CN114779399A - 一种表面直光波导制造方法 - Google Patents

一种表面直光波导制造方法 Download PDF

Info

Publication number
CN114779399A
CN114779399A CN202210286310.9A CN202210286310A CN114779399A CN 114779399 A CN114779399 A CN 114779399A CN 202210286310 A CN202210286310 A CN 202210286310A CN 114779399 A CN114779399 A CN 114779399A
Authority
CN
China
Prior art keywords
waveguide
cladding
core layer
surface straight
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210286310.9A
Other languages
English (en)
Inventor
李凯伟
任雷
钱志辉
任露泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210286310.9A priority Critical patent/CN114779399A/zh
Publication of CN114779399A publication Critical patent/CN114779399A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/0279Photonic crystal fibres or microstructured optical fibres other than holey optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种表面直光波导器件的制造方法,该制造方法包括以下步骤:加工满足设计光学折射率、形状和尺寸参数要求的宏观尺寸芯层预制件;满足设计光学折射率、形状和尺寸参数要求的宏观尺寸包层预制件;将芯层预制件和包层预制件按照设计组装为一体式光波导预制件;将光波导预制件放置于加热炉中,加热至软化温度并拉伸成目标尺寸的直光波导纤维器件。本发明利用加热拉伸方法和工艺,能以较低的成本实现直光波导器件的批量制造,所制造的直光波导器件具有较低的表面粗糙度,较低的光传输损耗和灵活的结构设计。

Description

一种表面直光波导制造方法
技术领域
本发明涉及一种表面直光波导的制造方法,主要应用于光通信,光学生化检测和传感领域。
背景技术
光波导是将光波闲自在特定介质内部或者表面,引导光波沿着确定的方向和路径进行传输的导光通道。通常包括平面光波导、条形光波导和圆柱光波导三类。其中条形光波导为本发明中所主要涉及的一类光波导。条形光波导通常也成为集成光波导。随着光通信技术的发展,光波导技术也取得了突飞猛进的发展,并获得了广泛的应用。
在光通信、光信息处理、光信息存储与显示等领域中,光互联技术是实现信息传递的基本技术。光互联是一种利用光作为传递信息的载体,实现各部件或各系统之间信息互连的技术。光波导作为一种重要的光互联传输介质,具有抗电磁干扰能力强、保密性好、体积小、质量轻、功耗低灯一系列独特优点,广泛应用于芯片内、芯片间与芯片模块以及背板之间的光互联。
另一方面,光波导的独特性质,使得它的应用不仅仅局限于光通信领域,例如,在生化检测方面,光波导技术也获得了广泛的应用。基于波导的生化检测技术是在传统光波导基础上开发出的一种新的检测方法,它利用光波在波导以全反射方式传输时在传感器所处的界面产生消逝波,而这个消逝波可以激发传感器表面连接的探针上的荧光基团或探针捕获的目标分子荧光基团,同时结合产生荧光的变化,实现目标分子的定量检测。该方法具有抗环境干扰,响应速度快,特异性强,灵敏度高的等特点,因而在生物医学,环境检测,化学检测方面有着很强的使用前景。
光波导的制备通常包括两个过程:首先是要制作出光波导薄膜,然后在光波导薄膜上制作出光波导器件,最终形成所设计的集成光路。光波导薄膜的主要制作技术包括原子掺杂技术、淀积技术、外延生长技术和旋涂技术,往往根据所选波导材料的不同而选择不同的加工技术。而光波导的图案化则需要采用光刻曝光、电子束曝光,并采用化学刻蚀或者离子束刻蚀等工艺来实现。总体来说,传统的光波导加工技术虽然已经得到了广泛的应用,但是也存在一些缺点和限制:
(1)严重赖于微机械加工技术(MEMS),对加工精度的要求特别高,加工成本也往往较高;
(2)由于采用微加工工艺,传统的光波导加工工艺并不适用于加工尺寸较长的光波导,尤其是长度大于10cm的直光波导;
(3)加工出的光波导表面粗糙度往往较高,损耗较大,需要额外的抛光工艺来降低损耗。
发明内容
本发明为了克服了上述现有技术的问题,提供一种表面直光波导的制造方法,该方法能大大降低表面直光波导的光传输损耗,降低其制造成本、提高生产效率。
一种表面直光波导的制造方法,包括以下步骤:
步骤1:表面直光波导预制件3的制造,根据所设计的表面直光波导制备出,采用原材料制造出光波导预制件;
步骤2:将所制备光波导预制件安装至热拉丝设备上,加热并拉伸成所需尺寸的直光波导纤维。
优选地,步骤1所述的表面直光波导预制件3的制造,采用组件拼装法,具体的制造方法包含如下步骤:
S1:将具有光学透明特性的芯层材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸芯层预制件;
S2:将具有光学透明特性的包层材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸包层预制件;
S3:将衬底材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸包层预制件;
S4:将芯层预制件1、包层预制件2和衬底预制件6按照设计组合在一起,并通过热处理、激光焊接、或者物理捆绑等方式将其相对位置固定牢固,形成表面直光波导预制件3;
优选地,步骤1所述的表面直光波导预制件3的制造,也可采用熔融共挤出法一次性制成:将具有光学透明特性和热力学性质接近的芯层材料、包层材料和衬底材料通过熔融共挤出法直接加工成与所设计直光波导结构一致的表面直光波导预制件。
优选地,所述芯层材料和包层材料均为光学透明材料,所述光学透明材料包括透明聚合物、硫系玻璃、磷酸盐玻璃、碲酸盐玻璃、锗酸盐玻璃、氟化物玻璃或硼硅玻璃;
所述的芯层材料和包层材料可以为同一种材料,也可为不同种材料。
所述的衬底材料为聚合物、硫系玻璃、磷酸盐玻璃、碲酸盐玻璃、锗酸盐玻璃、氟化物玻璃或硼硅玻璃。
所述的芯层材料的光学折射率n和包层材料的光学折射率n,应满足n>n的条件,以确保表面波导的传光能力。
优选地,所述的芯层材料、包层材料和衬底材料应满足具有相近的热力学特性:即三者的玻璃化温度相匹配,可以在同一高温下同时软化,并通过拉伸制成纤维。
优选地,所述的表面直光波导预制件的长度在0.1m-1.0m之间,优选的,其长度为0.3-0.6m。
所述的表面直光波导预制件3的横截面整体为近似矩形,边长为5mm-100mm之间,优选的,横截面边长为10mm-35mm。
优选地,所述的表面直光波导预制件3的芯层预制件1和拉制的表面直光波导的芯层的横截面可为矩形、半圆形、半椭圆形、三角形、梯形等几何形状,如图2所示;芯层预制件1尺寸小于包层预制件2尺寸,相应地,拉制的表面直光波导的芯层尺寸小于包层尺寸。
优选地,所述的表面直光波导预制件3的芯层预制件1与包层预制件2的相对位置关系包括:芯层预制件1附着于包层预制件2外表面;芯层预制件1部分被包层预制2件包覆;芯层预制件1两侧或单侧与包层预制件2连接,上下侧均悬空,如图3所示。
优选地,所制备的表面直光波导预制件2及波导可以包含衬底,即结构为衬底-包层-芯层;也可以不包含衬底,即结构为包层-芯层,如图4所示。
优选地,所制备的表面直光波导预制件3及波导可包含一个衬底,一个包层和至少一个芯层,若芯层数量大于1,这些芯层可以是不同材料、不同尺寸;芯层可为不同形状的组合,这些芯层与包层的相对位置关系可以为不同的位置关系的组合,如图5所示。
优选地,所述加热拉丝设备的加热温度应高于芯层材料、包层材料和衬底材料的玻璃化转变温度Tg,并低于芯层材料、包层材料和衬底材料的融化温度。
优选地,所述的制备方法制备得到的表面直光波导纤维和器件,可很好地保持光波导预制件中各结构的形状和相对位置关系,只是尺寸等比例缩小,所述表面直光波导纤维和器件的横截面尺寸小于5mm。
本发明的有益效果:
1、本发明通过采用热拉伸工艺来制作表面直波导纤维和器件,先采用宏观的加工方式制作波导预制件,再采用加热拉伸等比例缩小截面的技术拉制出所设计的表面直波导纤维和器件,相比依赖于微纳加工技术传统的集成光波导制备工艺,可大大降低制造成本,提高制造效率。
2、本发明由于采用热拉伸工艺制备表面直波导纤维和器件,光波导预制件需要加热至材料的玻璃化转变温度以上,因此会对波导表面和芯层-包层界面产生热抛光效应,所拉直的表面直波导的表面粗糙度可达纳米级别,因此,由光波导表面和界面的粗擦度所引起的散射可得到极大的抑制,因此,本发明工艺所直的的表面直波导具有较低的传输损耗。
3、本发明通过热拉伸工艺制备表面直光波导,拉伸工艺可以连续拉制出数百米至上千米长度的直光波导纤维;并且所拉制直光波导器件具有较小的传输损耗,因此,采用本发明所构思的制造技术,可以制备出长度远大于10cm的表面直光波导,这是传统采用微纳加工技术所制备的光波导所无法达到的。
附图说明
图1为本发明的制造流程和表面直光波导的热拉制造工艺流程图;
图2为本发明的表面直波导预制件的不同形状芯层的横截面示意图;
图3为本发明实的表面直波导预制件的表面直波导芯层预制件与包层预制件相对位置关系的示意图;
图4为本发明的仅包含芯层预制件和包层预制件结构的表面直波导预制件截面示意图;
图5为本发明的包含多个不同形状芯层预制件,且芯层预制件与包层预制件有多中不同相对位置关系的表面直波导预制件截面示意图;
图6为本发明实施例的具有双PC芯层和PMMA包层的光波导截面示意图;
图7为本发明实施例的具有双PC芯层和PMMA包层的光波导预制件及所拉表面直波导的照片;
图8为本发明实施例的具有双PC芯层和PMMA包层的表面直波导的显微镜照片;
图9为本发明实施例的具有双PC芯层和PMMA包层的表面直波导的芯层上表面原子力显微镜形貌测量结果;
图10为本发明实施例的具有双PC芯层和PMMA包层的表面直波导的光学透过率(波长633nm)与波导长度的关系示意图。
其中,1-表面直光波导芯层预制件,2-表面直光波导包层预制件,3-表面直光波导预制件,4-预制件加热炉,5-表面直光波导,6-表面直光波导衬底预制件,7-空气间隙。
具体实施方式
本实施例通过制作双表面芯层直光波导纤维,来阐明本发明的实时方式。本实施例所制造的双表面芯层直光波导的截面结构如图6所示:主要包含两根由PMMA材料制成的相互独立的正方形芯层和一根由PMMA材料制成的矩形包层,本实施例不包含衬底层;PC芯层光学折射率n为1.585,PMMA包层折射率n为1.490,满足n>n的条件;此外,芯PC玻璃化转变温度Tg为145℃,包层PMMA玻璃化转变温度Tg为102℃,在温度220℃下可以实现对两种材料同时拉制。
本实施例的双表面芯层直光波导可通过如下方法制得:
(1)首选选取一块厚度为10mm的光学级挤出型PMMA板材,采用机械加工方式将其加工成宽度为30mm,长度300mm,厚度10mm的包层预制件。将PMMA包层预制件放置于80°的真空干燥箱中热处理3天,充分去除所吸附水分。
(2)将光学级PC颗粒料放置于130°的真空干燥箱热处理48小时,充分去除所吸附水分;然后采用挤出机将PC颗粒挤出成截面为正方向,边长为0.5mm的PC条,将长度剪切成30mm,以作为芯层预制件使用。
(3)将PC芯层预制件按照设计排列于PMMA包层预制件表面,将PC芯层预制件绷直,并采用聚酰亚胺(PI)高温胶带将PC芯层预制件固定牢固,从而形成了双表面芯层直光波导预制件。
(4)将所制造的双表面芯层直波导预制件固定于热拉丝设备上,将预制件移动至加热炉中,对预制件的下端进行加热至220°,使其软化,并进行拉丝。
(5)通过控制送棒速度和拉丝速度调节所拉制的双表面芯层直波导的尺寸,以制得所需的双表面芯层直波导。
图7为双表面芯层直波导预制件在热拉制过程中所形成的颈缩部分,左侧尺寸较大部分为双表面芯层直波导预制件,右侧尺寸较小却均匀部分为所拉制的双表面芯层直波导。
图8为所拉制的双表面芯层直波导的光学显微镜照片,照片中可以清晰的看到PMMA包层结构和两个PC芯层结构。该结构与双表面芯层直波导预制件的结构基本一致。
为了证明本发明表面直光波导制备技术所制造的光波导具有较低的表面粗糙度,对所拉制的双表面芯层直波导的上表面进行了原子力显微镜(AFM)形貌表征。所测得的表面形貌如图9所示,可见所制备双表面芯层直波导的PC芯层的上表面粗糙度小于5nm,这个数值小于传统微纳加工所制造的波导的表面粗糙度(10nm)。
此外,还对所制得的双表面芯层直波导的透光性能进行了测试,测试波长为633nm。测试结果如图10所示,可以看出所制得的双表面芯层直波导的光学损耗系数为2.05dB/m,远小于传统光刻工艺所制备的同种材料的光波导的20.0dB/m的损耗系数。
本实施例中所进行的双表面芯层直波导仅为最为简单的一个应用,该双表面芯层直波导可以用于生物分子的探测、化学成分的分析等领域。作为一种低成本、高通量制造光波导传感器件的制造方法。
综上所述,本发明一种表面直光波导制造方法,加工满足设计光学折射率、形状和尺寸参数要求的宏观尺寸芯层预制件;满足设计光学折射率、形状和尺寸参数要求的宏观尺寸包层预制件;将芯层预制件和包层预制件按照设计组装为一体式光波导预制件;将光波导预制件放置于加热炉中,加热至软化温度并拉伸成目标尺寸的直光波导纤维器件。相比传统的光波导制造方法具有如下优点:
(1)本发明通过采用热拉伸工艺来制作表面直波导纤维和器件,先采用宏观的加工方式制作波导预制件,再采用加热拉伸等比例缩小截面的技术拉制出所设计的表面直波导纤维和器件,相比依赖于微纳加工技术传统的集成光波导制备工艺,可大大降低制造成本,提高制造效率。
(2)本发明由于采用热拉伸工艺制备表面直波导纤维和器件,光波导预制件需要加热至材料的玻璃化转变温度以上,因此会对波导表面和芯层-包层界面产生热抛光效应,所拉直的表面直波导的表面粗糙度可达纳米级别,因此,由光波导表面和界面的粗擦度所引起的散射可得到极大的抑制,因此,本发明工艺所直的的表面直波导具有较低的传输损耗。
(3)本发明通过热拉伸工艺制备表面直光波导,拉伸工艺可以连续拉制出数百米至上千米长度的直光波导纤维;并且所拉制直光波导器件具有较小的传输损耗,因此,采用本发明所构思的制造技术,可以制备出长度远大于10cm的表面直光波导,这是传统采用微纳加工技术所制备的光波导所无法达到的。

Claims (12)

1.一种表面直光波导的制造方法,其特征在于:该表面直光波导为纤维状,包含芯层、包层或衬底;该方法包括如下步骤:
步骤1:表面直光波导预制件(3)的制造;
步骤2:将所制备光波导预制件安装至热拉丝设备,加热并拉伸成所需尺寸的直光波导纤维。
2.根据权利要求1所述一种表面直光波导的制造方法,其特征在于:所述表面直光波导预制件的制造包含如下步骤:
S1:将具有光学透明特性的芯层材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸芯层预制件;
S2:将具有光学透明特性的包层材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸包层预制件;
S3:将衬底材料加工成满足所设计的形状和尺寸参数要求的宏观尺寸包层预制件;
S4:将芯层预制件(1)、包层预制件(2)和衬底预制件(6)按照设计组合在一起,并通过热处理、激光焊接、或者物理捆绑等方式将其相对位置固定牢固,形成光波导预制件。
3.根据权利要求1所述一种表面直光波导的制造方法,其特征在于:所述表面直光波导预制件的制造通过熔融共挤出法实现:将具有光学透明特性的芯层材料、包层材料和衬底材料通过熔融共挤出法直接加工成与所设计直光波导结构一致的表面直光波导预制件。
4.根据权利要求2或3所述的一种表面直光波导的制造方法,其特征在于:所述芯层材料和包层材料均为光学透明材料,所述光学透明材料包括透明聚合物、硫系玻璃、磷酸盐玻璃、碲酸盐玻璃、锗酸盐玻璃、氟化物玻璃或硼硅玻璃;芯层和包层可以为同种材料,也可为不同种材料;所述的衬底材料为聚合物、硫系玻璃、磷酸盐玻璃、碲酸盐玻璃、锗酸盐玻璃、氟化物玻璃或硼硅玻璃;所述的芯层材料的光学折射率n和包层材料的光学折射率n应满足n >n的条件,以确保表面波导的传光能力。
5.根据权利要求2或3所述的一种表面直光波导的制造方法,其特征在于:所述的芯层材料、包层材料和衬底材料应满足具有相近的热力学特性:即三者的玻璃化温度相匹配,可以在同一高温下同时软化,并通过拉伸制成纤维。
6.根据权利要求2或3所述的一种表面直光波导的制造方法,其特征在于:所述的表面直光波导预制件(3)的长度为0.1m-1.0m;所述的表面直光波导预制件(3)的横截面整体为矩形,边长为5mm-100mm。
7.根据权利要求2或3所述的一种表面直光波导的制造方法,其特征在于:其特征在于:所述的表面直光波导预制件(3)的长度为0.3-0.6m;所述的表面直光波导预制件(3)的横截面边长为10mm-35mm。
8.根据权利要求2所述的一种表面直光波导的制造方法,其特征在于,所述的表面直光波导预制件(3)的芯层预制件(1)和拉制的表面直光波导的芯层的横截面可为矩形、半圆形、半椭圆形、三角形或梯形;芯层预制件尺寸小于包层预制件尺寸,表面直光波导的芯层尺寸小于包层尺寸。
9.根据权利要求2所述的一种表面直光波导的制造方法,其特征在于:所述的表面直光波导预制件(3)的芯层预制件(1)与包层预制件(2)的相对位置关系包括:芯层预制件(1)附着于包层预制件(2)外表面;芯层预制件(1)部分被包层预制件(2)包覆;芯层预制件(1)两侧与包层预制件(2)连接,上下侧均悬空。
10.根据权利要求1所述的一种表面直光波导的制造方法,其特征在于:所制备的表面直光波导预制件及波导包含衬底,即结构为衬底-包层-芯层;或不包含衬底,即结构为包层-芯层。
11.根据权利要求1所述的一种表面直光波导的制造方法,其特征在于:所制备的表面直光波导预制件(3)及波导可包含一个衬底,一个包层和至少一个芯层,若芯层数量大于1,这些芯层可以是不同材料、不同尺寸。
12.根据权利要求1或5所述的一种表面直光波导的制造方法,其特征在于:所述加热拉丝设备的加热温度应高于芯层材料、包层材料和衬底材料的玻璃化转变温度Tg,并低于芯层材料、包层材料和衬底材料的融化温度。
CN202210286310.9A 2022-03-23 2022-03-23 一种表面直光波导制造方法 Pending CN114779399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210286310.9A CN114779399A (zh) 2022-03-23 2022-03-23 一种表面直光波导制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210286310.9A CN114779399A (zh) 2022-03-23 2022-03-23 一种表面直光波导制造方法

Publications (1)

Publication Number Publication Date
CN114779399A true CN114779399A (zh) 2022-07-22

Family

ID=82424370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210286310.9A Pending CN114779399A (zh) 2022-03-23 2022-03-23 一种表面直光波导制造方法

Country Status (1)

Country Link
CN (1) CN114779399A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131746A1 (en) * 2001-03-15 2002-09-19 The Regents Of The University Of California Compact cladding-pumped planar waveguide amplifier and fabrication method
CN1475823A (zh) * 2002-06-27 2004-02-18 ���µ�����ҵ��ʽ���� 光波导和用于制造该光波导的方法
CN101334504A (zh) * 2007-06-27 2008-12-31 中国科学院半导体研究所 紫外光直写制作掺铒杂化SiO2光波导放大器的方法
CN101498814A (zh) * 2007-09-25 2009-08-05 晶方半导体科技(苏州)有限公司 光波导
CN101726763A (zh) * 2008-10-23 2010-06-09 日东电工株式会社 光波导用组合物及其制造方法、光波导及其制造方法
CN102015291A (zh) * 2008-03-14 2011-04-13 利乐拉瓦尔集团及财务有限公司 单轴定向的聚合物衬底膜
US20170240454A1 (en) * 2016-02-23 2017-08-24 Douglas Llewellyn Butler Layered glass structures
CN109154104A (zh) * 2016-02-10 2019-01-04 洛桑联邦理工学院 通过热拉伸的多材料可拉伸光学、电子和光电纤维和带状复合材料
CN109239843A (zh) * 2018-11-09 2019-01-18 中国科学院长春光学精密机械与物理研究所 一种平面光波导、其制备方法及热光器件
CN110296778A (zh) * 2019-06-19 2019-10-01 华中科技大学 一种无源压力传感纤维及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131746A1 (en) * 2001-03-15 2002-09-19 The Regents Of The University Of California Compact cladding-pumped planar waveguide amplifier and fabrication method
CN1475823A (zh) * 2002-06-27 2004-02-18 ���µ�����ҵ��ʽ���� 光波导和用于制造该光波导的方法
CN101334504A (zh) * 2007-06-27 2008-12-31 中国科学院半导体研究所 紫外光直写制作掺铒杂化SiO2光波导放大器的方法
CN101498814A (zh) * 2007-09-25 2009-08-05 晶方半导体科技(苏州)有限公司 光波导
CN102015291A (zh) * 2008-03-14 2011-04-13 利乐拉瓦尔集团及财务有限公司 单轴定向的聚合物衬底膜
CN101726763A (zh) * 2008-10-23 2010-06-09 日东电工株式会社 光波导用组合物及其制造方法、光波导及其制造方法
CN109154104A (zh) * 2016-02-10 2019-01-04 洛桑联邦理工学院 通过热拉伸的多材料可拉伸光学、电子和光电纤维和带状复合材料
US20170240454A1 (en) * 2016-02-23 2017-08-24 Douglas Llewellyn Butler Layered glass structures
CN109239843A (zh) * 2018-11-09 2019-01-18 中国科学院长春光学精密机械与物理研究所 一种平面光波导、其制备方法及热光器件
CN110296778A (zh) * 2019-06-19 2019-10-01 华中科技大学 一种无源压力传感纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHE WANG等: "Advanced Thermally Drawn Multimaterial Fibers: StructureEnabled Functionalities", 《ADVANCED DEVICES & INSTRUMENTATION》 *
汪 海: "微纳光纤耦合器无标生物传感特性", 《光学学报》 *

Similar Documents

Publication Publication Date Title
Wang et al. A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation
An et al. Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance
Hart et al. External reflection from omnidirectional dielectric mirror fibers
US5861113A (en) Fabrication of embossed diffractive optics with reusable release agent
Prieto et al. Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications
US7315683B2 (en) Optical waveguides formed in glass-ceramic materials and method for making same
US7311962B2 (en) Method of forming reflecting dielectric mirrors
EP2098896B1 (en) Optical waveguide film
El-Saeed et al. Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations
US6847773B2 (en) Optical waveguide and method for manufacturing the same
De et al. Analysis of a single solid core flat fiber plasmonic refractive index sensor
CN114779399A (zh) 一种表面直光波导制造方法
Falah et al. Single-mode D-shaped photonic crystal fiber surface plasmon resonance sensor with open microchannel
CN111649840B (zh) 一种光学谐振器低温温度传感器及其制备、封装方法
JP2855091B2 (ja) 光導波路の製造方法
CN112254840A (zh) 一种基于sts结构测量磁场和温度的光纤spr传感器
EP1579984B1 (en) Method of forming a fiber waveguide
Ramani et al. Rectangular-shape cladding-based photonic crystal fiber surface plasmon resonance-based refractive index sensor
CN212539082U (zh) 一种温度和可方向识别曲率的传感光纤
CN212432342U (zh) 一种负载双曲超材料的光纤及传感器
CN114674245A (zh) 一种光纤角度传感器及其制备方法
CN114252939A (zh) 一种兼具截止和减反特性的金属结构超表面红外光学膜
Rettschlag et al. Additive manufacturing of glass materials for the production of optical, thermal and structural components
Vajdi et al. Tunable and sensitive graphene-plasmonic opto-fluidic nano sensor
Sharma et al. Photonics for AI and AI for Photonics: Material and Characteristics Integration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination