CN114813942A - 一种多用途模块化多通道超声波检测系统 - Google Patents

一种多用途模块化多通道超声波检测系统 Download PDF

Info

Publication number
CN114813942A
CN114813942A CN202210384930.6A CN202210384930A CN114813942A CN 114813942 A CN114813942 A CN 114813942A CN 202210384930 A CN202210384930 A CN 202210384930A CN 114813942 A CN114813942 A CN 114813942A
Authority
CN
China
Prior art keywords
circuit
excitation
data
signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210384930.6A
Other languages
English (en)
Other versions
CN114813942B (zh
Inventor
宋国荣
边策
刘轩
吕炎
何存富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210384930.6A priority Critical patent/CN114813942B/zh
Priority claimed from CN202210384930.6A external-priority patent/CN114813942B/zh
Publication of CN114813942A publication Critical patent/CN114813942A/zh
Application granted granted Critical
Publication of CN114813942B publication Critical patent/CN114813942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Algebra (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种多用途模块化多通道超声波检测系统,包括数据调理与通信电路、多路低频激励采集单元电路、多路高频激励采集单元电路、电源稳压电路、上位机软件、计算机、传感器阵列。在上位机中配置激励采集参数,通过与计算机连接的数据线发送至数据调理与通信电路,参数指令被转发至各低频激励采集单元电路或各高频激励采集单元电路,各激励采集单元根据指令产生激励信号进行超声激励,同时采集超声回波信号并传输至数据调理与通信电路存储,再通过数据通信接口传输至上位机,在上位机中应用数据处理算法处理数据,产生检测结果。本发明能够针对阵列式传感器和不同的检测形式进行模块化调整配置,激励采集通道数多,激励信号频带范围宽。

Description

一种多用途模块化多通道超声波检测系统
技术领域
本发明实现了一种能够针对阵列式传感器和不同的检测形式进行模块化调整配置的多通道超声波激励采集系统,属于无损检测领域。
背景技术
超声波检测技术在无损检测领域应用广泛,其基本原理就是利用声波在工件中传播时在缺陷处产生的回波信号确定缺陷的大小和位置。根据检测对象的不同,又可以分别采用体波检测或导波检测对工件或结构进行无损检测。在无限均匀介质中传播的波称为体波,一般用于检测工件内部的缺陷或损伤,通常需要较高的激励频率。而导波检测通常应用于板状结构或管道结构的无损检测,通常采用的激励频率较低。因此如果能够既满足体波检测的需求,又满足导波检测的需求,那么对超声检测设备的频带范围就会有比较高的要求,所需要的超声激励及功率放大环节应该具有较宽的频带范围,同时信号接收环节也需要较高的采样率。
随着超声检测技术的更新与发展,以超声检测技术为基础发展的超声阵列检测技术也日益成为广泛应用的新兴检测技术。相比于单一传感器检测的检测范围小,检测方向单一,检测效率低下,检测灵敏度较小等不足,阵列传感器检测能够克服以上不足,能够实现一定范围内的高精度、高灵敏度的缺陷检测。在此基础上,采用体波阵列传感器进行检测并采用一定的阵列布置形式和相应的成像算法,能够实现工件内部的层析成像或三维成像;采用导波阵列传感器进行检测,并应用聚焦成像等成像算法,能够实现板状结构或管道结构的二维B扫成像。阵列传感器能够获得更大量的数据和更丰富的信息,处理后可实现缺陷的精确定位与定量评价,并且能够获得更加直观精确的检测结果。该方法被广泛应用于缺陷检测与评价和结构健康监测等领域,具有极高的研究价值。
综合以上需求,超声波阵列传感器检测需要满足多通道激励的要求,同时,为了满足体波和导波检测的不同需求,需要有足够宽的激励频带,为了满足多通道数据采集的要求,需要能够进行高采样率多通道信号同步采集,为满足超声传感器激励需求,需要有较高的激励电压。在此基础上,面对不同的检测实际工况,应当支持不同通道数可调。
当前商用超声检测设备价格昂贵,应用场景单一,软硬件集成化程度较高,无法在多种检测场景下应用且无法针对研究工作进行二次开发。实验室场景下应用的超声检测系统通常支持的检测通道数较少,无法进行组合配置,同时仅能激励导波或体波,激励模态单一且频带范围较窄。实验时通常需要人工切换激励传感器,过程较为繁琐。
因此,现有技术中缺乏一种针对阵列式传感器和不同的检测形式进行模块化调整配置的多通道超声波激励采集系统。该系统既能实施体波阵列检测,又能实施导波阵列检测,并能够根据不同的检测需求灵活调整激励形式和通道配置,可以应用于实际超声无损检测场景,也可以应用于实验室超声检测实验。
发明内容
针对上述现有技术的不足,本发明提供一种能够面向多种检测对象,针对阵列式传感器和不同的检测形式进行模块化调整配置的多通道超声波激励采集系统。根据传感器阵列的不同配置需求,调整激励采集模块的配置数目,激励采集模块以16个通道为一个单元,在数据调理与通信板上设置8个插槽,最多同时支持8×16个通道工作,可以在数据调理板上插入相应数目的激励采集单元,来满足激励相应数目传感器阵列的多种复杂检测需求。同时针对导波或体波不同的应用场景,选择低频激励采集单元或高频激励采集单元,来满足激励不同种类超声波的检测需求。从而提高超声检测设备的通用性及便利性,降低检测成本。
为实现上述目的,本发明所述一种多用途模块化多通道超声波检测系统,该系统包括数据调理与通信电路、多路低频激励采集单元电路、多路高频激励采集单元电路、电源稳压电路、上位机软件、计算机、传感器阵列等。所述数据调理与通信电路作为超声检测系统的核心硬件,提供激励单元的接口与激励单元连接;所述多路低频激励采集单元电路通过金手指插槽与数据调理与通信电路相连接;所述多路高频激励采集单元电路通过金手指插槽与数据调理与通信电路相连接;所述电源稳压电路与数据调理与通信电路相连接;所述上位机软件运行在所述计算机上,通过USB3.0数据线与数据调理与通信电路相连接。
所述数据调理与通信电路、多路低频激励采集单元电路、多路高频激励采集单元电路、电源稳压电路均安装于超声检测系统机箱内部,所述上位机软件在所述计算机中运行,所述计算机放置于超声检测系统机箱放置于系统机箱一侧且通过USB数据线连接。
所述数据调理与通信电路由FPGA主控单元、数据存储单元、数据通信单元、LVDS接口电路、电源接口电路组成。所述FPGA主控单元分别于数据存储单元、数据通信单元、LVDS接口电路在硬件电路板上双向连接;所述电源接口电路分别为FPGA主控单元、数据存储单元、数据通信单元、LVDS接口电路提供电源接口。所述数据调理与通信电路设置八个LVDS接口,支持与1到8个高频或低频激励采集单元电路连接,用于整合各激励采集单元电路的波形数据;所述数据调理与通信电路的FPGA主控单元将读取到的各激励采集单元电路的数据存储与数据存储单元中,并通过数据通信单元将存储的数据传输至上位机。
所述多路低频激励采集单元电路独立设置16个激励采集电路,由FPGA主控单元、DA信号合成单元、RC低通滤波电路、功率放大电路、信号滤波放大单元、AD信号采集单元、LVDS接口电路组成。所述FPGA主控单元用于控制整个激励采集电路的其他单元,产生的DA芯片控制信号用于提供DA芯片的控制码值,通过控制码值的变化产生变化的激励波形,从而使所述DA信号合成单元合成所需激励信号;所述RC低通滤波电路用于滤除合成信号的毛刺和尖峰,对信号进行平滑并实现差分信号转单端;合成后的信号通过所述功率放大电路进行电压放大,从而产生高压激励信号连接到传感器阵列;所述FPGA主控单元产生的电压增益控制信号用于提供信号滤波放大单元的增益电压参数,进而产生压控增益放大器的控制电压,由此对回波信号的增益放大倍数进行控制;所述FPGA主控单元产生的AD时钟信号用于控制AD芯片的采样频率,同时接收AD芯片的电压码值,由此产生回波信号的波形数据;所述FPGA主控单元将采集到的回波信号波形数据进行片上缓存并整理成数据帧,通过LVDS接口电路发送给数据调理与通信电路。
所述多路高频激励采集单元电路独立设置16个激励采集电路,由FPGA主控单元、脉冲信号驱动隔离单元、脉冲信号放大电路、信号滤波放大单元、AD信号采集单元、LVDS接口电路组成。所述FPGA主控单元用于控制整个激励采集电路其他单元,产生的脉冲控制信号作为双极性脉冲信号的触发信号,将控制信号发送到所述脉冲信号驱动隔离单元进行信号的放大与隔离;所述脉冲信号放大电路是将经过隔离放大后的脉冲控制信号作为开关信号,控制场效应管的开关,进而产生频率较高的双极性脉冲连接到传感器阵列;采集环节与所述多路低频激励采集单元电路相同。
所述电源稳压电路主要由滤波电路、变压器、整流桥、滤波电阻、滤波电容、电压转换模块等组成。所述电源稳压电路用于提供所述超声波激励采集系统中硬件电路的供电电源,以满足系统中个单元不同电压的用电需求,并和数据调理与通信电路连接,通过接口电路间接给激励采集单元电路供电。
所述上位机软件运行在所述计算机上,通过USB3.0数据线与数据调理与通信电路相连,用于控制系统运行,配置系统参数,接收采集到的数据,处理数据等。
一种多用途模块化多通道超声波检测系统,该系统的工作流程按以下步骤进行:
步骤一、根据检测方案布置传感器阵列位置,完成传感器耦合,根据传感器参数配置高频或低频超声功能激励采集单元种类及数量,将传感器与超声激励检测系统连接。
步骤二、连接系统和计算机,计算机开机并打开上位机软件,超声激励检测系统上电开机。
步骤三、在上位机中配置好初始激励与采集参数,包括激励频率,选用通道数,回波信号增益、采集数据存储路径等。
步骤四、运行启动上位机,系统开始同步激励采集工作。
步骤五、激励起始信号通过上位机传输至数据调理与通信电路,再由数据接口传输至激励采集单元电路,激励采集单元电路根据上位机设置的参数产生激励波形信号,通过滤波并放大后传输到传感器产生超声信号,并耦合到被测对象中。
步骤六、传感器接收到超声回波信号并传输到滤波放大电路进行去噪放大,然后通过AD转换为数字信号,被激励采集单元电路中的FPGA主控单元读取,组成数据帧后通过数据接口传输至数据调理与通信电路,进行数据存储,并将所有通道采集的数据传输至上位机,保存在计算机中。
步骤七、待所有通道依次激励采集完成后,上位机自动暂停运行,结束本次检测。
步骤八、关闭超声激励检测系统和上位机。
步骤九、针对采集到的数据应用相应算法进行数据处理,获取本次检测结果。
与现有技术相比较,本发明具有的效果是:
(1)本发明最多可配置高达128路激励采集通道,既可同步激励又可同步采集,且能够根据实际检测需求进行自由组合配置,系统集成度高,每通道信号可独立激励采集,能够满足不同通道数的检测需求,提高检测效率。
(2)本发明的高频激励单元和低频激励单元能够按需求配置组合,可提供20kHz至20MHz的宽频带的激励信号,同时能够提供峰峰值高达180Vpp的大电压激励信号,既能进行体波检测也能进行导波检测,一机多用,应用场景广阔。
(3)本发的多通道、宽频带、高电压等特点,能够针对超声检测中的成像等需求进行更高分辨率的检测,对阵列传感器提供更高的激励电压从而产生更高的激励能量,提高了回波信号能量和检测范围,进而提高了检测精度和效率。本发明可以应用于各类多通道传感器超声检测场景,也可用于实验室超声检测技术开发,为超声无损检测领域提供一种通用且实用的功能丰富的检测仪器。
附图说明
图1为系统总体结构示意图;
图2为数据调理与通信电路结构示意图;
图3为多路低频激励采集单元电路结构示意图;
图4为多路高频激励采集单元电路结构示意图;
图5为电源稳压电路结构示意图;
具体实施方式
下面结合附图和实施例对本发明所述多用途模块化多通道超声波检测系统作进一步的说明:
本实施例中采用的多用途模块化多通道超声波检测系统的结构示意图如图1所示,为满足试件的超声检测需求,本系统提供最多128个传感器激励检测接口,可用于对最多由128个传感器组成的阵列进行超声信号激励与采集,将传感器耦合在被测试件表面后,分别用同轴屏蔽线按顺序连接至检测系统的第1~128个激励采集通道。
如图1所示,本发明所述一种多用途模块化多通道超声波检测系统,包括计算机1、上位机2、数据调理与通信电路3、多路低频激励采集单元电路或多路高频激励采集单元电路4、电源稳压电路5、传感器阵列6。将上位机2在计算机1中打开运行,计算机1与数据调理与通信电路3通过USB3.0数据线连接,多路低频激励采集单元电路或多路高频激励采集单元电路4通过LVDS接口与数据调理与通信电路3相连接,传感器阵列6与多路低频激励采集单元电路或多路高频激励采集单元电路4通过同轴屏蔽线相连接,电源稳压电路5与数据调理与通信电路3通过电源接口相连接。
数据调理与通信电路3、多路低频激励采集单元电路或多路高频激励采集单元电路4、电源稳压电路5均安装在超声检测系统机箱内部,机箱放置于被测试件周围的平台上,计算机1放置于超声检测系统机箱一侧,通过USB3.0数据线连接,控制超声检测系统运行。传感器阵列6耦合于被测试件上,再通过同轴屏蔽线连接到超声检测系统。
计算机1中运行上位机2,采用LabVIEW编写,用于控制超声检测系统的运行,设置系统激励采集参数以及保存采集到的超声信号数据。需要在上位机2中设置激励信号的频率、激励信号的周期、激励信号的幅值、激励波形的种类,激励的通道数等激励参数,同时还需要设置采集信号的长度、采集信号的增益、信号的采样率等采集参数,还包括显示信号通道数、滤波频带和数据保存位置等。采集到的数据返回到上位机2并保存在计算机1中。
数据调理与通信电路3,如图2所示,通过以CYPRESS公司的FX3EZ-USB3014作为USB3.0接口主控芯片的通信单元电路,用于接收上位机2下发的参数配置指令和上传采集到的波形数据,指令数据和波形数据处理均由主控FPGA完成,FPGA芯片采用Altera公司的5CEFA9F27I7N作为主控芯片,存储器件选用FLASH芯片。LVDS数据接口电路包括了LVDS数据传输,电源供电,同步时钟,同步信号,RS232接口通信等功能。
多路低频激励采集单元电路4如图3所示,主控FPGA芯片采用Altera公司的5CEFA9F27I7N作为主控芯片,用于激励和采集控制。激励环节首先是FPGA将幅值信息发送到DAC芯片,DAC芯片选用ADI公司的AD9743双通道高速串行数模转换芯片。激励信号通过RC低通滤波电路进入功率放大电路,功率放大电路采用IRFP260功率场效应管对激励小信号进行放大,最终将放大后的信号传输至传感器。采集环节首先对回波信号进行限幅处理,采用PMBD7000芯片实现限幅功能,回波信号再通过滤波电路进入压控增益放大环节,采用了AD8334压控增益放大器与AD8803实现了程控增益放大功能。经过的信号,再经过ADC芯片的模数转换,采用AD9288作为模数转换芯片,满足100MHz采样率的应用需求。FPGA从AD9288中读取转换后的数字码值,缓存为数据帧,输出到数据调理与通信电路3。
多路高频激励采集单元电路4如图4所示,主控FPGA芯片采用Altera公司的5CEFA9F27I7N作为主控芯片,用于激励和采集控制。激励环节首先是FPGA根据激励参数将开关脉冲信号发送到驱动隔离芯片MD1211,再经过TC6320场效应管实现脉冲放大,产生的双极性脉冲用于激励超声传感器。采集环节与多路低频激励采集单元电路4相同。
电源稳压电路5如图5所示,主要使用了开关电源和变压器、电桥整流电路、电容和电感组成的稳压电路,稳压电源模块等组成。
传感器6根据不同检测需求选择。
该系统工作流程按以下步骤进行,如图5所示:
步骤一、上位机2在计算机1中开始运行后,会向系统中注入好的初始值,发送一条参数配置指令,并可在系统运行期间在线修改参数。参数注入完成后上位机2会发送检测起始信号到系统中,系统同步开始激励和采集。
步骤二、数据调理与通信电路3接收到上位机2发送的激励采集参数后,通过通信单元电路,将参数配置指令数据发送到FPGA主控单元,FPGA读取参数配置指令数据后,会将激励采集相关参数通过RS232接口发送到多路低频激励采集单元电路或多路高频激励采集单元电路4,待数据发送完成后会将激励采集起始信号发送给激励采集单元电路。
步骤三、多路低频激励采集单元电路或多路高频激励采集单元电路4接收到配置参数后设置好激励采集初始值,接收到激励采集起始信号后会开始同步激励采集过程。首先根据激励参数给出相应的激励控制信号,经过放大后的波形传输到传感器进行激励,各个通道可根据实际检测需求依次或同时激励。
步骤四、多路低频激励采集单元电路或多路高频激励采集单元电路4同步采集接收到回波信号后经过限幅、滤波等处理后进入ADC芯片进行模数转换,采集到的数据在FPGA缓存后,经过LVDS数据接口由数据调理与通信电路3读取,并在数据调理与通信电路3中存储。
步骤五、数据调理与通信电路3中存储的数据,通过USB3.0接口电路,经由USB3.0数据线发送至计算机1中运行的上位机2,并存储在计算机1中。
步骤六、在计算机1中通过数据处理算法对数据进行处理,得到检测结果,完成检测过程。

Claims (5)

1.一种多用途模块化多通道超声波检测系统,其特征在于,该系统包括数据调理与通信电路、多路低频激励采集单元电路、多路高频激励采集单元电路、电源稳压电路、上位机软件、计算机、传感器阵列;所述数据调理与通信电路作为超声检测系统的核心硬件,提供激励单元的接口与激励单元连接;所述多路低频激励采集单元电路通过金手指插槽与数据调理与通信电路相连接;所述多路高频激励采集单元电路通过金手指插槽与数据调理与通信电路相连接;所述电源稳压电路与数据调理与通信电路相连接;所述上位机软件运行在所述计算机上,通过USB3.0数据线与数据调理与通信电路相连接;
所述数据调理与通信电路、多路低频激励采集单元电路、多路高频激励采集单元电路、电源稳压电路均安装于超声检测系统机箱内部,所述上位机软件在所述计算机中运行,所述计算机放置于超声检测系统机箱放置于系统机箱一侧且通过USB数据线连接。
2.根据权利要求1所述的一种多用途模块化多通道超声波检测系统,其特征在于:所述数据调理与通信电路由FPGA主控单元、数据存储单元、数据通信单元、LVDS接口电路、电源接口电路组成;所述FPGA主控单元分别于数据存储单元、数据通信单元、LVDS接口电路在硬件电路板上双向连接;所述电源接口电路分别为FPGA主控单元、数据存储单元、数据通信单元、LVDS接口电路提供电源接口;所述数据调理与通信电路设置八个LVDS接口,支持与1到8个高频或低频激励采集单元电路连接,用于整合各激励采集单元电路的波形数据;所述数据调理与通信电路的FPGA主控单元将读取到的各激励采集单元电路的数据存储与数据存储单元中,并通过数据通信单元将存储的数据传输至上位机。
3.根据权利要求1所述的一种多用途模块化多通道超声波检测系统,其特征在于:所述多路低频激励采集单元电路独立设置16个激励采集电路,由FPGA主控单元、DA信号合成单元、RC低通滤波电路、功率放大电路、信号滤波放大单元、AD信号采集单元、LVDS接口电路组成;所述FPGA主控单元用于控制整个激励采集电路的其他单元,产生的DA芯片控制信号用于提供DA芯片的控制码值,通过控制码值的变化产生变化的激励波形,从而使所述DA信号合成单元合成所需激励信号;所述RC低通滤波电路用于滤除合成信号的毛刺和尖峰,对信号进行平滑并实现差分信号转单端;合成后的信号通过所述功率放大电路进行电压放大,从而产生高压激励信号连接到传感器阵列;所述FPGA主控单元产生的电压增益控制信号用于提供信号滤波放大单元的增益电压参数,进而产生压控增益放大器的控制电压,由此对回波信号的增益放大倍数进行控制;所述FPGA主控单元产生的AD时钟信号用于控制AD芯片的采样频率,同时接收AD芯片的电压码值,由此产生回波信号的波形数据;所述FPGA主控单元将采集到的回波信号波形数据进行片上缓存并整理成数据帧,通过LVDS接口电路发送给数据调理与通信电路。
4.根据权利要求1所述的一种多用途模块化多通道超声波检测系统,其特征在于:所述多路高频激励采集单元电路独立设置16个激励采集电路,由FPGA主控单元、脉冲信号驱动隔离单元、脉冲信号放大电路、信号滤波放大单元、AD信号采集单元、LVDS接口电路组成;所述FPGA主控单元用于控制整个激励采集电路其他单元,产生的脉冲控制信号作为双极性脉冲信号的触发信号,将控制信号发送到所述脉冲信号驱动隔离单元进行信号的放大与隔离;所述脉冲信号放大电路是将经过隔离放大后的脉冲控制信号作为开关信号,控制场效应管的开关,进而产生频率较高的双极性脉冲连接到传感器阵列;采集环节与所述多路低频激励采集单元电路相同。
5.根据权利要求1所述的一种多用途模块化多通道超声波检测系统,其特征在于:该系统的工作流程按以下步骤进行:
步骤一、根据检测方案布置传感器阵列位置,完成传感器耦合,根据传感器参数配置高频或低频超声功能激励采集单元种类及数量,将传感器与超声激励检测系统连接;
步骤二、连接系统和计算机,计算机开机并打开上位机软件,超声激励检测系统上电开机;
步骤三、在上位机中配置好初始激励与采集参数,包括激励频率,选用通道数,回波信号增益、采集数据存储路径等;
步骤四、运行启动上位机,系统开始同步激励采集工作;
步骤五、激励起始信号通过上位机传输至数据调理与通信电路,再由数据接口传输至激励采集单元电路,激励采集单元电路根据上位机设置的参数产生激励波形信号,通过滤波并放大后传输到传感器产生超声信号,并耦合到被测对象中;
步骤六、传感器接收到超声回波信号并传输到滤波放大电路进行去噪放大,然后通过AD转换为数字信号,被激励采集单元电路中的FPGA主控单元读取,组成数据帧后通过数据接口传输至数据调理与通信电路,进行数据存储,并将所有通道采集的数据传输至上位机,保存在计算机中;
步骤七、待所有通道依次激励采集完成后,上位机自动暂停运行,结束本次检测;
步骤八、关闭超声激励检测系统和上位机;
步骤九、针对采集到的数据应用相应算法进行数据处理,获取本次检测结果。
CN202210384930.6A 2022-04-13 一种多用途模块化多通道超声波检测系统 Active CN114813942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210384930.6A CN114813942B (zh) 2022-04-13 一种多用途模块化多通道超声波检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210384930.6A CN114813942B (zh) 2022-04-13 一种多用途模块化多通道超声波检测系统

Publications (2)

Publication Number Publication Date
CN114813942A true CN114813942A (zh) 2022-07-29
CN114813942B CN114813942B (zh) 2024-06-04

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532571A (zh) * 2022-09-05 2022-12-30 江苏大学 2+2压电陶瓷超声传感器阵列、制备及寻址激励方法
CN117589097A (zh) * 2024-01-18 2024-02-23 沈阳宇时先锋检测仪器有限公司 一种超声波多重测量系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020158620A1 (en) * 2001-04-27 2002-10-31 Sunter Stephen K. Method and circuit for testing high frequency mixed signal circuits with frequency signals
US20190053786A1 (en) * 2016-04-22 2019-02-21 Shenzhen Institutes Of Advanced Technology Delayed excitation ultrasonic imaging method and apparatus and delayed excitation system
US20190133550A1 (en) * 2017-11-08 2019-05-09 Fujifilm Sonosite, Inc. Ultrasound system with high frequency detail
CN110057477A (zh) * 2019-05-09 2019-07-26 合肥工业大学 一种用于应变式力传感器的多通道交/直流激励的信号测量系统
CN110530988A (zh) * 2019-07-23 2019-12-03 北京工业大学 一种基于传感器阵列的16通道导波聚焦检测系统
CN210090383U (zh) * 2019-01-26 2020-02-18 北京工业大学 基于pxi转串口通信的双通道高频脉冲激励接收板卡
CN111141333A (zh) * 2020-01-20 2020-05-12 陕西四海测控技术有限公司 一种多通道集成式传感器数据采集器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020158620A1 (en) * 2001-04-27 2002-10-31 Sunter Stephen K. Method and circuit for testing high frequency mixed signal circuits with frequency signals
US20190053786A1 (en) * 2016-04-22 2019-02-21 Shenzhen Institutes Of Advanced Technology Delayed excitation ultrasonic imaging method and apparatus and delayed excitation system
US20190133550A1 (en) * 2017-11-08 2019-05-09 Fujifilm Sonosite, Inc. Ultrasound system with high frequency detail
CN210090383U (zh) * 2019-01-26 2020-02-18 北京工业大学 基于pxi转串口通信的双通道高频脉冲激励接收板卡
CN110057477A (zh) * 2019-05-09 2019-07-26 合肥工业大学 一种用于应变式力传感器的多通道交/直流激励的信号测量系统
CN110530988A (zh) * 2019-07-23 2019-12-03 北京工业大学 一种基于传感器阵列的16通道导波聚焦检测系统
CN111141333A (zh) * 2020-01-20 2020-05-12 陕西四海测控技术有限公司 一种多通道集成式传感器数据采集器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高光旭;胡建华;李久营;崔广铁;曹华勇;高志凌;: "分布式多通道超声波探伤系统的研制", 无损检测, no. 07, 10 July 2009 (2009-07-10) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532571A (zh) * 2022-09-05 2022-12-30 江苏大学 2+2压电陶瓷超声传感器阵列、制备及寻址激励方法
CN115532571B (zh) * 2022-09-05 2024-05-14 江苏大学 2+2压电陶瓷超声传感器阵列、制备及寻址激励方法
CN117589097A (zh) * 2024-01-18 2024-02-23 沈阳宇时先锋检测仪器有限公司 一种超声波多重测量系统及方法
CN117589097B (zh) * 2024-01-18 2024-04-05 沈阳宇时先锋检测仪器有限公司 一种超声波多重测量系统及方法

Similar Documents

Publication Publication Date Title
CN110530988B (zh) 一种基于传感器阵列的16通道导波聚焦检测系统
CN105283913A (zh) 在asic上用于超声波束成形的德尔塔延迟方法
US20060101896A1 (en) Apparatus and methods for testing acoustic probes and systems
CN101495043A (zh) 利用具有4x内插器的可调数字滤波器的超声波检测测量系统
CN101545888B (zh) 分布式多通道超声探伤系统
CN102109497B (zh) 顺次启动式高动态范围ndt/ndi检验装置
CN210090383U (zh) 基于pxi转串口通信的双通道高频脉冲激励接收板卡
CN101576537A (zh) 超声相控阵激励装置
CN100573613C (zh) 一种模拟超声波地震信号物理激发、接收系统及其方法
CN109507303A (zh) 电磁超声回波信号的自适应程控接收处理装置及其方法
CN110470744A (zh) 多模式曲面相控阵超声层析成像装置
CN105559825A (zh) 超声成像系统接收前端装置
US20200348262A1 (en) Dynamic magnetic field detection probe and array control method
CN104236505A (zh) 一种基于阵列式压电薄膜传感器的管道腐蚀监测装置
CN109283258B (zh) 一种基于超声相控阵的检测系统
CN212060395U (zh) 一种支持实时采样和等效采样的数字示波器
CN106770647B (zh) 脂肪含量测量系统及方法
CN114813942B (zh) 一种多用途模块化多通道超声波检测系统
US7587943B2 (en) Device for the destruction-free testing of components
US20050092059A1 (en) Apparatus and methods for interfacing acoustic testing apparatus with acoustic probes and systems
CN114813942A (zh) 一种多用途模块化多通道超声波检测系统
CN1307427C (zh) 基于线性插值的波束合成器及其合成方法
CN105675721A (zh) 一种超声成像检测装置及系统
CN213092147U (zh) 一种基于fpga和stm32的多通道信号采集装置
CN113030249B (zh) 多模式可配置的宽频超声层析成像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant