CN114813598A - Greenhouse gas detection method, device and system and electronic equipment - Google Patents
Greenhouse gas detection method, device and system and electronic equipment Download PDFInfo
- Publication number
- CN114813598A CN114813598A CN202210442193.0A CN202210442193A CN114813598A CN 114813598 A CN114813598 A CN 114813598A CN 202210442193 A CN202210442193 A CN 202210442193A CN 114813598 A CN114813598 A CN 114813598A
- Authority
- CN
- China
- Prior art keywords
- detection
- greenhouse gas
- data
- simulation
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本公开的实施例提供了温室气体检测的系统。该系统的包括第一检测部、第二检测部和综合处理部;第一检测部包括仿真装置和第一控制器,仿真装置被配置为监测监控区域内的人体仿真感官数据,第一控制器被配置为当所述感官数据在单位时间内的变化量超过阈值时,发送启动指令至所述第二检测部;第二检测部包括检测装置和第二控制器,第二控制器被配置为收到所述启动指令后,控制检测装置检测所述监控区域内的温室气体浓度生成检测数据,第二控制器还被配置为将所述检测数据发送至所述综合处理部;综合处理部包括报告模块,报告模块被配置为根据所述检测数据生成温室气体检测报告。这样,可以及时对温室气体进行检测。
Embodiments of the present disclosure provide systems for greenhouse gas detection. The system includes a first detection part, a second detection part and a comprehensive processing part; the first detection part includes a simulation device and a first controller, the simulation device is configured to monitor the human body simulation sensory data in the monitoring area, and the first controller is configured to send a start instruction to the second detection part when the amount of change of the sensory data per unit time exceeds a threshold; the second detection part includes a detection device and a second controller, and the second controller is configured to After receiving the startup instruction, the detection device is controlled to detect the greenhouse gas concentration in the monitoring area to generate detection data, and the second controller is further configured to send the detection data to the comprehensive processing unit; the comprehensive processing unit includes A report module, the report module is configured to generate a greenhouse gas detection report according to the detection data. In this way, greenhouse gases can be detected in a timely manner.
Description
技术领域technical field
本公开涉及温室气体检测领域,尤其涉及气体探测管法检测温室气体的技术领域。The present disclosure relates to the field of greenhouse gas detection, and in particular, to the technical field of greenhouse gas detection by a gas detection tube method.
背景技术Background technique
现在对温室气体的检测有很多方法,例如,半导体传感器检测法、光谱法、化学分析法、电化学法和气体探测管法等,不同的方法对应不同环境,能够解决环境中温室气体检测的一些基本问题。There are many methods for the detection of greenhouse gases, such as semiconductor sensor detection method, spectroscopic method, chemical analysis method, electrochemical method and gas detection tube method. Different methods correspond to different environments and can solve some problems of greenhouse gas detection in the environment. fundamental issue.
以气体探测管法为例,其主要是将预处理的测量气体输送到测量管中,并通过测量安装在管道端口的光学探头(红外或紫外探头)来测量气体的浓度。Taking the gas detection tube method as an example, it mainly transports the pretreated measurement gas into the measurement tube, and measures the concentration of the gas by measuring the optical probe (infrared or ultraviolet probe) installed at the pipe port.
但是由于环境处于变化状态,单纯的气体探测管法难以适应变化的环境并对环境进行及时检测。However, because the environment is in a state of change, it is difficult for the simple gas detection tube method to adapt to the changing environment and detect the environment in time.
发明内容SUMMARY OF THE INVENTION
本公开提供了一种温室气体检测的方法、装置、系统及电子设备,以及时对温室气体进行检测。The present disclosure provides a method, device, system and electronic device for detecting greenhouse gases, so as to detect greenhouse gases in time.
