CN114776251A - 枯竭页岩油气藏二氧化碳强化封存方法 - Google Patents
枯竭页岩油气藏二氧化碳强化封存方法 Download PDFInfo
- Publication number
- CN114776251A CN114776251A CN202210430351.0A CN202210430351A CN114776251A CN 114776251 A CN114776251 A CN 114776251A CN 202210430351 A CN202210430351 A CN 202210430351A CN 114776251 A CN114776251 A CN 114776251A
- Authority
- CN
- China
- Prior art keywords
- ions
- carbon dioxide
- sulfate
- shale oil
- gas reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 60
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000009919 sequestration Effects 0.000 title claims abstract description 12
- 239000003079 shale oil Substances 0.000 title claims description 20
- 239000007789 gas Substances 0.000 claims abstract description 52
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 43
- 239000007864 aqueous solution Substances 0.000 claims abstract description 32
- 229910001422 barium ion Inorganic materials 0.000 claims abstract description 26
- 229910001427 strontium ion Inorganic materials 0.000 claims abstract description 26
- 229910021532 Calcite Inorganic materials 0.000 claims abstract description 25
- 230000002378 acidificating effect Effects 0.000 claims abstract description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 16
- 239000011707 mineral Substances 0.000 claims abstract description 16
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 claims abstract description 16
- 239000002244 precipitate Substances 0.000 claims abstract description 14
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- -1 hydrogen ions Chemical class 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 11
- 238000002347 injection Methods 0.000 claims abstract description 11
- 239000007924 injection Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 238000005728 strengthening Methods 0.000 claims abstract description 9
- 238000005213 imbibition Methods 0.000 claims abstract description 8
- 238000001556 precipitation Methods 0.000 claims abstract description 6
- 238000004090 dissolution Methods 0.000 claims abstract description 4
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims description 19
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 11
- 229910052925 anhydrite Inorganic materials 0.000 claims description 5
- 229910052602 gypsum Inorganic materials 0.000 claims description 5
- 239000010440 gypsum Substances 0.000 claims description 5
- 239000010880 spent shale Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 10
- 238000002791 soaking Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000003795 desorption Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000000387 litholytic effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G5/00—Storing fluids in natural or artificial cavities or chambers in the earth
- B65G5/005—Storing fluids in natural or artificial cavities or chambers in the earth in porous layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/426—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/665—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/72—Eroding chemicals, e.g. acids
- C09K8/74—Eroding chemicals, e.g. acids combined with additives added for specific purposes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/27—Methods for stimulating production by forming crevices or fractures by use of eroding chemicals, e.g. acids
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本申请公开了枯竭页岩油气藏二氧化碳强化封存方法,选取纳米孔富含钡离子与锶离子,骨架富含方解石矿物的枯竭页岩油气藏;通过注入井、裂缝,向枯竭页岩油气藏纳米孔内注入二氧化碳气体;通过注入井、裂缝向枯竭页岩油气藏注入富含硫酸根离子的酸性水溶液;酸性水溶液以强制渗吸、自发渗吸方式进入裂缝面附近纳米孔;进入纳米孔的硫酸根离子与纳米孔内钡离子、锶离子结合形成硫酸钡、硫酸锶沉淀,纳米孔内硫酸根、氢离子与方解石矿物接触后,发生溶解、原位沉淀反应,诱发骨架体积膨胀,导致纳米孔压缩、闭合,最终降低裂缝面附近纳米孔的流动能力,避免纳米孔内二氧化碳返回进入裂缝而发生泄漏,达到强化二氧化碳封存目的。
Description
技术领域
本发明属于二氧化碳地质封存技术领域,尤其涉及枯竭页岩油气藏二氧化碳强化封存方法。
背景技术
二氧化碳排放量的增加导致全球气候变暖日益显著,造成了海平面上升、冰川融化等一系列严重后果。因此,希望通过降低人为排放到大气中的二氧化碳量来缓解这种影响。除了控制各行各业的二氧化碳排放量、使用可再生资源之外,把二氧化碳注入枯竭页岩油气藏中进行永久封存也是减少二氧化碳排放量的重要手段之一。目前这种方法已投入实际工程运用中,例如强化采油,通过将二氧化碳注入枯竭页岩油气藏中实现对二氧化碳的封存,这将为实现碳减排的目标发挥重要作用。
枯竭页岩油气藏横向上分布面积广、纵向上厚度大,具有巨大的二氧化碳封存潜力,但油气藏中已有的水力裂缝、天然裂缝增加了二氧化碳泄漏风险。页岩油气开发时,需要通过水力压裂方法,在油气藏内形成水力裂缝,并激活、沟通天然裂缝,以增加油气渗流能力,提高油气井产量。当二氧化碳注入枯竭的页岩油气藏后,这些已有的裂缝会成为二氧化碳泄漏的潜在通道,不利于安全封存二氧化碳。为此,当二氧化碳全部注入页岩纳米孔后,有必要封堵裂缝面附近纳米孔,避免纳米孔内封存的二氧化碳再次返回裂缝,从而使二氧化碳安全、永久封存在页岩油气藏纳米孔内。
目前地下岩层流体泄漏通道(裂缝、纳米孔)的封堵方法主要有三类:(1)注浆,该方法主要是封堵裂缝,注浆过程压力波动或控制不当会使裂缝二次扩展,导致封堵失效,且水泥浆封堵层易被二氧化碳腐蚀,存在潜在泄漏风险。(2)注耐腐蚀的固体类封堵材料,例如微米级、纳米级粒径的封堵材料,对微米级、纳米级开度裂缝封堵效果好,但纳米级封堵材料易团聚,导致颗粒尺寸增大,无法有效封堵页岩纳米孔。(3)微生物诱导矿化封堵,该方法通过微生物诱导碳酸钙沉淀,能够有效修复微米级开度裂缝,但受微生物尺寸(微米级~数百纳米级)限制,微生物及诱导产生的碳酸钙沉淀无法进入、封堵页岩纳米孔。
发明内容
解决的技术问题:
纳米孔是枯竭页岩油气藏储集二氧化碳的主要空间,然而油气开采过程中,通过水力压裂方法在页岩油气藏中形成了大量裂缝,这些裂缝是二氧化碳的主要泄漏通道。这是因为裂缝可能已破坏了油气藏盖层的密封性,或者在长期埋存过程中,由于地质构造运动、二氧化碳溶蚀等作用,这些裂缝存在破坏油气藏盖层密封性的潜在风险,因此无法保证二氧化碳在枯竭页岩油气藏纳米孔内永久、安全封存。为此,本发明通过向裂缝注入富含硫酸根离子的酸性水溶液,使硫酸根离子、氢离子进入裂缝面附近纳米孔,并利用化学反应原位生成难溶硫酸盐沉淀,永久封堵裂缝面附近纳米孔,避免纳米孔内二氧化碳再次返回裂缝,从而使二氧化碳永久封存在枯竭页岩油气藏纳米孔内。本发明利用化学反应生成的沉淀封堵纳米孔,克服了现有封堵材料尺寸过大无法进入、封堵纳米孔的技术缺陷,并且本发明中的硫酸盐沉淀化学性质稳定,克服了传统封堵材料不耐二氧化碳腐蚀的难题。
技术方案:
为实现上述目的,本申请通过以下技术方案予以实现:
枯竭页岩油气藏二氧化碳强化封存方法,包括以下步骤:
第一步:根据地质环境,选取纳米孔富含钡离子与锶离子,以及骨架富含方解石矿物(CaCO3)的枯竭页岩油气藏;
第二步:通过注入井、裂缝,向枯竭页岩油气藏纳米孔内注入二氧化碳气体;
第三步:当二氧化碳全部注入纳米孔后,通过注入井、裂缝向枯竭页岩油气藏注入富含硫酸根离子的酸性水溶液;关闭注入井,使酸性水溶液以强制渗吸、自发渗吸方式进入裂缝面附近纳米孔;
第四步:进入纳米孔的硫酸根离子,与纳米孔内钡离子、锶离子结合形成难溶硫酸钡、硫酸锶沉淀,导致裂缝面附近纳米孔逐渐被堵塞;同时,纳米孔内硫酸根、氢离子与方解石矿物接触后,发生溶解、原位沉淀反应,即骨架内方解石原位转换为摩尔体积更大的石膏(二水硫酸钙)、硬石膏(硫酸钙)沉淀,诱发骨架体积膨胀,导致纳米孔压缩、闭合,最终降低裂缝面附近纳米孔的流动能力,避免纳米孔内二氧化碳返回进入裂缝而发生泄漏,达到强化二氧化碳封存目的。
优选的,所述枯竭页岩油气藏的钡离子在纳米孔内的浓度不小于100mg/L,锶离子在纳米孔内的浓度不小于100mg/L。
优选的,所述枯竭页岩油气藏的方解石矿物体积分数占比介于5%-20%。
优选的,所述注入井为页岩油气藏开采井,所述裂缝为水力裂缝、天然裂缝。
优选的,所述硫酸根离子的浓度不小于1000mg/L,酸性水溶液的pH值不大于3。
原理解释:页岩油气藏纳米孔内普遍富含钡离子、锶离子,这些离子与注入的硫酸根离子接触后,将在页岩纳米孔内原位生成硫酸钡、硫酸锶沉淀,从而堵塞纳米孔;同时,注入的氢离子、硫酸根离子,与页岩骨架中的方解石(CaCO3)反应,将原位生成摩尔体积更大的石膏(摩尔体积比方解石大101%)、硬石膏(摩尔体积比方解石大24%)沉淀,进一步堵塞纳米孔。在硫酸钡、硫酸锶以及石膏、硬石膏共同作用下,页岩油气藏裂缝面附近纳米孔将被完全堵塞,导致纳米孔流动能力大幅下降,使纳米孔内二氧化碳难以返回裂缝,从而实现强化二氧化碳封存目的。
有益效果:
本申请提供了枯竭页岩油气藏二氧化碳强化封存方法,具备以下有益效果:
1、与传统注入高粘度、微纳米开度封堵材料不同,本发明利用水溶液中离子的化学沉淀反应来实现纳米孔的封堵,该方法不受材料粒径限制,可对页岩所有纳米孔进行封堵。
2、与传统水泥浆封堵材料易被二氧化碳腐蚀导致泄漏不同,本发明采用难溶硫酸盐沉淀封堵纳米孔,该沉淀化学性质稳定,在二氧化碳环境下能够长期保持有效封堵。
3、本发明仅向裂缝内注入富含硫酸根离子、氢离子的酸性水溶液,只封堵裂缝面附近纳米孔,操作简单、成本低、效率高。
附图说明
图1为本申请向页岩裂缝面及附近纳米孔注入硫酸根、氢离子的示意图。
图2为本申请利用原位生成硫酸盐沉淀封堵页岩裂缝面附近纳米孔的示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅只是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所以其他的实施例,都属于本发明保护的范围。
本发明的目的是提供枯竭页岩油气藏二氧化碳强化封存的方法,以解决现有技术存在的问题。在向纳米孔富含钡离子与锶离子、骨架富含方解石矿物的页岩油气藏注入二氧化碳结束后,采取继续向页岩油气藏注入含硫酸根离子的水溶液,使水溶液以强制渗吸、自发渗吸方式进入裂缝面附近纳米孔。进入纳米孔的硫酸根离子,与纳米孔内钡离子、锶离子结合形成难溶硫酸钡、硫酸锶沉淀,导致裂缝面附近纳米孔逐渐被堵塞;同时,纳米孔内硫酸根、氢离子与方解石矿物接触后,发生溶解、原位沉淀反应,即骨架内方解石原位转换为摩尔体积更大的石膏、硬石膏沉淀,诱发骨架体积膨胀,导致纳米孔空间压缩、闭合,最终降低裂缝面附近纳米孔的流动能力,避免纳米孔内二氧化碳返回进入裂缝而发生泄漏,从而对裂缝附近纳米孔进行封堵,实现安全封存二氧化碳的目标。
为了对本发明的技术特征、目的和有益效果更加明显易懂,下面结合附图对本发明的3个实施例作进一步描述。
实施例1:
(1)选用四川地区某页岩油气藏页岩样品,测得纳米孔内钡离子浓度介于123~562mg/L、锶离子浓度为106~832mg/L、骨架内方解石矿物含量为5.6%~18.3%;
(2)烘干上述页岩样品,利用压汞法测试纳米孔体积(单位:cm3/g),基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s);
(3)分别配置富含硫酸根离子1562mg/L、1762mg/L的酸性水溶液,其pH值分别为2.3、2.5;
(4)将页岩样品浸泡在上述水溶液中,水溶液内硫酸根离子、氢离子在浓度差作用下,扩散进入页岩纳米孔,如图1所示;
(5)在页岩油气藏温度(76℃)下,页岩样品浸泡3d后取出,测量水溶液内剩余硫酸根离子浓度、pH值。
(6)烘干页岩样品,再次利用压汞法测试纳米孔体积(单位:cm3/g),并基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s),并测量纳米孔内剩余钡离子、锶离子浓度,以及页岩骨架内剩余方解石矿物含量。
表1富含硫酸根离子的酸性水溶液浸泡前后页岩纳米孔体积与扩散系数测试结果
测试结果如表1所示。实验发现:页岩样品浸泡后,钡离子、锶离子、硫酸根浓度明显下降,表明页岩纳米孔内形成了硫酸盐沉淀,如附图2所示,使孔隙度下降约90%,同时扩散系数也下降约102-104,从而证实在上述钡离子浓度、锶离子浓度及方解石含量下,通过注入富含硫酸根离子的酸性水溶液,可以极大降低页岩纳米孔的流动能力。
实施例2:
(1)选用鄂尔多斯地区某页岩油气藏页岩样品,测得纳米孔内钡离子浓度介于34~108mg/L、锶离子浓度为16~136mg/L、骨架内方解石矿物含量不大于5%;
(2)烘干上述页岩样品,利用压汞法测试纳米孔体积(单位:cm3/g),基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s);
(3)分别配置富含硫酸根离子1562mg/L、1762mg/L的酸性水溶液,其pH值分别为2.3、2.5;
(4)将页岩样品浸泡在上述水溶液中,水溶液内硫酸根离子、氢离子在浓度差作用下,扩散进入页岩纳米孔,如图1所示;
(5)在页岩油气藏温度(68℃)下,页岩样品浸泡3d后取出,测量水溶液内剩余硫酸根离子浓度、pH值。
(6)烘干页岩样品,再次利用压汞法测试纳米孔体积(单位:cm3/g),并基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s),并测量纳米孔内剩余钡离子、锶离子浓度,以及页岩骨架内剩余方解石矿物含量。
表2富含硫酸根离子的酸性水溶液浸泡前后页岩纳米孔体积与扩散系数测试结果
测试结果如表2所示。实验发现:页岩样品浸泡后,钡离子、锶离子、硫酸根浓度下降不明显,生成的少量硫酸盐沉淀使孔隙度下降约20%-30%,同时扩散系数也下降约10-102,从而证实在上述钡离子浓度、锶离子浓度及方解石含量下,通过注入富含硫酸根离子的酸性水溶液,降低页岩纳米孔的流动能力的效果不明显。
实施例3:
(1)选用四川地区某页岩油气藏页岩样品,测得纳米孔内钡离子浓度介于123~562mg/L、锶离子浓度为106~832mg/L、骨架内方解石矿物含量为5.6%~18.3%;
(2)烘干上述页岩样品,利用压汞法测试纳米孔体积(单位:cm3/g),基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s);
(3)分别配置富含硫酸根离子1562mg/L、1762mg/L、1054mg/L、1936mg/L、850mg/L、的酸性水溶液,其pH值分别为2.3、2.5、3、4.5、6.5;
(4)将页岩样品浸泡在上述水溶液中,水溶液内硫酸根离子、氢离子在浓度差作用下,扩散进入页岩纳米孔,如图1所示;
(5)在页岩油气藏温度(76℃)下,页岩样品浸泡3d后取出,测量水溶液内剩余硫酸根离子浓度、pH值。
(6)烘干页岩样品,再次利用压汞法测试纳米孔体积(单位:cm3/g),并基于CO2解吸数据计算纳米孔内CO2扩散系数(单位:m2/s),并测量纳米孔内剩余钡离子、锶离子浓度,以及页岩骨架内剩余方解石矿物含量。
表3富含硫酸根离子的酸性水溶液浸泡前后页岩纳米孔体积与扩散系数测试结果
测试结果如表3所示。实验发现:第一组、第二组和第三组页岩样品浸泡后,钡离子、锶离子、硫酸根浓度下降明显,生成的硫酸盐沉淀使孔隙度下降约90%,同时扩散系数也下降约104-105,从而证实在上述钡离子浓度、锶离子浓度及方解石含量下,通过注入富含硫酸根离子且pH<3的酸性水溶液,降低页岩纳米孔的流动能力的效果明显。第四组、第五组页岩样品浸泡后,钡离子、锶离子、硫酸根浓度下降不明显,生成的少量硫酸盐沉淀使孔隙度下降约30%-35%,同时扩散系数也下降约10-102,从而证实在上述钡离子浓度、锶离子浓度及方解石含量下,通过注入富含硫酸根离子且pH>3的酸性水溶液,降低页岩纳米孔的流动能力的效果不明显。
通过对比实施例1、2、3结果可以证明:当选取钡离子在纳米孔内的浓度不小于100mg/L,锶离子在纳米孔内的浓度不小于100mg/L与方解石矿物体积分数占比介于5%-20%的枯竭油气藏与硫酸根离子的浓度不小于1000mg/L,酸性水溶液的pH值不大于3的水溶液反应,离子反应生成大量硫酸盐沉淀,使纳米孔的孔隙度和扩张系数下降明显,降低页岩纳米孔的流动能力的效果更明显。
本发明中应用了实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (5)
1.枯竭页岩油气藏二氧化碳强化封存方法,其特征在于,包括以下步骤:
第一步:根据地质环境,选取纳米孔富含钡离子与锶离子,以及骨架富含方解石矿物(CaCO3)的枯竭页岩油气藏;
第二步:通过注入井、裂缝,向枯竭页岩油气藏纳米孔内注入二氧化碳气体;
第三步:当二氧化碳全部注入纳米孔后,通过注入井、裂缝向枯竭页岩油气藏注入富含硫酸根离子的酸性水溶液;关闭注入井,使酸性水溶液以强制渗吸、自发渗吸方式进入裂缝面附近纳米孔;
第四步:进入纳米孔的硫酸根离子,与纳米孔内钡离子、锶离子结合形成难溶硫酸钡、硫酸锶沉淀,导致裂缝面附近纳米孔逐渐被堵塞;同时,纳米孔内硫酸根、氢离子与方解石矿物接触后,发生溶解、原位沉淀反应,即骨架内方解石原位转换为摩尔体积更大的石膏(二水硫酸钙)、硬石膏(硫酸钙)沉淀,诱发骨架体积膨胀,导致纳米孔压缩、闭合,最终降低裂缝面附近纳米孔的流动能力,避免纳米孔内二氧化碳返回进入裂缝而发生泄漏,达到强化二氧化碳封存目的。
2.根据权利要求1所述枯竭页岩油气藏二氧化碳强化封存方法,其特征在于:所述枯竭页岩油气藏的钡离子在纳米孔内的浓度不小于100 mg/L,锶离子在纳米孔内的浓度不小于100 mg/L。
3.根据权利要求1所述枯竭页岩油气藏二氧化碳强化封存方法,其特征在于:所述枯竭页岩油气藏的方解石矿物体积分数占比介于5%-20%。
4.根据权利要求1所述枯竭页岩油气藏二氧化碳强化封存方法,其特征在于:所述注入井为页岩油气藏开采井,所述裂缝为水力裂缝、天然裂缝。
5.根据权利要求1所述枯竭页岩油气藏二氧化碳强化封存方法,其特征在于:所述硫酸根离子的浓度不小于1000 mg/L,酸性水溶液的pH值不大于3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210430351.0A CN114776251B (zh) | 2022-04-22 | 2022-04-22 | 枯竭页岩油气藏二氧化碳强化封存方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210430351.0A CN114776251B (zh) | 2022-04-22 | 2022-04-22 | 枯竭页岩油气藏二氧化碳强化封存方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114776251A true CN114776251A (zh) | 2022-07-22 |
CN114776251B CN114776251B (zh) | 2023-11-03 |
Family
ID=82431241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210430351.0A Active CN114776251B (zh) | 2022-04-22 | 2022-04-22 | 枯竭页岩油气藏二氧化碳强化封存方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114776251B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115405255A (zh) * | 2022-08-23 | 2022-11-29 | 中国石油天然气集团有限公司 | 一种用于高含水气井的相转化控堵水采气方法 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030052377A (ko) * | 2001-12-21 | 2003-06-27 | 주식회사 포스코 | 코크오븐가스 정제용 안수에 함유된 이산화탄소와황산이온 제거방법 |
EP1571105A2 (de) * | 2004-01-29 | 2005-09-07 | Christoph Professor Dr. Clauser | Verfahren und eine Anordnung zur Speicherung und dauerhaften Fixierung von in Wasser gelöstem CO2 in geologischen Formationen |
WO2009098070A1 (en) * | 2008-02-06 | 2009-08-13 | Biomim-Greenloop Sa | Subterranean storage of co2 or its derivatives |
CA2694989A1 (en) * | 2008-09-30 | 2010-03-30 | Calera Corporation | Compositions and methods using substances containing carbon |
WO2011021148A1 (en) * | 2009-08-17 | 2011-02-24 | Tshwane University Of Technology | Treatment of water |
US20110064634A1 (en) * | 2008-02-11 | 2011-03-17 | Auxsol, Inc. | Removing Carbon Dioxide From Gaseous Emissions |
US20110174507A1 (en) * | 2008-10-02 | 2011-07-21 | Burnham Alan K | Carbon sequestration in depleted oil shale deposits |
WO2013013721A1 (en) * | 2011-07-28 | 2013-01-31 | Statoil Petroleum As | Recovery methods for hydrocarbon gas reservoirs |
US20130025870A1 (en) * | 2011-07-28 | 2013-01-31 | Berry Sandra L | Well servicing fluid and method of servicing a well with the fluid |
JP2013047173A (ja) * | 2011-07-28 | 2013-03-07 | Kitasato Institute | 空気中の二酸化炭素を用いたアルカリ土類金属炭酸塩の製造方法とその利用 |
US20130170910A1 (en) * | 2010-07-01 | 2013-07-04 | Statoil Petroleum As | Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods |
US20140127094A1 (en) * | 2012-11-02 | 2014-05-08 | Strategic Metals Ltd. | Processing of sulfate and/or sulfide-rich waste using co2-enriched gases to sequester co2, reduce environmental impacts including acid rock drainage and produce reaction products |
US20140158354A1 (en) * | 2012-12-12 | 2014-06-12 | Halliburton Energy Services, Inc. | Viscous settable fluid for lost circulation in subterranean formations |
US20150246314A1 (en) * | 2014-03-03 | 2015-09-03 | Blue Planet, Ltd. | Alkali enrichment mediated co2 sequestration methods, and systems for practicing the same |
US20150362188A1 (en) * | 2013-01-30 | 2015-12-17 | Bogdan Wojak | Sulphur-assisted carbon capture and storage (ccs) processes and systems |
US20160082387A1 (en) * | 2014-09-23 | 2016-03-24 | Blue Planet, Ltd. | Carbon sequestration methods and systems |
KR20160056420A (ko) * | 2014-11-11 | 2016-05-20 | 한국에너지기술연구원 | 3상 유동층 시스템을 이용하는 이산화탄소 광물화 장치 및 이산화탄소 광물화 방법 |
US20160289534A1 (en) * | 2013-12-19 | 2016-10-06 | Halliburton Energy Services, Inc. | Double hydrophilic block copolymer on particulate surface in wells to reduce scale |
US20160289535A1 (en) * | 2013-12-19 | 2016-10-06 | Halliburton Energy Services, Inc. | Double hydrophilic block copolymer on surfaces for wells or pipelines to reduce scale |
CN106501298A (zh) * | 2016-10-31 | 2017-03-15 | 重庆大学 | 大孔隙煤岩体二氧化碳驱替瓦斯过程动态分析方法 |
CN106884634A (zh) * | 2016-12-30 | 2017-06-23 | 浙江海洋大学 | 一种研究高矿化度地层水对co2驱影响的实验方法 |
US20170274318A1 (en) * | 2016-03-25 | 2017-09-28 | Blue Planet, Ltd. | Ammonia mediated carbon dioxide (co2) sequestration methods and systems |
CN112839728A (zh) * | 2018-09-01 | 2021-05-25 | 蓝色星球系统公司 | 地质物质介导的碳封存材料产生方法以及用于实施所述方法的系统 |
-
2022
- 2022-04-22 CN CN202210430351.0A patent/CN114776251B/zh active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030052377A (ko) * | 2001-12-21 | 2003-06-27 | 주식회사 포스코 | 코크오븐가스 정제용 안수에 함유된 이산화탄소와황산이온 제거방법 |
EP1571105A2 (de) * | 2004-01-29 | 2005-09-07 | Christoph Professor Dr. Clauser | Verfahren und eine Anordnung zur Speicherung und dauerhaften Fixierung von in Wasser gelöstem CO2 in geologischen Formationen |
WO2009098070A1 (en) * | 2008-02-06 | 2009-08-13 | Biomim-Greenloop Sa | Subterranean storage of co2 or its derivatives |
US20110064634A1 (en) * | 2008-02-11 | 2011-03-17 | Auxsol, Inc. | Removing Carbon Dioxide From Gaseous Emissions |
CA2694989A1 (en) * | 2008-09-30 | 2010-03-30 | Calera Corporation | Compositions and methods using substances containing carbon |
US20110174507A1 (en) * | 2008-10-02 | 2011-07-21 | Burnham Alan K | Carbon sequestration in depleted oil shale deposits |
CN102369339A (zh) * | 2008-10-02 | 2012-03-07 | 美国页岩油公司 | 枯竭的油页岩沉积物中的碳螯合 |
WO2011021148A1 (en) * | 2009-08-17 | 2011-02-24 | Tshwane University Of Technology | Treatment of water |
US20130170910A1 (en) * | 2010-07-01 | 2013-07-04 | Statoil Petroleum As | Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods |
AU2011373946A1 (en) * | 2011-07-28 | 2014-02-20 | Equinor Energy As | Recovery methods for hydrocarbon gas reservoirs |
JP2013047173A (ja) * | 2011-07-28 | 2013-03-07 | Kitasato Institute | 空気中の二酸化炭素を用いたアルカリ土類金属炭酸塩の製造方法とその利用 |
US20130025870A1 (en) * | 2011-07-28 | 2013-01-31 | Berry Sandra L | Well servicing fluid and method of servicing a well with the fluid |
WO2013013721A1 (en) * | 2011-07-28 | 2013-01-31 | Statoil Petroleum As | Recovery methods for hydrocarbon gas reservoirs |
US20140127094A1 (en) * | 2012-11-02 | 2014-05-08 | Strategic Metals Ltd. | Processing of sulfate and/or sulfide-rich waste using co2-enriched gases to sequester co2, reduce environmental impacts including acid rock drainage and produce reaction products |
US20140158354A1 (en) * | 2012-12-12 | 2014-06-12 | Halliburton Energy Services, Inc. | Viscous settable fluid for lost circulation in subterranean formations |
US20150362188A1 (en) * | 2013-01-30 | 2015-12-17 | Bogdan Wojak | Sulphur-assisted carbon capture and storage (ccs) processes and systems |
US20160289534A1 (en) * | 2013-12-19 | 2016-10-06 | Halliburton Energy Services, Inc. | Double hydrophilic block copolymer on particulate surface in wells to reduce scale |
US20160289535A1 (en) * | 2013-12-19 | 2016-10-06 | Halliburton Energy Services, Inc. | Double hydrophilic block copolymer on surfaces for wells or pipelines to reduce scale |
US20150246314A1 (en) * | 2014-03-03 | 2015-09-03 | Blue Planet, Ltd. | Alkali enrichment mediated co2 sequestration methods, and systems for practicing the same |
US20160082387A1 (en) * | 2014-09-23 | 2016-03-24 | Blue Planet, Ltd. | Carbon sequestration methods and systems |
KR20160056420A (ko) * | 2014-11-11 | 2016-05-20 | 한국에너지기술연구원 | 3상 유동층 시스템을 이용하는 이산화탄소 광물화 장치 및 이산화탄소 광물화 방법 |
US20170274318A1 (en) * | 2016-03-25 | 2017-09-28 | Blue Planet, Ltd. | Ammonia mediated carbon dioxide (co2) sequestration methods and systems |
CN106501298A (zh) * | 2016-10-31 | 2017-03-15 | 重庆大学 | 大孔隙煤岩体二氧化碳驱替瓦斯过程动态分析方法 |
CN106884634A (zh) * | 2016-12-30 | 2017-06-23 | 浙江海洋大学 | 一种研究高矿化度地层水对co2驱影响的实验方法 |
CN112839728A (zh) * | 2018-09-01 | 2021-05-25 | 蓝色星球系统公司 | 地质物质介导的碳封存材料产生方法以及用于实施所述方法的系统 |
Non-Patent Citations (6)
Title |
---|
SU, EL等: "Analysis of Effects of CO2 Injection on Coalbed Permeability", ENERGY & FUELS, vol. 33, no. 07 * |
YUAN, GH等: "Evolution of nC(16)H(34)-water-mineral systems in thermal capsules and geological implications for deeply-buried hydrocarbon reservoirs", GEOSCIENCE FRONTIERS, vol. 13, no. 02 * |
李光;刘建军;刘强;纪佑军;: "二氧化碳地质封存研究进展综述", 湖南生态科学学报, no. 04 * |
牛建杰: "油藏地质封存中CO2生物转化CH4的资源化利用技术研究现状", 现代化工, vol. 40, no. 09 * |
陈昌照;修春阳;郭栋;宋权威;吴百春;张坤峰;: "非常规气采出水回注环境风险的研究进展", 化工环保, no. 01 * |
魏小芳;罗一菁;刘可禹;帅燕华;: "油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展", 地球科学进展, no. 05 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115405255A (zh) * | 2022-08-23 | 2022-11-29 | 中国石油天然气集团有限公司 | 一种用于高含水气井的相转化控堵水采气方法 |
CN115405255B (zh) * | 2022-08-23 | 2024-04-26 | 中国石油天然气集团有限公司 | 一种用于高含水气井的相转化控堵水采气方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114776251B (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lesti et al. | CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells | |
CA2640408C (en) | Cement composition for carbon dioxide supercritical environment | |
Alhuraishawy et al. | Areal sweep efficiency improvement by integrating preformed particle gel and low salinity water flooding in fractured reservoirs | |
Sauki et al. | Effects of pressure and temperature on well cement degradation by supercritical CO2 | |
BRPI1008278B1 (pt) | Método para intensificar a recuperação de óleo cru de uma formação subterrânea porosa. | |
CN114776251B (zh) | 枯竭页岩油气藏二氧化碳强化封存方法 | |
Castaneda‐Herrera et al. | Review of CO2 leakage mitigation and remediation technologies | |
Tarco et al. | Experimental study of stability and integrity of cement in wellbores used for CO2 storage | |
CN113527723A (zh) | 一种非连续相调驱剂及其制备方法和应用 | |
CN109210367B (zh) | 一种用于气体储存的耐压密封材料及方法 | |
US11111181B2 (en) | Cement with reduced permeability | |
Chen et al. | Preparation and Performance of High-Temperature-Resistant, Degradable Inorganic Gel for Steam Applications | |
WO2021112684A1 (en) | Use of a cementitious mixture comprising divalent magnesium-iron silicate for making concrete structures with reduced permeability and method for making such a structure | |
Zuta et al. | Oil recovery during CO2-foam injection in fractured chalk rock at reservoir conditions | |
CN112177578B (zh) | 一种调剖调驱剂及一种油气田层内的调剖调驱方法 | |
US20220396524A1 (en) | Fluid for Stabilising Solids | |
US20200325382A1 (en) | Method for treating the area surrounding a well using an aqueous gelling solution comprising an alkaline potassium silicate solution and an acetic acid | |
Li et al. | Modeling on enhanced gas recovery and evaluation CO2 sequestration capacity under different mechanisms in shale gas reservoirs | |
Cai et al. | A New Coupled Geomechanical-Chemical Model for CO2 Foam Flooding and Storage in Tight Reservoir | |
Cheng et al. | Implication of Water-Rock Interaction for Enhancing Shale Gas Production | |
US11325865B2 (en) | Cement with reduced permeability | |
CN118703181A (zh) | 一种全井温低密速凝浅层套管堵漏剂封堵方法 | |
Niu et al. | Research on CO2 flooding for improved oil recovery in water flooding abandoned reservoirs | |
CN110105027A (zh) | 一种背水面和迎水面均可施工的背水涂材料及其制备方法 | |
Vorderbruggen et al. | To the Barricades! Using a Self-Assembled Wall to Protect Ordinary Portland Cement from Acidic Corrosion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |