CN114781115B - 一种灾后柔性网系统网片损伤度快速评价方法 - Google Patents

一种灾后柔性网系统网片损伤度快速评价方法 Download PDF

Info

Publication number
CN114781115B
CN114781115B CN202210217328.3A CN202210217328A CN114781115B CN 114781115 B CN114781115 B CN 114781115B CN 202210217328 A CN202210217328 A CN 202210217328A CN 114781115 B CN114781115 B CN 114781115B
Authority
CN
China
Prior art keywords
net
rope
impact
damage degree
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210217328.3A
Other languages
English (en)
Other versions
CN114781115A (zh
Inventor
余志祥
张丽君
金云涛
廖林绪
张军
骆丽茹
郭立平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210217328.3A priority Critical patent/CN114781115B/zh
Publication of CN114781115A publication Critical patent/CN114781115A/zh
Application granted granted Critical
Publication of CN114781115B publication Critical patent/CN114781115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

本发明涉及边坡防护技术领域,涉及一种灾后柔性网系统网片损伤度快速评价方法,包括:a、建立基于系统受力分析的网片损伤度预测方法;b、获取落石冲击作用时所有设备的瞬时响应数据;c、计算支撑绳耗能器伸长量,获得冲击位置支撑绳变形量;d、计算拉锚绳耗能器伸长量,获得冲击变形最大时刻支撑钢柱的倾角变化值;e、计算拉力带的伸长量,从而计算拉力带区域单个网环的变形量;f、对网环损伤度建立Ⅰ、Ⅱ、Ⅲ三级分级判断标准,对网片损伤度形成分级反馈;g、编写智能化评价程序。本发明解决了现行柔性防护结构监测系统难以对系统损伤进行智能快速评价的难题,为柔性网系统维养决策提供依据。

Description

一种灾后柔性网系统网片损伤度快速评价方法
技术领域
本发明涉及边坡防护技术领域,具体地说,涉及一种灾后柔性网系统网片损伤度快速评价方法。
背景技术
中国是多山国家,其中山区面积占全国总面积的69%。崩塌落石是常见的地质灾害,灾害的发生常导致基础设施破坏、交通阻断等。
柔性网系统是最有效的落石防护措施之一,目前已经普遍用于山区落石防护。柔性网片是柔性防护系统的主要拦截部件,用于承受落石直接碰撞冲击。柔性网片的损伤度直接影响柔性网系统的剩余承载能力,然而当前未见该系统的损伤度评价技术的报道。此外,现有的柔性防护系统监测技术,仅能解决数据采集,但无法快速智能化评价系统损伤度,导致无法为应急维养决策提供依据。
综上所述,目前亟需一种灾后柔性网系统拦截网片损伤度的评价方法,可量化处理宏观的系统响应数据,并能结合硬件系统编写相应计算程序,快速判别防护系统部件的损伤度,解决当前柔性防护网系统灾后维养决策问题,为系统检修人员提供信息。
发明内容
本发明的内容是提供一种灾后柔性网系统网片损伤度快速评价方法,该评价模型可量化处理宏观的系统响应数据,基于计算机设备编写相应计算程序,实现快速判别防护网片的损伤度。
根据本发明的一种灾后柔性网系统网片损伤度快速评价方法,其包括以下步骤:
a、建立基于系统受力分析的网片损伤度预测方法,包括系统耗能器伸长量、钢丝绳内力、以及落石冲击位移在内数据的实时监测,并据此在柔性网系统相应位置布置视频采集设备、拉力传感器,通过蜂窝网络无线传输进入数据处理终端,用于网片损伤度评价;
b、获取落石冲击作用时所有设备的瞬时响应数据,包括:拉锚绳拉力响应Fa,支撑绳内力响应F,此外,通过影像资料及双目测距法还原落石冲击位移量;
c、根据测得的支撑绳内力响应以及支撑绳耗能器的力学性能响应,计算支撑绳耗能器伸长量δ,采用几何分析方法获得冲击位置支撑绳变形量w1、w2
d、根据拉锚绳内力响应数据以及拉锚绳耗能器的力学性能响应,计算拉锚绳耗能器伸长量δa,采用三角函数分析的方法,获得冲击变形最大时刻支撑钢柱的倾角变化值γ;
e、根据支撑钢柱倾角变化量与落石冲击位移量,计算拉力带的伸长量,从而计算拉力带区域单个网环的变形量δn
f、对网环损伤度建立Ⅰ、Ⅱ、Ⅲ三级分级判断标准,根据步骤e计算结果对网片损伤度形成分级反馈,用于网片的维养判断;
g、基于上述评价方法步骤结合计算机硬件系统,采用计算机语言编写形成柔性网片损伤度快速评价的智能化评价程序。
作为优选,所述步骤c中冲击位置支撑绳变形量计算方法如下:
根据拉力传感器测得的上支撑绳和下支撑绳内力分别为F1、F2,根据所配置耗能器的力学性能可知上支撑绳和下支撑绳的伸长量分别为δ1、δ2,由此可得上支撑绳和下支撑绳跨中变形量w1、w2的计算方法为:
Figure BDA0003535524330000021
Figure BDA0003535524330000022
式中,l为相邻支撑钢柱之间的跨距。
作为优选,所述步骤d中冲击作用后,在系统侧视投影面上支撑钢柱倾角变化值γ的计算方法如下:
系统变形前,拉锚绳在系统侧视投影面上的投影长度l′a为:
Figure BDA0003535524330000031
式中,la为拉锚绳长度,s为拉锚绳锚点间距;
由拉力传感器测得拉锚绳内力Fa1、Fa2,根据拉锚绳耗能器配置的力学性能关系,可获得拉锚绳耗能器伸长量为δa1、δa2,此时拉锚绳在系统侧视投影平面上的投影长度l″a为:
l″a=(laa2)·sinθ
Figure BDA0003535524330000032
式中,θ为变形后拉锚绳与坡面夹角。
支撑钢柱柱头水平位移Δpx的计算方法为:
Figure BDA0003535524330000033
冲击作用后,支撑钢柱在系统侧视投影平面上的投影长度l″p为:
Figure BDA0003535524330000034
式中,lp为支撑钢柱的柱高。
支撑钢柱安装角度为α,冲击作用后支撑钢柱的角度α′为:
Figure BDA0003535524330000035
式中,k为拉锚绳锚固点与支撑钢柱锚固点在系统侧视投影平面上的投影长度;
支撑钢柱在系统侧视投影平面上的转角γ为:
γ=α′-α。
作为优选,所述步骤e中冲击作用后网片变形量和单个网环变形量的计算方法如下:
由正弦定理可得支撑钢柱中部竖直位移h′为:
Figure BDA0003535524330000041
靠近上支撑绳部分网片伸长量Δn1为:
Figure BDA0003535524330000042
Figure BDA0003535524330000043
h=Δh-h′
式中,Ln1为靠近上支撑绳部分网片冲击作用后的长度;Δh为落石冲击位移;h为冲击位移最大时,落石与支撑钢柱的垂直距离;
靠近下支撑绳部分的网片伸长量Δn2为:
Figure BDA0003535524330000044
Figure BDA0003535524330000045
式中,Ln2为靠近下支撑绳部分网片冲击作用后的长度;
接触区域网环数量ncon计算方法为:
Figure BDA0003535524330000046
式中,Ds为落石的直径;D为网环直径。
非接触区域环网的数量为:
Figure BDA0003535524330000047
式中,n1为靠近上支撑绳部分的网环数量;n2为靠近下支撑绳部分的网环数量;ny为网片安装时y轴方向网环的数量;
单个网环变形量δn为:
Figure BDA0003535524330000048
Figure BDA0003535524330000051
式中,δn1为靠近上支撑绳部分网环变形量;δn2为靠近下支撑绳部分网环变形量。
作为优选,所述步骤f中网环损伤度判别方法如下:
根据网环拉伸试验,单环极限拉伸长度为δ,可算得网环拉伸比ξ为:
Figure BDA0003535524330000052
结合网环拉伸比ξ的结果,将网环损伤度划分为Ⅰ、Ⅱ、Ⅲ三个等级,判别标准与网片维养决策如下:
当网环拉伸比ξ满足条件ξ<0.4时,判定网片损伤度为Ⅰ级,此时网片处于弹性变形阶段,还可以抵挡落石冲击;
当网环拉伸比ξ满足条件0.4≤ξ<0.7时,判定网片损伤度为Ⅱ级,此时网片处于塑性变形阶段,可抵挡设计冲击能量30%的冲击作用;
当网环拉伸比ξ满足条件ξ≥0.7时,判定网片损伤度为Ⅲ级,此时网片处于极限变形阶段,无法继续使用,系统需更换网片。
作为优选,编写智能化评价程序的计算机语言包括但不限于java语言、Python语言、C语言和C++语言。
本发明的有益效果是:本发明所述方法结合现有柔性网系统监测系统,从宏观力学响应推算网片的微观损伤状态,解决了现行柔性防护结构监测系统难以对系统损伤进行智能快速评价的难题,为柔性网系统维养决策提供依据。
附图说明
图1为实施例1中灾后柔性网系统网片损伤度评价方法的计算流程图;
图2为实施例1中柔性防护系统安装示意图;
图3为实施例2中柔性防护系统冲击变形示意图;
图4为实施例2中钢柱及拉锚绳变形轴侧计算示意图;
图5为实施例2中钢柱及拉锚绳变形俯视计算示意图;
图6为实施例2中系统冲击变形侧视计算示意图;
图7为实施例2中耗能器力学性能曲线;
其中,附图中标记对应的结构名称为:
1-网片;2-视频采集设备;3-拉力传感器;4-拉锚绳;5-支撑绳;51-上支撑绳;52-下支撑绳;6-支撑绳耗能器;7-拉锚绳耗能器;8-支撑钢柱;9-拉力带。
具体实施方式
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。应当理解的是,实施例仅仅是对本发明进行解释而并非限定。
实施例1
如图1和图2所示,本实施例提供了一种灾后柔性网系统网片损伤度快速评价方法,其包括以下步骤:
a、建立基于系统受力分析的网片1损伤度预测方法,包括系统耗能器伸长量、钢丝绳内力、以及落石冲击位移在内数据的实时监测,并据此在柔性网系统相应位置布置视频采集设备2、拉力传感器3,通过蜂窝网络无线传输进入数据处理终端,用于网片1损伤度评价;
b、获取落石冲击作用时所有设备的瞬时响应数据,包括:拉锚绳4拉力响应Fa,支撑绳5内力响应F,此外,通过影像资料及双目测距法还原落石冲击位移量;
c、根据测得的支撑绳5内力响应以及支撑绳耗能器6的力学性能响应,计算支撑绳耗能器6伸长量δ,采用几何分析方法获得冲击位置支撑绳6变形量w1、w2
d、根据拉锚绳4内力响应数据以及拉锚绳耗能器7的力学性能响应,计算拉锚绳耗能器7伸长量δa,采用三角函数分析的方法,获得冲击变形最大时刻支撑钢柱8的倾角变化值γ;
e、根据支撑钢柱8倾角变化量与落石冲击位移量,计算拉力带9的伸长量,从而计算拉力带9区域单个网环的变形量δn
f、对网环损伤度建立Ⅰ、Ⅱ、Ⅲ三级分级判断标准,根据步骤e计算结果对网片1损伤度形成分级反馈,用于网片1的维养判断;
g、基于上述评价方法步骤结合计算机硬件系统,采用计算机语言编写形成柔性网片损伤度快速评价的智能化评价程序。
所述步骤c中冲击位置支撑绳变形量计算方法如下:
根据拉力传感器测得的上支撑绳51和下支撑绳52内力分别为F1、F2,根据所配置耗能器的力学性能可知上支撑绳51和下支撑绳52的伸长量分别为δ1、δ2,由此可得上支撑绳51和下支撑绳52跨中变形量w1、w2的计算方法为:
Figure BDA0003535524330000071
Figure BDA0003535524330000072
式中,l为相邻支撑钢柱8之间的跨距。
所述步骤d中冲击作用后,在系统侧视投影面上支撑钢柱8倾角变化值γ的计算方法如下:
系统变形前,拉锚绳4在系统侧视投影面上的投影长度l′a为:
Figure BDA0003535524330000073
式中,la为拉锚绳4长度,s为拉锚绳4锚点间距;
由拉力传感器测得拉锚绳4内力Fa1、Fa2,根据拉锚绳耗能器7配置的力学性能关系,可获得拉锚绳耗能器7伸长量为δa1、δa2,此时拉锚绳4在系统侧视投影平面上的投影长度l″a为:
l″a=(laa2)·sinθ
Figure BDA0003535524330000074
式中,θ为变形后拉锚绳4与坡面夹角。
支撑钢柱8柱头水平位移Δpx的计算方法为:
Figure BDA0003535524330000081
冲击作用后,支撑钢柱8在系统侧视投影平面上的投影长度l″p为:
Figure BDA0003535524330000082
式中,lp为支撑钢柱8的柱高。
支撑钢柱8安装角度为α,冲击作用后支撑钢柱8的角度α′为:
Figure BDA0003535524330000083
式中,k为拉锚绳4锚固点与支撑钢柱8锚固点在系统侧视投影平面上的投影长度;
支撑钢柱8在系统侧视投影平面上的转角γ为:
γ=α′-α。
所述步骤e中冲击作用后网片1变形量和单个网环变形量的计算方法如下:
由正弦定理可得支撑钢柱8中部竖直位移h′为:
Figure BDA0003535524330000084
靠近上支撑绳51部分网片1伸长量Δn1为:
Figure BDA0003535524330000085
Figure BDA0003535524330000086
h=Δh-h′
式中,Ln1为靠近上支撑绳51部分网片1冲击作用后的长度;Δh为落石冲击位移;h为冲击位移最大时,落石与支撑钢柱8的垂直距离;
靠近下支撑绳52部分的网片1伸长量Δn2为:
Figure BDA0003535524330000087
Figure BDA0003535524330000091
式中,Ln2为靠近下支撑绳52部分网片1冲击作用后的长度;
接触区域网环数量ncon计算方法为:
Figure BDA0003535524330000092
式中,Ds为落石的直径;D为网环直径。
非接触区域环网的数量为:
Figure BDA0003535524330000093
式中,n1为靠近上支撑绳51部分的网环数量;n2为靠近下支撑绳52部分的网环数量;ny为网片安装时y轴方向网环的数量;
单个网环变形量δn为:
Figure BDA0003535524330000094
Figure BDA0003535524330000095
式中,δn1为靠近上支撑绳51部分网环变形量;δn2为靠近下支撑绳52部分网环变形量。
所述步骤f中网环损伤度判别方法如下:
根据网环拉伸试验,单环极限拉伸长度为δ,可算得网环拉伸比ξ为:
Figure BDA0003535524330000096
结合网环拉伸比ξ的结果,将网环损伤度划分为Ⅰ、Ⅱ、Ⅲ三个等级,判别标准与网片1维养决策如下:
当网环拉伸比ξ满足条件ξ<0.4时,判定网片损伤度为Ⅰ级,此时网片1处于弹性变形阶段,还可以抵挡落石冲击;
当网环拉伸比ξ满足条件0.4≤ξ<0.7时,判定网片损伤度为Ⅱ级,此时网片1处于塑性变形阶段,可抵挡设计冲击能量30%的冲击作用;
当网环拉伸比ξ满足条件ξ≥0.7时,判定网片损伤度为Ⅲ级,此时网片1处于极限变形阶段,无法继续使用,系统需更换网片1。
编写智能化评价程序的计算机语言包括但不限于java语言、Python语言、C语言和C++语言。
本发明的有益效果是:本发明所述方法结合现有柔性网系统监测系统,从宏观力学响应推算网片的微观损伤状态,解决了现行柔性防护结构监测系统难以对系统损伤进行智能快速评价的难题,为柔性网系统维养决策提供依据。
实施例2
如图3-图6所示,本实施例提供一种灾后柔性网系统网片损伤度智能化评价方法,结合某山区落石常发点,具体说明该评价方法,步骤如下:
系统安装条件如下:支撑钢柱8之间的跨距l=9m,支撑钢柱8的高度lp=5.5m,支撑钢柱8安装角度α=80°,拉锚绳4锚点间距s=9m,拉锚绳4长度la=8.45m,拉锚绳4锚固点与支撑钢柱8锚固点在系统侧视投影平面上的投影长度k=6.25m,网环的直径D=0.3m,网片1安装时y轴方向网环的数量ny=27。
落石冲击跨中中部,落石的直径Ds=1.17m,测得上支撑绳51内力F1=224.88kN,下支撑绳52内力F2=329.58kN,拉锚绳4内力Fa1=129.55kN、Fa2=139.52kN,根据影像资料测得落石冲击位移Δh=7.35m。
根据上支撑绳51、下支撑绳52及拉锚绳4的拉力响应值,结合图7所示耗能器的力学性能曲线,可得上支撑绳51单侧耗能器伸长量δ1=0.66m,下支撑绳52单侧耗能器伸长量δ2=1.17m,拉锚绳耗能器7伸长量δa1=1.16m,δa2=1.40m。
据此可得上、下支撑绳跨中变形量w1、w2分别为:
Figure BDA0003535524330000101
Figure BDA0003535524330000102
根据系统安装参数,系统变形前,拉锚绳4在系统侧视投影面上的投影长度l′a为:
Figure BDA0003535524330000111
根据测得的拉锚绳耗能器7伸长量数据,可得变形后拉锚绳4与坡面的夹角θ的余弦为:
Figure BDA0003535524330000112
因此,拉锚绳4在系统侧视投影平面上的投影长度l″a为:
l″a=(laa2)·sinθ=(8.45+1.40)×0.876=8.63m
柱头水平位移Δpx为:
Figure BDA0003535524330000113
冲击作用后,支撑钢柱8在系统侧视投影平面上的投影长度l″p为:
Figure BDA0003535524330000114
冲击作用后支撑钢柱8与坡面的角度β为:
Figure BDA0003535524330000115
因此β=93.48°。
支撑钢柱8在系统侧视投影平面上的转角γ为:
γ=β-α=93.48°-80°=13.48°
由正弦定理可得支撑钢柱8中部竖直位移h′为:
Figure BDA0003535524330000116
落石冲击位移最大时,落石与支撑钢柱8的垂直距离h为:
h=Δh-h′=7.35-0.65=6.7m靠近上支撑部分网片1冲击作用后的长度Ln1为:
Figure BDA0003535524330000121
因此,靠近上支撑绳51部分网片1伸长量Δn1为:
Figure BDA0003535524330000122
靠近下支撑绳52部分网片1冲击作用后的长度Ln2为:
Figure BDA0003535524330000123
因此,靠近下支撑绳52部分的网片1伸长量Δn2为:
Figure BDA0003535524330000124
接触区域网环数量ncon为:
Figure BDA0003535524330000125
非接触区域环网的数量为:
Figure BDA0003535524330000126
单个网环变形量δn为:
Figure BDA0003535524330000127
Figure BDA0003535524330000128
单个网环的极限拉伸长度约为0.16m,因此网环拉伸比约为:
Figure BDA0003535524330000131
Figure BDA0003535524330000132
ξ=max(ξ12)=0.75
因为网环拉伸比满足条件ξ≥0.7,因此网片1的损伤度为Ⅲ级,此时网片1处于极限变形阶段,无法继续使用,系统需更换网片1。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (4)

1.一种灾后柔性网系统网片损伤度快速评价方法,其特征在于:包括以下步骤:
a、建立基于系统受力分析的网片损伤度预测方法,包括系统耗能器伸长量、钢丝绳内力、以及落石冲击位移在内数据的实时监测,并据此在柔性网系统相应位置布置视频采集设备、拉力传感器,通过蜂窝网络无线传输进入数据处理终端,用于网片损伤度评价;
b、获取落石冲击作用时所有设备的瞬时响应数据,包括:拉锚绳拉力响应Fa,支撑绳内力响应F,此外,通过影像资料及双目测距法还原落石冲击位移量;
c、根据测得的支撑绳内力响应以及支撑绳耗能器的力学性能响应,计算支撑绳耗能器伸长量δ,采用几何分析方法获得冲击位置支撑绳变形量w1、w2
d、根据拉锚绳内力响应数据以及拉锚绳耗能器的力学性能响应,计算拉锚绳耗能器伸长量δa,采用三角函数分析的方法,获得冲击变形最大时刻支撑钢柱的倾角变化值γ;
所述步骤d中冲击作用后,在系统侧视投影面上支撑钢柱倾角变化值γ的计算方法如下:
系统变形前,拉锚绳在系统侧视投影面上的投影长度l′a为:
Figure QLYQS_1
式中,la为拉锚绳长度,s为拉锚绳锚点间距;
由拉力传感器测得拉锚绳内力Fa1、Fa2,根据拉锚绳耗能器配置的力学性能关系,可获得拉锚绳耗能器伸长量为δa1、δa2,此时拉锚绳在系统侧视投影平面上的投影长度l″a为:
l″a=(laa2)·sinθ
Figure QLYQS_2
式中,θ为变形后拉锚绳与坡面夹角;
支撑钢柱柱头水平位移Δpx的计算方法为:
Figure QLYQS_3
冲击作用后,支撑钢柱在系统侧视投影平面上的投影长度l″p为:
Figure QLYQS_4
式中,lp为支撑钢柱的柱高;
支撑钢柱安装角度为α,冲击作用后支撑钢柱的角度α′为:
Figure QLYQS_5
式中,k为拉锚绳锚固点与支撑钢柱锚固点在系统侧视投影平面上的投影长度;
支撑钢柱在系统侧视投影平面上的转角γ为:
γ=α'-α;
e、根据支撑钢柱倾角变化量与落石冲击位移量,计算拉力带的伸长量,从而计算拉力带区域单个网环的变形量δn
所述步骤e中冲击作用后网片变形量和单个网环变形量的计算方法如下:
由正弦定理可得支撑钢柱中部竖直位移h′为:
Figure QLYQS_6
靠近上支撑绳部分网片伸长量Δn1为:
Figure QLYQS_7
Figure QLYQS_8
h=Δh-h′
式中,Ln1为靠近上支撑绳部分网片冲击作用后的长度;Δh为落石冲击位移;h为冲击位移最大时,落石与支撑钢柱的垂直距离;
靠近下支撑绳部分的网片伸长量Δn2为:
Figure QLYQS_9
Figure QLYQS_10
式中,Ln2为靠近下支撑绳部分网片冲击作用后的长度;
接触区域网环数量ncon计算方法为:
Figure QLYQS_11
式中,Ds为落石的直径;D为网环直径;
非接触区域环网的数量为:
Figure QLYQS_12
式中,n1为靠近上支撑绳部分的网环数量;n2为靠近下支撑绳部分的网环数量;ny为网片安装时y轴方向网环的数量;
单个网环变形量δn为:
Figure QLYQS_13
Figure QLYQS_14
式中,δn1为靠近上支撑绳部分网环变形量;δn2为靠近下支撑绳部分网环变形量;
f、对网环损伤度建立Ⅰ、Ⅱ、Ⅲ三级分级判断标准,根据步骤e计算结果对网片损伤度形成分级反馈,用于网片的维养判断;
g、基于上述评价方法步骤结合计算机硬件系统,采用计算机语言编写形成柔性网片损伤度快速评价的智能化评价程序。
2.根据权利要求1所述的一种灾后柔性网系统网片损伤度快速评价方法,其特征在于:所述步骤c中冲击位置支撑绳变形量计算方法如下:
根据拉力传感器测得的上支撑绳和下支撑绳内力分别为F1、F2,根据所配置耗能器的力学性能可知上支撑绳和下支撑绳的伸长量分别为δ1、δ2,由此可得上支撑绳和下支撑绳跨中变形量w1、w2的计算方法为:
Figure QLYQS_15
Figure QLYQS_16
式中,l为相邻支撑钢柱之间的跨距。
3.根据权利要求2所述的一种灾后柔性网系统网片损伤度快速评价方法,其特征在于:所述步骤f中网环损伤度判别方法如下:
根据网环拉伸试验,单环极限拉伸长度为δ,可算得网环拉伸比ξ为:
Figure QLYQS_17
结合网环拉伸比ξ的结果,将网环损伤度划分为Ⅰ、Ⅱ、Ⅲ三个等级,判别标准与网片维养决策如下:
当网环拉伸比ξ满足条件ξ<0.4时,判定网片损伤度为Ⅰ级,此时网片处于弹性变形阶段,还可以抵挡落石冲击;
当网环拉伸比ξ满足条件0.4≤ξ<0.7时,判定网片损伤度为Ⅱ级,此时网片处于塑性变形阶段,可抵挡设计冲击能量30%的冲击作用;
当网环拉伸比ξ满足条件ξ≥0.7时,判定网片损伤度为Ⅲ级,此时网片处于极限变形阶段,无法继续使用,系统需更换网片。
4.根据权利要求3所述的一种灾后柔性网系统网片损伤度快速评价方法,其特征在于:编写智能化评价程序的计算机语言包括java语言、Python语言、C语言和C++语言。
CN202210217328.3A 2022-03-07 2022-03-07 一种灾后柔性网系统网片损伤度快速评价方法 Active CN114781115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210217328.3A CN114781115B (zh) 2022-03-07 2022-03-07 一种灾后柔性网系统网片损伤度快速评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210217328.3A CN114781115B (zh) 2022-03-07 2022-03-07 一种灾后柔性网系统网片损伤度快速评价方法

Publications (2)

Publication Number Publication Date
CN114781115A CN114781115A (zh) 2022-07-22
CN114781115B true CN114781115B (zh) 2023-04-11

Family

ID=82422666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210217328.3A Active CN114781115B (zh) 2022-03-07 2022-03-07 一种灾后柔性网系统网片损伤度快速评价方法

Country Status (1)

Country Link
CN (1) CN114781115B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115262386B (zh) * 2022-08-30 2023-09-15 西南交通大学 用于跨峡谷桥梁落石防护的立式转置棚洞及灾情评估方法
CN116080846B (zh) * 2023-02-22 2024-07-12 中国人民解放军92942部队 一种柔性防护装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256731A (zh) * 2015-11-18 2016-01-20 成都希尔特科技有限公司 基于能量匹配原理的防落石被动柔性防护网系统设计方法
CN113705061A (zh) * 2021-10-28 2021-11-26 西南交通大学 一种考虑多重非线性的数字化柔性防护系统设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284572B (zh) * 2018-10-22 2020-10-09 西南交通大学 一种基于滑移变形的被动柔性防护网系统工作状态评价方法
WO2021008773A1 (en) * 2019-07-15 2021-01-21 Nv Bekaert Sa Roll of chain link steel wire mesh with marks and method of producing such a roll
CN111581741B (zh) * 2020-04-30 2022-04-19 西南交通大学 柔性防护系统中环形网片承载、变形及耗能的计算分析方法
CN112627200B (zh) * 2020-12-03 2022-06-28 四川交奥智控防护科技有限公司 一种被动防护网工作状态实时监测系统及方法
CN113946892B (zh) * 2021-09-09 2022-07-22 西南交通大学 用于落石冲击后柔性网系统维养决策的智能化评价方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256731A (zh) * 2015-11-18 2016-01-20 成都希尔特科技有限公司 基于能量匹配原理的防落石被动柔性防护网系统设计方法
CN113705061A (zh) * 2021-10-28 2021-11-26 西南交通大学 一种考虑多重非线性的数字化柔性防护系统设计方法

Also Published As

Publication number Publication date
CN114781115A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN114781115B (zh) 一种灾后柔性网系统网片损伤度快速评价方法
Li et al. Full scale measurements of wind effects on tall buildings
WO2020087906A1 (zh) 一种锚杆 - 锚索协同变形受力的支护方法
CN107843285B (zh) 一种输电塔线的风致动力效应远程监测系统及应用
CN107600346B (zh) 水面漂浮式光伏电站整体稳定性控制系统
US8756874B2 (en) Traffic signal supporting structures and methods
CN104406558B (zh) 一种输电线路弧垂监测的方法
US20220088425A1 (en) Systems and methods for monitoring the condition of a fall - protection safety system
Hou et al. Fatigue reliability analysis of mooring system for fish cage
Li et al. Splash zone lowering analysis of a large subsea spool piece
CN102854062B (zh) 钢结构金属压型板屋面吸力性能现场检测的方法和装置
CN102296829B (zh) 三向索网幕墙施工方法
KR20060080665A (ko) 낙석방지망이 설치되는 절토사면의 붕괴 예측 장치 및 방법
CN205443918U (zh) 智能拉索减震支座
CN113863178B (zh) 一种树锚式柔性防护系统及其检验评估方法
Qin et al. Fatigue failure of integral droppers of high-speed railway catenary under impact load
CN113674512B (zh) 一种带电交叉跨越施工现场在线监测预警系统及方法
CN116927884A (zh) 一种井工煤矿巷道顶板安全闭环管控系统及其操作方法
CN111649712A (zh) 一种压力传感器及公路形变监测方法
CN110487504A (zh) 考虑桥面与水面距离的廊桥风荷载风洞测试装置
CN101906817A (zh) 不规则自应力张拉整体结构
CN113946892B (zh) 用于落石冲击后柔性网系统维养决策的智能化评价方法
CN111414020B (zh) 一种威亚结构拉索和悬索的调整系统及调整方法
Rong et al. Study on wind-induced fatigue performance of large-span transmission tower-line system considering the combined distribution probability of wind direction and speed
CN212779344U (zh) 一种桥梁安全实时监测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant