CN114804188B - 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法 - Google Patents

一种基于甘油化物模板的多元素纳米复合材料的简易制备方法 Download PDF

Info

Publication number
CN114804188B
CN114804188B CN202110121893.5A CN202110121893A CN114804188B CN 114804188 B CN114804188 B CN 114804188B CN 202110121893 A CN202110121893 A CN 202110121893A CN 114804188 B CN114804188 B CN 114804188B
Authority
CN
China
Prior art keywords
glyceride
template
composite material
heat treatment
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110121893.5A
Other languages
English (en)
Other versions
CN114804188A (zh
Inventor
陈新
李颜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202110121893.5A priority Critical patent/CN114804188B/zh
Publication of CN114804188A publication Critical patent/CN114804188A/zh
Application granted granted Critical
Publication of CN114804188B publication Critical patent/CN114804188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种基于甘油化物模板的多元素纳米复合材料的制备方法及应用。首先以两种金属盐为原料,异丙醇或丙三醇为溶剂,加热得到纳米双金属‑甘油化物模板,随后将硒粉(或硫粉)与双金属‑甘油化物分别置于瓷舟的上游和下游,在惰性气氛下热处理得到多元素复合材料,其中第一种金属元素形成氧化物,第二种金属元素形成硒化物(或硫化物)。与现有技术相比,本发明基于双金属‑甘油化物模板,通过热处理过程一步合成了多元素纳米复合材料,该方法工艺简单,不需要去除模板,得到的多元素纳米颗粒是具有不同金属阳离子的氧化物与硒化物(或硫化物)的复合材料,作为电极材料应用于超级电容器,能够发挥不同物质的协同作用,展现优异的性能。

Description

一种基于甘油化物模板的多元素纳米复合材料的简易制备 方法
技术领域
本发明属于纳米复合材料的制备以及电化学领域,具体涉及一种多元素纳米复合材料的简易制备方法及其在超级电容器中的应用。
背景技术
随着工业文明的迅速发展,传统的化石能源消耗与日俱增,由此引发的环境污染等问题也日益加剧。目前研究人员正致力于大力发展清洁能源,并且此类能源的存储对储能器件产生了需求。超级电容器则是一类新型储能器件,可以提供高的功率密度以及合理的能量密度。根据储能机理的不同,可以将超级电容器分为双电层电容器及赝电容电容器,同时,与双电层电容器相比,赝电容电容器具有相对高的能量密度而更有希望应用于实际生产当中。
过渡金属氧化物是一类重要的赝电容电极材料,已得到研究者的广泛研究。ZnO具有独特的物理和化学特性,同时具备低成本,环境友好,易于制造等技术优势,适宜于用于超级电容器电极。但由于其导电性不高,导致了低的倍率性能以及循环稳定性。与单一化合物材料相比,复合材料可以表现出多种组分的协同作用,从而提高材料的电化学性能。将ZnO与具有良好电导率的材料相结合形成复合材料不失为一种好的解决方案。
过渡金属硒化物由于其良好的导电性成为当前的又一个研究热点,其中,CoSe2由于其独特的电子结构,具有成为超级电容器电极的潜力,将其与ZnO相结合,可以结合两种材料的优势,制备出具有高性能的超级电容器电极材料。
模板法是制备纳米复合材料的重要方法。通常复合材料的模板法制备都需要多个反应步骤,分别合成各个组分,从而增加了材料制备的制备时间及成本[H.L.Cao,X.Wang,X.Chen,H.Y.Liu,J.S.Zheng,W.F.Zhou,Hollow cubic double layer structured Cu7S4/NiS nanocomposites for high-performance supercapacitors,Journal of MaterialsChemistry A,5(2017)20729.]。最近文献报道通过严格控制水热反应时间,避免长时间反应向单一产物方向发展,基于纳米甘油化物模板一步合成制备了Cu7Se4-CuxCo1-xSe2双层壳中空纳米复合材料,然而这种方法得到的两种复合材料它们正负离子中只有一种(正离子)能发生区别,而另一种离子(负离子)不能发生元素区别,从而大大限制了可制备的材料范围[X.X.Yang,X.Chen,H.L.Cao,C.Li,L.L.Wang,Y.L.Wu,C.Z.Wang,Y.Li,Rationalsynthesis of Cu7Se4-CuxCo1-xSe2double-shell hollow nanospheres for highperformance supercapacitors,Journal of Power Sources,480(2020)228741]。通过资料调研得知,利用自模板法通过对纳米模板一步处理制备ZnO-CoSe2纳米颗粒复合材料的工作未被报道,而将甘油化物模板通过一步合成步骤得到既具有不同正离子又有不同负离子的四种不同元素的过渡金属复合材料,并将其应用于超级电容器的工作也未见报道。一步制备多元素复合材料,可以相对简易地获得多种不同元素组合的纳米复合材料,并且通过不同化合物的组合,有利于发挥不同化合物间的协同效应,使复合材料的超级电容器性能得到提高。
基于此,在本专利中,我们利用甘油化物自模板法一步合成了以ZnO-CoSe2为代表的多元素纳米颗粒复合材料,该复合材料具有不同的阳离子及阴离子,在合成过程中采用单一合成步骤,显著降低了材料制备的时间及成本,同时所制备的ZnO-CoSe2纳米颗粒复合材料具有均匀的尺寸分布,且复合材料的各种组分都均匀分布在复合材料中,此外通过控制模板中金属盐的用量,可以得到具有最优电化学性能的样品。除了ZnO-CoSe2以外,本方法还可以用来合成其它多元素复合材料,其中两种金属元素中的第一种是锌或铝,两种金属元素中的第二种是锌、金以外的过渡金属元素如钛、钒、铬、铁、锰、钴、镍、铜、铈等,第一种元素与氧化合,第二种元素与硫或硒化合。
发明内容
本发明的目的之一在于提供一种基于甘油化物模板的以ZnO-CoSe2为代表的多元素纳米复合材料的简易制备方法,首先以两种金属盐为原料,异丙醇、丙三醇为溶剂,加热反应,得到双金属-甘油化物模板,然后将硒粉(或硫粉)与其分别置于瓷舟的上下游,在氮气、氩气等惰性气氛下进行热处理,得到既具有不同正离子又有不同负离子的四种不同元素的纳米复合材料。
本发明的又一目的在于提供一种上述方法制备的ZnO-CoSe2纳米颗粒复合材料。
本发明的再一目的在于提供一种ZnO-CoSe2纳米颗粒复合材料在超级电容器中的应用。
本发明的具体技术方案如下:
本发明提供的一种以ZnO-CoSe2为代表的纳米复合材料的制备方法,包括以下步骤:
(1)将锌盐和钴盐溶解于异丙醇与丙三醇的混合溶液中,磁力搅拌至溶解均匀后转入反应釜,在160-200℃的温度下反应4-12h,待冷却至室温后收集反应液,进行离心处理,所得沉淀物再分别用去离子水和乙醇洗涤,干燥处理后得到对应的锌钴-甘油化物纳米颗粒;
(2)将硒粉和上述得到的锌钴-甘油化物纳米颗粒分别置于瓷舟的上下游,在惰性气氛的保护下进行热处理,热处理温度为200-500℃,升温速率1-10℃/min,保温2-6h,待其冷却至室温后得到ZnO-CoSe2纳米颗粒复合材料。
上述方案,所述步骤(1)中的锌盐为硝酸锌、氯化锌、硫酸锌、醋酸锌中的任意一种;钴盐为硝酸钴、氯化钴、硫酸钴、醋酸钴中的任意一种。
上述方案,所述步骤(1)中的离心处理是指:将从反应釜中取出的溶液先在500-12000rpm转速下离心1-60min,再分别用去离子水和乙醇洗涤1-4次。
上述方案,所述步骤(2)中的惰性气氛是指氮气及氩气中的一种,优选为氮气。
上述方案,所述步骤(2)中,硒粉与锌钴-甘油化物的质量比为1:1-1:3,优选为1:2。
上述方案,所述步骤(2)中的热处理温度为200-500℃,优选为350℃。
上述方案,所述步骤(2)中的升温速率为1-10℃/min,优选为1℃/min。
上述方案,所述步骤(2)中的保温2-6h,优选为3h。
本发明提供的一种ZnO-CoSe2纳米颗粒复合材料,采用自模板法,将前驱体通过一步热处理反应得到。ZnO-CoSe2纳米颗粒由多种组分构成,不同组分具有不同的阳离子及阴离子,尺寸分布均一且分散性好。
与现有技术相比,本发明先制备了锌钴-甘油化物模板,再通过一步热处理过程,得到ZnO-CoSe2纳米颗粒,该方法工艺简单,不需要去除模板,通过控制前驱体中金属盐的用量,得到的ZnO-CoSe2纳米颗粒是ZnO和CoSe2两种组分共存的复合材料,作为电极材料应用于超级电容器,能够发挥不同物质的协同作用,展现优异的电化学性能。
本发明提供的一种纳米颗粒复合材料在超级电容器中的应用,以所制备的ZnO-CoSe2纳米颗粒为活性材料,乙炔黑作为导电剂,聚四氟乙烯作为粘结剂,按质量比8:1:1混合,以N-甲基吡咯烷酮为溶剂,充分研磨后涂覆在泡沫镍上,烘干后压片成型,得到超级电容器电极材料。然后以3M氢氧化钾水溶液为电解液,在三电极体系中进行电化学测试。
除了ZnO-CoSe2以外,本发明还可以用来合成其它多元素复合材料,其中两种金属元素中的第一种是锌或铝,两种金属元素中的第二种是锌、金以外的过渡金属元素如钛、钒、铬、铁、锰、钴、镍、铜、铈等,第一种元素与氧化合,第二种元素与硫或硒化合。根据元素化学性质分析筛选第一种元素锌或铝,它们能够在加热时优先与甘油化物模板中的氧结合形成氧化物,第二种元素根据化学活性筛选分析虽然不优先与氧结合,但仍需要有一定活性在加热环境下可以和蒸汽氛中的硒或硫反应生成硒化物或硫化物。同时对这种选择性化合进行可控实现的难度是非常高的,以上具体可行的实验参数是经过对材料配比、反应温度、时间进行专业而又细致的调节摸索才得到的。
附图说明
图1是实施例1所得锌钴-甘油化物模板的SEM图;
图2是实施例1所得ZnO-CoSe2纳米颗粒的SEM图;
图3是实施例1所得ZnO-CoSe2纳米颗粒的TEM图
图4是实施例1所得ZnO-CoSe2纳米颗粒与实施例2所得ZnO-CoSe2纳米颗粒、对比例1所得ZnCo2O4纳米颗粒的XRD图;
图5是实施例1所得ZnO-CoSe2纳米颗粒与实施例2所得ZnO-CoSe2纳米颗粒、对比例1所得ZnCo2O4纳米颗粒电极片在同一扫描速率下的循环伏安曲线;
图6是实施例1所得ZnO-CoSe2纳米颗粒与实施例2所得ZnO-CoSe2纳米颗粒、对比例1所得ZnCo2O4纳米颗粒电极片在同一电流密度下的恒流充放电曲线;
图7是实施例1所得ZnO-CoSe2纳米颗粒与实施例2所得ZnO-CoSe2纳米颗粒、对比例1所得ZnCo2O4纳米颗粒电极片的循环稳定性曲线;
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
一种球状ZnO-CoSe2纳米颗粒复合材料的具体合成步骤:
(1)将0.125mmol六水合硝酸锌和0.25mmol六水合硝酸钴溶解于50mL异丙醇与8mL丙三醇的混合溶液中,磁力搅拌30min,溶解均匀,然后转入反应釜,180℃反应6h,待冷却后离心洗涤干燥,得到锌钴-甘油化物球形纳米颗粒模板(ZnCo-gly-0.125),其SEM图如附图1所示,结构规整且分散性好。
(2)取0.1g硒粉与0.05g上述得到的锌钴-甘油化物纳米球分别置于瓷舟的上下游,在氮气气氛下,升温速率为1℃/min,350℃下保温3h,待冷却至室温后得到ZnO-CoSe2纳米球(ZOCS-0.125)。
附图2为上述实施例1所得样品ZOCS-0.125的SEM图,可以看出ZOCS-0.125与ZnCo-gly-0.125模板同样呈球形结构,但表面粗糙度比纳米颗粒模板有所增加。附图3的TEM进一步表明该样品为纳米球结构。附图4的XRD测试则表征了样品的晶型结构,结果表明ZOCS-0.125样品具有ZnO和CoSe2等多种晶型结构。
本实施例1所得的ZnO-CoSe2纳米球复合材料作为超级电容器电极材料的制备及应用如下:
电极片的制备:以所得ZOCS-0.125样品作为活性材料,乙炔黑作为导电剂,聚四氟乙烯作为粘结剂,按质量比8:1:1混合,以N-甲基吡咯烷酮为溶剂,充分研磨后涂覆在泡沫镍上,烘干后压片成型,得到ZOCS-0.125电极片。
电化学性能测试:在三电极体系中,以上述制备的电极为工作电极,铂片电极为对电极,饱和甘汞电极为参比电极,在3M氢氧化钾电解液中进行电化学性能测试。附图5的循环伏安测试结果表明,ZOCS-0.125样品具有良好的电化学性能。对应的恒电流充放电曲线(附图6)也可以看到明显的氧化还原平台,在1A·g-1的电流密度下,ZOCS-0.125电极的比电容达到了450.7F·g-1。附图7的循环曲线表明ZOCS-0.125具有良好的稳定性,在10A·g-1电流密度下,循环5000圈之后,比电容维持在114.9%。
实施例2
进一步我们开展实验,进行了实施例2样品的制备。实施例2与实施例1的制备方法基本相同,不同之处在于在步骤(1)中六水合硝酸锌为0.25mmol,六水合硝酸钴为0.5mmol。
实施例2的XRD表征结果如附图4中的ZOCS-0.25所示,可以看到,随着六水合硝酸锌的用量从0.125mmol增加至0.25mmol,CoSe2对应的XRD峰减弱,提示随着六水合硝酸锌及六水合硝酸钴用量的增加,反应产物中CoSe2的含量降低。以实施例2所得到的ZOCS-0.25样品为活性物质制备的电极片,其循环伏安、恒电流充放电和循环稳定性的测试结果分别如附图5、附图6和附图7中的ZOCS-0.25所示。可以看到,与实施例1的ZOCS-0.125样品相比,ZOCS-0.25样品的比电容和循环性能都有所下降。这表明,通过控制金属盐的使用量,可以得到具有最优配比的ZnO-CoSe2纳米球复合材料。实例1中通过金属硝酸盐的最优使用量,一步得到高性能的复合材料。
以上实施例2显示,虽然在探索出的一定合成参数范围内都可以得到ZnO-CoSe2纳米球复合材料,但如果要使材料性能最佳化,最好还是需要对实验参数进行更深入的摸索比较的。
对比例1
我们也开展实验,进行了对比例1样品的制备。对比例1与实施例1的制备方法基本相同,不同之处在于在步骤(1)中六水合硝酸锌为0.0625mmol,六水合硝酸钴为0.125mmol。
对比例1的XRD表征结果如附图4中的ZCO-0.0625所示,可以看到,随着六水合硝酸锌的用量从0.125mmol降低至0.0625mmol,形成ZnCo2O4产物。以对比例1所得到的ZCO-0.0625样品为活性物质制备的电极片,其循环伏安、恒电流充放电和循环稳定性的测试结果分别如附图5、附图6和附图7中的ZCO-0.0625所示。可以看到,与实施例1、2的样品相比,ZCO-0.0625样品的比电容和循环性能都显著下降。以上测试结果说明,通过控制步骤(1)中六水合硝酸锌的用量为0.125mmol所得的样品ZOCS-0.125,比对比例1中的样品ZCO-0.0625电化学性能要好。
以上对比例1表明,若不经过仔细的参数调节,就无法得到预期的多元素复合材料,且所得材料的性能也明显不如多元素复合材料。

Claims (10)

1.一种多元素纳米复合材料的制备方法,其特征在于步骤如下:
(1)将两种金属盐溶解于异丙醇与丙三醇的混合溶液中,磁力搅拌至溶解均匀后转入反应釜,在160-200℃的温度下反应4-12h,待冷却至室温后收集反应液,进行离心处理,所得沉淀物再分别用去离子水和乙醇洗涤,干燥处理后得到对应的纳米双金属-甘油化物;
(2)将硒粉和上述得到的双金属-甘油化物纳米颗粒分别置于瓷舟的上下游,在惰性气氛的保护下进行热处理,热处理温度为200-500℃,升温速率1-10℃/min,保温2-6h,待其冷却至室温后得到多元素纳米复合材料;
所述两种金属元素中的第一种是锌或铝,第二种是钴;第一种元素与氧化合,第二种元素与硒化合。
2.根据权利要求1所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(1)中的每种金属的金属盐分别为硝酸盐、氯化盐、硫酸盐、醋酸盐中的任意一种。
3.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(1)中的离心处理是指:将从反应釜中取出的溶液先在500-12000rpm转速下离心1-60min,再分别用去离子水和乙醇洗涤1-4次。
4.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(2)中的惰性气氛是指氮气及氩气中的一种。
5.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(2)中,硒粉与锌钴-甘油化物的质量比为2:1。
6.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(2)中的热处理温度为350℃。
7.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(2)中的升温速率为1℃/min。
8.根据权利要求1或2所述的一种多元素纳米复合材料的制备方法,其特征是,所述步骤(2)中的保温3h。
9.一种权利要求1-8任一项所述方法制备得到的多元素纳米复合材料。
10.一种权利要求1-8任一项所述方法制备得到的多元素纳米复合材料应用在超级电容器中。
CN202110121893.5A 2021-01-28 2021-01-28 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法 Active CN114804188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110121893.5A CN114804188B (zh) 2021-01-28 2021-01-28 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110121893.5A CN114804188B (zh) 2021-01-28 2021-01-28 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法

Publications (2)

Publication Number Publication Date
CN114804188A CN114804188A (zh) 2022-07-29
CN114804188B true CN114804188B (zh) 2024-01-09

Family

ID=82525884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110121893.5A Active CN114804188B (zh) 2021-01-28 2021-01-28 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法

Country Status (1)

Country Link
CN (1) CN114804188B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155730A (ja) * 2008-12-26 2010-07-15 Dowa Holdings Co Ltd カルコゲン化合物粉の製造方法
CN111029160A (zh) * 2019-12-24 2020-04-17 江苏理工学院 一种锌钴双金属硒化物纳米片电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120055554A1 (en) * 2009-05-21 2012-03-08 E.I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155730A (ja) * 2008-12-26 2010-07-15 Dowa Holdings Co Ltd カルコゲン化合物粉の製造方法
CN111029160A (zh) * 2019-12-24 2020-04-17 江苏理工学院 一种锌钴双金属硒化物纳米片电极及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Seyyed Ebrahim Moosavifard et al..Construction of hierarchical nanoporous bimetallic copper‑cobalt selenide hollow spheres for hybrid supercapacitor.Journal of Electroanalytical Chemistry.2020,第871卷114295. *
Yi-Lin Liu et al..Selenium-rich nickel cobalt bimetallic selenides with core–shell architecture enable superior hybrid energy storage devices.Nanoscale.2020,第12卷4040-4050. *
陈新 ; 周炜 ; 沈本贤 ; .催化裂化柴油萃取-光化学反应深度脱硫.华东理工大学学报.2005,31(06),722-726,734. *

Also Published As

Publication number Publication date
CN114804188A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Ali et al. High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries
Bashir et al. Copper substituted nickel ferrite nanoparticles anchored onto the graphene sheets as electrode materials for supercapacitors fabrication
Yi et al. Nanoflower Ni (OH) 2 grown in situ on Ni foam for high-performance supercapacitor electrode materials
Ci et al. NiO-microflower formed by nanowire-weaving nanosheets with interconnected Ni-network decoration as supercapacitor electrode
Zai et al. 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors
Naveenkumar et al. Fabrication of core-shell like hybrids of CuCo2S4@ NiCo (OH) 2 nanosheets for supercapacitor applications
Li et al. Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances
Rafiq et al. NiO nanoparticles and their nanohybrid with flat rGO sheets: as an ideal electroactive material for hybrid capacitor applications
Tan et al. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material
Chatterjee et al. Advanced asymmetric supercapacitor with NiCo2O4 nanoparticles and nanowires electrodes: A comparative morphological hierarchy
Karaphun et al. Influence of calcination temperature on the structural, morphological, optical, magnetic and electrochemical properties of Cu 2 P 2 O 7 nanocrystals
Uke et al. PEG assisted hydrothermal fabrication of undoped and Cr doped NiCo2O4 nanorods and their electrochemical performance for supercapacitor application
CN110203976A (zh) 快速合成雪花状ZnCo2O4-ZnO复合电级材料的制备方法
Guan et al. RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance
Zhao et al. Synthesis and characterization of different morphologies of Ni (OH) 2 nanocrystals by a gas–liquid diffusion method at room temperature and supercapacitive properties
Pan et al. Application of transition metal (Ni, Co and Zn) oxides based electrode materials for ion-batteries and supercapacitors
Prasad et al. Surfactant assisted morphological transformation of rod-like ZnCo2O4 into hexagonal-like structures for high-performance supercapacitors
Munawar et al. Surfactant-assisted facile synthesis of petal-nanoparticle interconnected nanoflower like NiO nanostructure for supercapacitor electrodes material
Raman et al. Investigation of photoelectrochemical activity of cobalt tin sulfide synthesized via microwave-assisted and solvothermal process
CN105206816B (zh) 一种硫化镍‑石墨烯纳米复合材料的制备方法
Indumathi et al. Synthesis, structural analysis, and electrochemical performance of chitosan incorporated CuO nanomaterial for supercapacitor applications
CN114804188B (zh) 一种基于甘油化物模板的多元素纳米复合材料的简易制备方法
Sivashanmugam et al. CTAB-templated synthesis and characterization of nanorod-shaped NiCo 2 O 4 crystals for supercapacitor application
Pearline et al. Investigation on structural, optical and electrochemical behavior of NiO/ZnMn 2 O 4 ternary nanocomposites via two-step synthesis approach for supercapacitor application
Jia et al. BIMMOF-derived ZnS/Co9S8 heterojunctions decorated hollow carbon nanospheres as advanced anode materials for lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant