于将所述细长探针连接到所述RF信号发生器的RF通道和用于将所述细长探针连接到所述微波信号发生器的微波通道,
气体馈送器,所述气体馈送器被连接以向所述电外科器械供应气体,
其中所述设备能够操作以对在所述探针尖端外侧的所述区域中的生物组织进行清创,并且
其中所述设备能够操作以在所述探针尖端外侧的所述区域中递送热或非热等离子体。
17.根据在从属于权利要求8时的权利要求16所述的电外科设备,所述电外科设备包括:
液体馈送器,所述液体馈送器被连接以向所述电外科器械供应液体或从所述电外科器械提取液体,
其中所述设备能够操作以向在所述探针尖端外侧的所述区域供应液体和从所述区域提取液体来对生物组织进行清创。
18.根据在从属于权利要求11时的权利要求17所述的电外科设备,其中所述液体馈送器包括:
注射装置,所述注射装置用于经由所述第一通道向所述电外科器械供应液体,以及
抽吸装置,所述抽吸装置用于经由所述第二通道从所述电外科器械提取液体。
19.根据权利要求16至18中任一项所述的电外科设备,其中所述第一电极和所述第二电极能够相对于彼此移动成第二配置,在所述第二配置中,所述第一电极向远侧延伸超过所述第二电极以形成用于从所述探针尖端向外发射微波EM场的辐射结构,并且
其中所述设备能够操作以在所述第一电极和所述第二电极呈所述第二配置而未被供应气体时从所述探针尖端向外发射非电离电场。
20.根据权利要求16至19中任一项所述的电外科设备,所述电外科设备包括激发信号发生电路,所述激发信号发生电路被布置为致使RF EM能量脉冲被递送到所述探针以跨所述流动路径产生高电场来激发所述等离子体,其中所述激发信号发生电路包括控制电路,所述控制电路被布置为使用所述微波通道上的微波EM能量脉冲的可检测特性来触发所述RF EM能量脉冲的产生。
21.根据权利要求16至20中任一项所述的电外科设备,所述电外科设备包括:
微波信号检测器,所述微波信号检测器用于对所述微波通道上的正向和反射功率进行采样并从中产生指示由所述探针递送的微波功率的微波检测信号;以及
控制器,所述控制器与所述微波信号检测器进行通信以接收所述微波检测信号,
其中所述控制器能够操作以选择所述微波EM能量的第一能量递送轮廓,所述微波EM能量的所述第一能量递送轮廓用于对组织的灭菌,
其中所述控制器包括数字微处理器,所述数字微处理器被编程为输出用于所述微波信号发生器的第一微波控制信号,所述第一微波控制信号用于设定所述微波EM能量的所述第一能量递送轮廓,并且
其中所述控制器被布置为基于所述接收到的微波检测信号来确定所述第一微波控制信号的状态。
22.根据权利要求21所述的电外科设备,其中所述控制器能够操作以选择所述微波EM能量的第二能量递送轮廓,所述微波EM能量的所述第二能量递送轮廓用于对组织的表面重修,
其中所述数字微处理器被编程为输出用于所述微波信号发生器的第二微波控制信号,所述第二微波控制信号用于设定所述微波EM能量的所述第二能量递送轮廓。
23.根据权利要求21或22所述的电外科设备,所述电外科设备包括移动机构,所述移动机构用于引起所述第一电极与所述第二电极之间的相对移动,其中所述控制器被布置为基于所述接收到的微波检测信号来将控制信号传达到所述移动机构。
24.根据权利要求23所述的电外科设备,其中所述移动机构包括线性马达、步进马达、压电致动器和磁致伸缩致动器中的任一者。
25.根据在从属于权利要求4时的权利要求21至24中任一项所述的电外科设备,所述电外科设备包括展开机构,所述展开机构用于引起所述清创工具与所述保持器之间的相对移动,其中所述控制器被布置为将清创信号传达到所述展开机构来使所述清创工具在所述收起位置与所述展开位置之间移动。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1918615.4A GB2590424A (en) | 2019-12-17 | 2019-12-17 | Electrosurgical instrument and apparatus |
GB1918615.4 | 2019-12-17 | ||
PCT/EP2020/086163 WO2021122557A1 (en) | 2019-12-17 | 2020-12-15 | Electrosurgical instrument and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114828764A true CN114828764A (zh) | 2022-07-29 |
Family
ID=69186662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080087045.0A Pending CN114828764A (zh) | 2019-12-17 | 2020-12-15 | 电外科器械和设备 |
Country Status (12)
Country | Link |
---|---|
US (1) | US20230067303A1 (zh) |
EP (1) | EP4076238B1 (zh) |
JP (1) | JP2023507984A (zh) |
KR (1) | KR20220116165A (zh) |
CN (1) | CN114828764A (zh) |
AU (1) | AU2020405991A1 (zh) |
BR (1) | BR112022011274A2 (zh) |
CA (1) | CA3161414A1 (zh) |
ES (1) | ES2972179T3 (zh) |
GB (1) | GB2590424A (zh) |
IL (1) | IL293898A (zh) |
WO (1) | WO2021122557A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111544110B (zh) * | 2020-05-06 | 2021-07-20 | 安进医疗科技(北京)有限公司 | 内镜手术电极组件 |
WO2023230036A1 (en) * | 2022-05-23 | 2023-11-30 | Smith & Nephew, Inc. | Electrosurgical laryngeal wand |
CN114983551B (zh) * | 2022-07-12 | 2022-10-25 | 深圳迈微医疗科技有限公司 | 组织消融装置以及电化学阻抗测量装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5449356A (en) * | 1991-10-18 | 1995-09-12 | Birtcher Medical Systems, Inc. | Multifunctional probe for minimally invasive surgery |
US6723091B2 (en) * | 2000-02-22 | 2004-04-20 | Gyrus Medical Limited | Tissue resurfacing |
US8623012B2 (en) * | 2001-08-15 | 2014-01-07 | Nuortho Surgical, Inc. | Electrosurgical plenum |
JP2004008524A (ja) * | 2002-06-07 | 2004-01-15 | Olympus Corp | 内視鏡用カテーテル装置 |
JP2006500116A (ja) * | 2002-09-20 | 2006-01-05 | シャーウッド・サービシーズ・アクチェンゲゼルシャフト | 組織を断片化し、切断し、そして凝固させるための電気外科器具 |
US20090018486A1 (en) * | 2007-07-13 | 2009-01-15 | Menachem Goren | Diagnosis and treatment of vericocele and prostate disorders |
DK2599506T3 (en) | 2007-11-06 | 2018-10-08 | Creo Medical Ltd | Microwave Plasma Masterization Applicator |
GB201021032D0 (en) | 2010-12-10 | 2011-01-26 | Creo Medical Ltd | Electrosurgical apparatus |
GB2487199A (en) * | 2011-01-11 | 2012-07-18 | Creo Medical Ltd | Electrosurgical device with fluid conduit |
US9204918B2 (en) * | 2011-09-28 | 2015-12-08 | RELIGN Corporation | Medical ablation system and method of use |
US20130085514A1 (en) * | 2011-09-30 | 2013-04-04 | Tyco Healthcare Group Lp | Rotating occlusion treatment system |
GB201308558D0 (en) * | 2013-05-13 | 2013-06-19 | Creo Medical Ltd | Electrosurgical apparatus |
GB2521611B (en) * | 2013-12-23 | 2020-02-12 | Creo Medical Ltd | Electrosurgical apparatus and electrosurgical device |
GB2547941A (en) * | 2016-03-04 | 2017-09-06 | Creo Medical Ltd | Electrosurgical instrument |
-
2019
- 2019-12-17 GB GB1918615.4A patent/GB2590424A/en not_active Withdrawn
-
2020
- 2020-12-15 AU AU2020405991A patent/AU2020405991A1/en active Pending
- 2020-12-15 ES ES20838385T patent/ES2972179T3/es active Active
- 2020-12-15 KR KR1020227019351A patent/KR20220116165A/ko unknown
- 2020-12-15 JP JP2022537245A patent/JP2023507984A/ja active Pending
- 2020-12-15 IL IL293898A patent/IL293898A/en unknown
- 2020-12-15 US US17/784,340 patent/US20230067303A1/en active Pending
- 2020-12-15 CA CA3161414A patent/CA3161414A1/en active Pending
- 2020-12-15 BR BR112022011274A patent/BR112022011274A2/pt not_active Application Discontinuation
- 2020-12-15 CN CN202080087045.0A patent/CN114828764A/zh active Pending
- 2020-12-15 EP EP20838385.1A patent/EP4076238B1/en active Active
- 2020-12-15 WO PCT/EP2020/086163 patent/WO2021122557A1/en active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
AU2020405991A1 (en) | 2022-06-23 |
EP4076238A1 (en) | 2022-10-26 |
KR20220116165A (ko) | 2022-08-22 |
JP2023507984A (ja) | 2023-02-28 |
GB201918615D0 (en) | 2020-01-29 |
IL293898A (en) | 2022-08-01 |
ES2972179T3 (es) | 2024-06-11 |
US20230067303A1 (en) | 2023-03-02 |
GB2590424A (en) | 2021-06-30 |
CA3161414A1 (en) | 2021-06-24 |
BR112022011274A2 (pt) | 2022-09-06 |
EP4076238C0 (en) | 2023-11-29 |
WO2021122557A1 (en) | 2021-06-24 |
EP4076238B1 (en) | 2023-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10939948B2 (en) | Dual-function plasma and non-ionising microwave coagulating electrosurgical instrument and electrosurgical apparatus incorporating the same | |
CN114377169B (zh) | 用于对外科窥视装置的器械通道进行灭菌的设备 | |
CA2934571C (en) | Surgical snare with ability to deliver electromagnetic energy and/or thermal plasma into biological tissue | |
EP4076238B1 (en) | Electrosurgical instrument and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40073460 Country of ref document: HK |