根据本公开的第一方面,提供了一种温室气体检测的系统。该系统包括第一检测部、第二检测部和综合处理部;According to a first aspect of the present disclosure, a system for greenhouse gas detection is provided. The system includes a first detection part, a second detection part and a comprehensive processing part;
所述第一检测部包括仿真装置和第一控制器,所述仿真装置被配置为监测监控区域内的人体仿真感官数据,所述第一控制器被配置为当所述感官数据在单位时间内的变化量超过阈值时,发送启动指令至所述第二检测部;The first detection part includes a simulation device and a first controller, the simulation device is configured to monitor the human body simulation sensory data in the monitoring area, and the first controller is configured to when the sensory data is within a unit time When the amount of change exceeds the threshold, send a start instruction to the second detection part;
所述第二检测部包括检测装置和第二控制器,所述第二控制器被配置为收到所述启动指令后,控制所述检测装置检测所述监控区域内的温室气体浓度生成检测数据,所述第二控制器还被配置为将所述检测数据发送至所述综合处理部;The second detection part includes a detection device and a second controller, the second controller is configured to control the detection device to detect the greenhouse gas concentration in the monitoring area to generate detection data after receiving the activation instruction , the second controller is further configured to send the detection data to the integrated processing part;
所述综合处理部包括报告模块,所述报告模块被配置为根据所述检测数据生成温室气体检测报告。The integrated processing section includes a reporting module configured to generate a greenhouse gas detection report based on the detection data.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述检测数据包括温室气体含量数据和/或光谱检测数据。According to the above aspect and any possible implementation, an implementation is further provided, wherein the detection data includes greenhouse gas content data and/or spectral detection data.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一控制器还被配置为将所述感官数据发送至所述综合处理部;According to the above aspect and any possible implementation manner, an implementation manner is further provided, wherein the first controller is further configured to send the sensory data to the integrated processing unit;
所述综合处理部还被配置为根据所述检测数据对所述感官数据进行标记生成训练样本,以便根据所述训练样本对温室气体预设神经网络模型进行训练。The integrated processing unit is further configured to mark the sensory data according to the detection data to generate training samples, so as to train the greenhouse gas preset neural network model according to the training samples.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述综合处理部还包括预测模块,所述预测模块被配置为,将第一检测部发送的感官数据输入预先训练的温室气体预设神经网络模型,得到对应的检测数据。The above aspect and any possible implementation manner further provide an implementation manner, wherein the comprehensive processing unit further includes a prediction module, and the prediction module is configured to input the sensory data sent by the first detection unit into the pre-training The greenhouse gas preset neural network model is obtained to obtain the corresponding detection data.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述仿真装置包括仿真呼吸系统和仿真传感器,Aspects as described above and any possible implementation manner, further provide an implementation manner, the simulation device includes a simulated respiratory system and a simulated sensor,
所述仿真呼吸系统包括进气通道,所述仿真传感器安装在所述进气通道的内壁上,The simulated breathing system includes an intake channel, and the simulated sensor is installed on the inner wall of the intake channel,
所述仿真传感器包括具有人体仿真功能的温度传感器、湿度传感器、酸碱度传感器、空气质量传感器中的至少三个。The simulation sensor includes at least three of a temperature sensor, a humidity sensor, a pH sensor, and an air quality sensor with a human body simulation function.
根据本公开的第二方面,提供了一种温室气体检测的方法,其特征在于,包括:According to a second aspect of the present disclosure, there is provided a method for detecting greenhouse gases, characterized by comprising:
调用所述第一检测部监测监控区域内的人体仿真的感官数据;calling the first detection unit to monitor the sensory data of the human simulation in the monitoring area;
当所述感官数据在单位时间内的变化量超过阈值时,调用所述第二检测部检测所述监控区域内的温室气体浓度并生成检测数据,When the amount of change of the sensory data per unit time exceeds a threshold, call the second detection unit to detect the greenhouse gas concentration in the monitoring area and generate detection data,
根据所述检测数据生成温室气体检测报告。A greenhouse gas detection report is generated according to the detection data.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:The above-mentioned aspect and any possible implementation manner further provide an implementation manner, and the method further includes:
根据所述检测数据对所述感官数据进行标记生成训练样本,根据所述训练样本对温室气体预设神经网络模型进行训练。The sensory data is marked according to the detection data to generate a training sample, and a preset neural network model of greenhouse gas is trained according to the training sample.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:The above-mentioned aspect and any possible implementation manner further provide an implementation manner, and the method further includes:
将第一检测部发送的感官数据输入预先训练的温室气体预设神经网络模型,得到对应的检测数据。Input the sensory data sent by the first detection unit into the pre-trained greenhouse gas preset neural network model to obtain corresponding detection data.
根据本公开的第三方面,提供了一种温室气体检测的装置,包括:According to a third aspect of the present disclosure, there is provided an apparatus for detecting greenhouse gases, comprising:
调用单元,用于调用所述第一检测部监测监控区域内的人体仿真的感官数据;a calling unit for calling the sensory data of the human body simulation in the monitoring area of the first detection unit;
处理单元,用于当所述感官数据在单位时间内的变化量超过阈值时,调用所述第二检测部检测所述监控区域内的温室气体浓度并生成检测数据;a processing unit, configured to call the second detection unit to detect the greenhouse gas concentration in the monitoring area and generate detection data when the variation of the sensory data per unit time exceeds a threshold;
报告单元,用于根据所述检测数据生成温室气体检测报告。A reporting unit, configured to generate a greenhouse gas detection report according to the detection data.
根据本公开的第四方面,提供了一种电子设备。该电子设备包括:至少一个处理器以及与所述至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行本公开的第二方面的方法。According to a fourth aspect of the present disclosure, an electronic device is provided. The electronic device includes: at least one processor and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one process The device is capable of performing the method of the second aspect of the present disclosure.
本公开的方案,在气体探测管法检测温室气体含量的基础上,引入了人体仿真技术,以人体仿真的感官数据为基础对气体检测频率进行调控,这样生成的检测数据与人体的生产生活环境相关度更高,能够便于对温室气体的排放量进行管控,同时该种检测方式提高了以气体探测管法进行温室气体检测时对变化的环境的适应能力。The solution of the present disclosure, on the basis of the gas detection tube method for detecting the content of greenhouse gases, introduces the human body simulation technology, and regulates the gas detection frequency based on the sensory data of the human body simulation, so that the generated detection data is consistent with the production and living environment of the human body. The correlation is higher, which can facilitate the management and control of greenhouse gas emissions. At the same time, this detection method improves the adaptability to the changing environment when the gas detection tube method is used for greenhouse gas detection.
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。It should be understood that the matters described in this Summary are not intended to limit key or critical features of the embodiments of the present disclosure, nor are they intended to limit the scope of the present disclosure. Other features of the present disclosure will become apparent from the following description.
附图说明Description of drawings
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。附图用于更好地理解本方案,不构成对本公开的限定在附图中,相同或相似的附图标记表示相同或相似的元素,其中:The above and other features, advantages and aspects of various embodiments of the present disclosure will become more apparent when taken in conjunction with the accompanying drawings and with reference to the following detailed description. The accompanying drawings are used for a better understanding of the present solution and do not constitute a limitation of the present disclosure. In the accompanying drawings, the same or similar reference numerals denote the same or similar elements, wherein:
图1示出了本公开的温室气体检测的系统的示意图;FIG. 1 shows a schematic diagram of the greenhouse gas detection system of the present disclosure;
图2示出了本公开的温室气体检测的方法的流程图;FIG. 2 shows a flowchart of the method for greenhouse gas detection of the present disclosure;
图3示出了根据检测数据生成温室气体检测报告的方法的流程图;FIG. 3 shows a flowchart of a method for generating a greenhouse gas detection report according to detection data;
图4示出了用来实现本公开实施例的温室气体检测的方法的电子设备的框图。FIG. 4 shows a block diagram of an electronic device used to implement the greenhouse gas detection method of an embodiment of the present disclosure.
具体实施方式Detailed ways
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions in the embodiments of the present disclosure will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments These are some, but not all, embodiments of the present disclosure. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。In addition, the term "and/or" in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, There are three cases of B alone. In addition, the character "/" in this document generally indicates that the related objects are an "or" relationship.
本公开中,在气体探测管法检测温室气体含量的基础上,引入了人体仿真技术,以人体仿真的感官数据为基础对气体检测频率进行调控,这样生成的检测数据与人体的生产生活环境相关度更高,能够便于对温室气体的排放量进行管控,同时该种检测方式提高了以气体探测管法进行温室气体检测时对变化的环境的适应能力。In the present disclosure, based on the detection of greenhouse gas content by the gas detection tube method, the human body simulation technology is introduced, and the gas detection frequency is regulated based on the sensory data of the human body simulation, so that the generated detection data is related to the production and living environment of the human body. It has a higher degree of detection, which can facilitate the management and control of greenhouse gas emissions. At the same time, this detection method improves the adaptability to changing environments when using the gas detection tube method for greenhouse gas detection.
图1示出了本公开的温室气体监测系统100以及该系统100中的第一检测部110、第二检测部120和综合处理部130之间的交互关系示意图。FIG. 1 shows the greenhouse
所述第一检测部110包括仿真装置111和第一控制器112,所述仿真装置111被配置为监测监控区域内的人体仿真感官数据,所述第一控制器112被配置为当所述感官数据在单位时间内的变化量超过阈值时,发送启动指令至所述第二检测部120;The
所述第二检测部120包括检测装置121和第二控制器122,所述第二控制器122被配置为收到所述启动指令后,控制所述检测装置121检测所述监控区域内的温室气体浓度生成检测数据,所述第二控制器122还被配置为将所述检测数据发送至所述综合处理部130;The
所述综合处理部包括报告模块132,所述报告模块132被配置为根据所述检测数据生成温室气体检测报告。The integrated processing section includes a
本实施例的系统100,在气体探测管法检测温室气体含量的基础上,引入了人体仿真技术,以人体仿真的感官数据为基础对气体检测频率进行调控,这样生成的检测数据与人体的生产生活环境相关度更高,能够便于对温室气体的排放量进行管控,同时该种检测方式提高了以气体探测管法进行温室气体检测时对变化的环境的适应能力。The
在本实施例中,所述检测数据包括温室气体含量数据和/或光谱检测数据。In this embodiment, the detection data includes greenhouse gas content data and/or spectral detection data.
在本实施例中,所述第一控制器还被配置为将所述感官数据发送至所述综合处理部;In this embodiment, the first controller is further configured to send the sensory data to the integrated processing unit;
所述综合处理部还被配置为根据所述检测数据对所述感官数据进行标记生成训练样本,以便根据所述训练样本对温室气体预设神经网络模型进行训练。The integrated processing unit is further configured to mark the sensory data according to the detection data to generate training samples, so as to train the greenhouse gas preset neural network model according to the training samples.
根据本实施例,利用神经网络对感官数据与检测数据之间的对应关系进行深度学习,并建立起感官数据与检测数据相对应的数学模型,当感官数据在单位时间内的变化量超过阈值时,可以直接通过监测到的当前的感官数据推算出对应的检测数据并作为经验数据,生成温室气体检测报告,这样能够有效减少检测装置121的启动次数,提高温室气体检测的工作效率,并降低能耗。According to this embodiment, a neural network is used to perform deep learning on the correspondence between sensory data and detection data, and a mathematical model corresponding to sensory data and detection data is established. When the amount of change of sensory data per unit time exceeds a threshold , the corresponding detection data can be directly calculated from the current sensory data monitored and used as empirical data to generate a greenhouse gas detection report, which can effectively reduce the number of startups of the
在本实施例中,所述综合处理部还包括预测模块,所述预测模块被配置为,将第一检测部发送的感官数据输入预先训练的温室气体预设神经网络模型,得到对应的检测数据。In this embodiment, the comprehensive processing unit further includes a prediction module, and the prediction module is configured to input the sensory data sent by the first detection unit into a pre-trained greenhouse gas preset neural network model to obtain corresponding detection data .
在本实施例中,所述仿真装置包括仿真呼吸系统和仿真传感器,In this embodiment, the simulation device includes a simulated breathing system and a simulated sensor,
所述仿真呼吸系统包括进气通道,所述仿真传感器安装在所述进气通道的内壁上,The simulated breathing system includes an intake channel, and the simulated sensor is installed on the inner wall of the intake channel,
所述仿真传感器包括具有人体仿真功能的温度传感器、湿度传感器、酸碱度传感器、空气质量传感器中的至少三个。The simulation sensor includes at least three of a temperature sensor, a humidity sensor, a pH sensor, and an air quality sensor with a human body simulation function.
本实施例的仿真装置111,通过模拟人体的呼吸系统100并在进气通道的内壁上设置仿真传感器能够模拟出人体的吸入监控区域内的气体后的感官,并生成感官数据,这样能够使感官数据更贴合人体呼吸时的感受,以人体仿真的感官数据为基础对气体检测频率进行调控,这样生成的检测数据与人体的生产生活环境相关度更高,能够便于对温室气体的排放量进行管控。在实施时,可以对仿真传感器中的传感器的数量进行增减。The
图2示出了与上述系统对应的用于温室气体检测的方法的流程图。该温室气体检测的方法包括:FIG. 2 shows a flowchart of a method for greenhouse gas detection corresponding to the above system. The greenhouse gas detection method includes:
S22,调用所述第一检测部监测监控区域内的人体仿真的感官数据。S22: Invoke the first detection unit to monitor the sensory data of human simulation in the monitoring area.
S24,当所述感官数据在单位时间内的变化量超过阈值时,调用所述第二检测部检测所述监控区域内的温室气体浓度并生成检测数据。S24, when the amount of change of the sensory data per unit time exceeds a threshold, call the second detection unit to detect the greenhouse gas concentration in the monitoring area and generate detection data.
S26,根据所述检测数据生成温室气体检测报告。S26, generating a greenhouse gas detection report according to the detection data.
本公开的方案,在气体探测管法检测温室气体含量的基础上,引入了人体仿真技术,以人体仿真的感官数据为基础对气体检测频率进行调控,这样生成的检测数据与人体的生产生活环境相关度更高,能够便于对温室气体的排放量进行管控,同时该种检测方式提高了以气体探测管法进行温室气体检测时对变化的环境的适应能力。The solution of the present disclosure, on the basis of the gas detection tube method for detecting the content of greenhouse gases, introduces the human body simulation technology, and regulates the gas detection frequency based on the sensory data of the human body simulation, so that the generated detection data is consistent with the production and living environment of the human body. The correlation is higher, which can facilitate the management and control of greenhouse gas emissions. At the same time, this detection method improves the adaptability to the changing environment when the gas detection tube method is used for greenhouse gas detection.
在本实施例中,根据所述检测数据对所述感官数据进行标记生成训练样本,根据所述训练样本对温室气体预设神经网络模型进行训练。In this embodiment, the sensory data is marked according to the detection data to generate a training sample, and a preset neural network model of greenhouse gas is trained according to the training sample.
在本实施例中,将第一检测部发送的感官数据输入预先训练的温室气体预设神经网络模型,得到对应的检测数据。In this embodiment, the sensory data sent by the first detection unit is input into a pre-trained greenhouse gas preset neural network model to obtain corresponding detection data.
根据本实施例,利用神经网络对感官数据与检测数据之间的对应关系进行深度学习,并建立起感官数据与检测数据相对应的数学模型,当感官数据在单位时间内的变化量超过阈值时,可以直接通过监测到的当前的感官数据推算出对应的检测数据并作为经验数据,生成温室气体检测报告,这样能够有效减少检测装置的启动次数,提高温室气体检测的工作效率,并降低能耗。According to this embodiment, a neural network is used to perform deep learning on the correspondence between sensory data and detection data, and a mathematical model corresponding to sensory data and detection data is established. When the amount of change of sensory data per unit time exceeds a threshold , the corresponding detection data can be directly calculated from the current sensory data monitored and used as empirical data to generate a greenhouse gas detection report, which can effectively reduce the number of startups of the detection device, improve the work efficiency of greenhouse gas detection, and reduce energy consumption. .
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。It should be noted that, for the sake of simple description, the foregoing method embodiments are all expressed as a series of action combinations, but those skilled in the art should know that the present disclosure is not limited by the described action sequences. Because certain steps may be performed in other orders or concurrently in accordance with the present disclosure. Secondly, those skilled in the art should also know that the embodiments described in the specification are all optional embodiments, and the actions and modules involved are not necessarily required by the present disclosure.
以上是关于方法实施例的介绍,以下通过装置实施例,对本公开所述方案进行进一步说明。The above is an introduction to the method embodiments, and the solutions described in the present disclosure will be further described below through the device embodiments.
图3示出了根据本公开的实施例的温室气体检测的装置400的方框图。装置可以被包括在图1的系统中。FIG. 3 shows a block diagram of an
如图3所示,所述温室气体检测的装置300包括:As shown in FIG. 3 , the
调用单元310,用于调用所述第一检测部监测监控区域内的人体仿真的感官数据;a
处理单元320,用于当所述感官数据在单位时间内的变化量超过阈值时,调用所述第二检测部检测所述监控区域内的温室气体浓度并生成检测数据;a
报告单元330,用于根据所述检测数据生成温室气体检测报告。The
在一些实施例中,还包括训练单元,用于根据所述检测数据对所述感官数据进行标记生成训练样本,根据所述训练样本对温室气体预设神经网络模型进行训练。In some embodiments, a training unit is further included, configured to mark the sensory data according to the detection data to generate a training sample, and train a preset neural network model of greenhouse gas according to the training sample.
在一些实施例中,还包括检测单元,用于将第一检测部发送的感官数据输入预先训练的温室气体预设神经网络模型,得到对应的检测数据。In some embodiments, a detection unit is further included, configured to input the sensory data sent by the first detection unit into a pre-trained greenhouse gas preset neural network model to obtain corresponding detection data.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,所述描述的模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of the description, for the specific working process of the described modules, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
根据本公开的实施例,本公开还提供了一种电子设备、一种存储有计算机指令的非瞬时计算机可读存储介质和一种计算机程序产品。According to embodiments of the present disclosure, the present disclosure also provides an electronic device, a non-transitory computer-readable storage medium storing computer instructions, and a computer program product.
电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
如图4所示,设备400包括计算单元401,其可以根据存储在只读存储器(ROM)402中的计算机程序或者从存储单元408加载到随机访问存储器(RAM)403中的计算机程序,来执行各种适当的动作和处理。在RAM403中,还可存储设备400操作所需的各种程序和数据。计算单元401、ROM402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。As shown in FIG. 4 , the
设备400中的多个部件连接至I/O接口405,包括:输入单元406,例如键盘、鼠标等;输出单元407,例如各种类型的显示器、扬声器等;存储单元408,例如磁盘、光盘等;以及通信单元409,例如网卡、调制解调器、无线通信收发机等。通信单元409允许设备400通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the
计算单元401可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元401的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元401执行上文所描述的各个方法和处理。例如,在一些实施例中,温室气体检测的方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元408。在一些实施例中,计算机程序的部分或者全部可以经由ROM 402和/或通信单元409而被载入和/或安装到设备400上。当计算机程序加载到RAM403并由计算单元401执行时,可以执行上文描述的方法的一个或多个步骤。备选地,在其他实施例中,计算单元401可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行温室气体检测的方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein above may be implemented in digital electronic circuitry, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips system (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program code for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer or other programmable data processing apparatus, such that the program code, when executed by the processor or controller, performs the functions/functions specified in the flowcharts and/or block diagrams. Action is implemented. The program code may execute entirely on the machine, partly on the machine, partly on the machine and partly on a remote machine as a stand-alone software package or entirely on the remote machine or server.
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with the instruction execution system, apparatus or device. The machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, a distributed system server, or a server combined with blockchain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present disclosure can be executed in parallel, sequentially, or in different orders. As long as the desired results of the technical solutions disclosed in the present disclosure can be achieved, there is no limitation herein.
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present disclosure. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements, and improvements made within the spirit and principles of the present disclosure should be included within the protection scope of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210442193.0A CN114813598A (en) | 2022-04-25 | 2022-04-25 | Greenhouse gas detection method, device and system and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210442193.0A CN114813598A (en) | 2022-04-25 | 2022-04-25 | Greenhouse gas detection method, device and system and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114813598A true CN114813598A (en) | 2022-07-29 |
Family
ID=82508111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210442193.0A Pending CN114813598A (en) | 2022-04-25 | 2022-04-25 | Greenhouse gas detection method, device and system and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114813598A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109166438A (en) * | 2018-10-15 | 2019-01-08 | 西安建筑科技大学 | A kind of breathing thermal manikin and its operating method sucking exposure detection for particulate pollutant human body |
CN111024776A (en) * | 2019-12-19 | 2020-04-17 | 安徽康佳同创电器有限公司 | Electronic nose, smell identification method and storage medium |
CN111339642A (en) * | 2020-02-13 | 2020-06-26 | 创新奇智(合肥)科技有限公司 | Simulation model calibration method, system, readable medium and device |
CN112256589A (en) * | 2020-11-11 | 2021-01-22 | 腾讯科技(深圳)有限公司 | Simulation model training method and point cloud data generation method and device |
CN112784389A (en) * | 2019-11-07 | 2021-05-11 | 中国石油化工股份有限公司 | Simulation database-based gas dynamic distribution simulation method, device and system |
-
2022
- 2022-04-25 CN CN202210442193.0A patent/CN114813598A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109166438A (en) * | 2018-10-15 | 2019-01-08 | 西安建筑科技大学 | A kind of breathing thermal manikin and its operating method sucking exposure detection for particulate pollutant human body |
CN112784389A (en) * | 2019-11-07 | 2021-05-11 | 中国石油化工股份有限公司 | Simulation database-based gas dynamic distribution simulation method, device and system |
CN111024776A (en) * | 2019-12-19 | 2020-04-17 | 安徽康佳同创电器有限公司 | Electronic nose, smell identification method and storage medium |
CN111339642A (en) * | 2020-02-13 | 2020-06-26 | 创新奇智(合肥)科技有限公司 | Simulation model calibration method, system, readable medium and device |
CN112256589A (en) * | 2020-11-11 | 2021-01-22 | 腾讯科技(深圳)有限公司 | Simulation model training method and point cloud data generation method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11164573B2 (en) | Method and apparatus for controlling page | |
EP4080384A1 (en) | Object recommendation method and apparatus, computer device, and medium | |
CN113254934B (en) | Binary code similarity detection method and system based on graph matching network | |
US20230013796A1 (en) | Method and apparatus for acquiring pre-trained model, electronic device and storage medium | |
CN114121180A (en) | Drug screening method, device, electronic device and storage medium | |
WO2024011885A1 (en) | Voice wakeup method and apparatus, electronic device, and storage medium | |
CN113570129A (en) | Method for predicting strip pickling concentration and computer readable storage medium | |
CN113656590A (en) | Industry map construction method and device, electronic equipment and storage medium | |
WO2023011093A1 (en) | Task model training method and apparatus, and electronic device and storage medium | |
CN115880110A (en) | Job task monitoring method and device, electronic equipment and storage medium | |
CN114813598A (en) | Greenhouse gas detection method, device and system and electronic equipment | |
CN115080739A (en) | Methods for training dialogue models and methods for outputting response information | |
CN114896877A (en) | Pipeline leakage judgment method, device and system | |
CN114419403A (en) | Method and apparatus for detecting models | |
EP4357748A1 (en) | Methods, apparatuses, and computer program products for fugitive gas quantification | |
CN114998649B (en) | Image classification model training method, image classification method and device | |
CN115034322A (en) | Data processing method and device and electronic equipment | |
US20220004801A1 (en) | Image processing and training for a neural network | |
CN116629668A (en) | A risk assessment method, system and device based on real-time quality control | |
CN114694769A (en) | Molecular representation method, training method and device for molecular representation model | |
CN114756691A (en) | Structure chart generation method, model training method, map generation method and device | |
CN114817476A (en) | Language model training method and device, electronic equipment and storage medium | |
CN114495976A (en) | Voice test method, device, system, electronic equipment and storage medium | |
CN113591570A (en) | Video processing method and device, electronic equipment and storage medium | |
CN114564995A (en) | Air leak detection method, model training method, device, electronic equipment and medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |