CN114773392B - 一种双核钌催化剂及其制备方法和用途 - Google Patents

一种双核钌催化剂及其制备方法和用途 Download PDF

Info

Publication number
CN114773392B
CN114773392B CN202210367203.9A CN202210367203A CN114773392B CN 114773392 B CN114773392 B CN 114773392B CN 202210367203 A CN202210367203 A CN 202210367203A CN 114773392 B CN114773392 B CN 114773392B
Authority
CN
China
Prior art keywords
ruthenium catalyst
binuclear ruthenium
reagent
binuclear
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210367203.9A
Other languages
English (en)
Other versions
CN114773392A (zh
Inventor
侯小华
任飞扬
李珍
聂金鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210367203.9A priority Critical patent/CN114773392B/zh
Publication of CN114773392A publication Critical patent/CN114773392A/zh
Application granted granted Critical
Publication of CN114773392B publication Critical patent/CN114773392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种双核钌催化剂及其制备方法和用途,所述双核钌催化剂的结构通式如下:其中,Linker的结构式为中的一种。本发明中的双核钌催化剂用于催化环烯烃开环易位聚合,上述双核钌催化剂包含不同骨架结构和不同骨架的电子效应可催化环烯烃单体的开环易位聚合反应,能有效控制聚合物的拓扑结构,为合成环状功能化聚烯烃提供新的策略。

Description

一种双核钌催化剂及其制备方法和用途
技术领域
本发明涉及烯烃聚合有机金属催化剂领域,具体涉及一种双核钌催化剂及其制备方法和用途。
背景技术
开环易位聚合是高分子材料制备方法中一类极具特色的聚合方法:环烯烃在催化剂作用下,双键断裂并以头尾相连的方式形成高分子。开环易位聚合有两类具有代表性的催化剂:第一类,以钼金属为催化中心的Schrocktype催化剂,这类催化剂对环烯烃的聚合具有高活性、高选择性的特点,且价格相对便宜,但其水氧敏感、官能团耐受有限,存储也较困难;第二类,以钌金属为催化中心的Grubbs type催化剂,这类催化剂有NHC强给电子基团,能耐受多数极性官能团,较为稳定,活性较高,但其对聚合物的立构选择性较差,价格昂贵。
受到多种生物金属蛋白中双核活性位点的独特性质和反应性的启发,近几十年来,双金属烯烃聚合催化剂的协同效应得到了广泛的研究。双金属催化剂体系的优势在活性、选择性、引入官能团等方面有所体现,但在复分解领域,双核金属卡宾配合物尚未得到深入研究。
环状聚合物是不包含链端的大环分子,并且相对于类似的线性聚合物,它们在物理状态下的拓扑结构都具有独特的密度、构象和粘弹性质。环状聚合物因其独特的物理性能而备受关注,在生物医学设备中也有新兴应用。合成环状聚合物的主流方法中,主要是设计环状催化剂(以钌金属为代表的环状催化剂)进行扩环复分解聚合形成环状聚合物。
通过设计合成一系列骨架可调的双核钌配合物,采用不同长度的骨架实现调节金属原子之间距离的目的,并为研究双金属中心的协同效应提供可能。尤其是对配体骨架的筛选,可以进一步实现金属原子周围的位阻和电子环境的调节,从而确立代表性双核钌配合物体系,揭示配合物金属原子的空间位置、电子效应与催化作用之间的内在联系,并开发通过双金属作用合成环状聚合物的新方法。现有技术中,通过环状催化剂的扩环聚合得到环状聚合物的方法中催化剂的合成和提纯较为困难。
发明内容
本发明的目的在于提供一种双核钌催化剂及其制备方法和用途,本发明的双核钌催化剂可用于催化环烯烃开环易位聚合,通过配体骨架的调节调控催化剂的电子效应合空间位阻,控制聚合反应过程,获得线性和环状的开环易位聚合物。
为实现上述目的,本发明提供如下技术方案:
一种双核钌催化剂,结构通式如下:
其中,Linker的结构式为
中的一种。
一种双核钌催化剂的制备方法,包括以下步骤:
(1)双核钌催化剂前体的制备:在氮气流保护下,称取试剂A于耐压管中,加入试剂E,再加入2,4,6-三甲基苯基咪唑,将Ace耐压管置于油浴锅中,搅拌12h后,析出固体,真空除去溶剂后将固体溶于二氯甲烷,滴入乙醚中白色粉末析出,超声均匀后静置,重复用二氯甲烷、乙醚洗涤三次,冰箱静置,真空除去溶剂,得到白色粉末产物a;其中,所述试剂A是1,5-二溴戊烷、1,10-二溴癸烷、1,4-二(溴甲基)苯中的一种,所述试剂E为甲苯或二氯甲烷;
(2)双核钌催化剂的制备:称取步骤(1)产物放入到螺口瓶中,加入甲苯,缓慢加入试剂B,室温搅拌3h后,得到浅浊黄色反应液,再加入试剂C继续室温搅拌24h,将反应液过滤后真空浓缩,滴加到冷己烷中沉淀得到棕红色粉末,得到所述双核钌催化剂;其中,所述试剂B是叔丁醇钾;所述的试剂C为Grubbs 1代催化剂。
优选地,所述步骤(1)中,试剂A与2,4,6-三甲基苯基咪唑之间的摩尔量比为1:2,甲苯5mL,二氯甲烷5mL。
优选地,所述步骤(2)中,步骤(1)产物与试剂B、试剂C之间的摩尔比为1:2:2。
优选地,所述步骤(1)中,当试剂E采用甲苯时,油浴锅温度为110℃,在110℃下搅拌12h,当试剂E采用二氯甲烷时,油浴锅温度为50℃,在50℃下搅拌12h。
上述双核钌催化剂合成路线如下:
一种双核钌催化剂的用途,所述双核钌催化剂应用于催化环烯烃开环易位聚合。
优选地,所述双核钌催化剂应用于环烯烃开环易位聚合后得到线性、环状聚合物。
优选地,所述双核钌催化剂应用于催化环烯烃开环易位聚合的过程如下,在无水无氧氮气保护下,在螺口瓶中依次加入单体D和溶剂甲苯,再加入双核钌催化剂,室温搅拌,45-60min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到开环易位聚合产物;其中,单体D为5-降冰烯-2-基乙酸酯、5-降冰片烯-2-羧酸甲酯、降冰片烯、环戊烯、环辛烯、2,3-二氢呋喃中的任一种。
优选地,当所加入的单体D为5-降冰烯-2-基乙酸酯时,所述的双核钌催化剂与单体D的摩尔比为1:2000。
优选地,当所加入的单体D为5-降冰片烯-2-羧酸甲酯时,所述的双核钌催化剂与单体D的摩尔比为1:1000。
双核钌催化剂应用于催化环烯烃开环易位聚合的合成路线如下:
与现有技术相比,本发明的有益效果是:
1)本发明中的双核钌催化剂合成条件温和,合成方法简单,易于操作。
2)本发明所进行的开环易位聚合,单体原料廉价易得,来源广泛,所得聚合物具有工业应用价值。
3)本发明首次开展双核钌配合物用于环烯烃的开环易位聚合,研究双金属间相互作用,进一步深入探明双金属在烯烃催化中的特殊应用;其次,本发明建立双金属卡宾反咬机理,不仅能催化得到线性开环易位聚合物,还能得到开环易位聚合物,具有很强的原始创新性。
4)本发明通过制备得到的双核钌金属催化体系,实现了环烯烃的开环易位聚合,得到线性和环状聚合物,克服常规环状催化剂催化环状聚合物的合成困难,为催化环状聚合物合成的催化剂设计提供了新思路。
附图说明
图1是本发明实施例1中基于骨架结构为1,10-二溴癸烷的C1的核磁氢谱图;
图2是本发明实施例1中5-降冰烯-2-基乙酸酯开环易位聚合后所得产物P1的核磁氢谱图;
图3是本发明实施例1中5-降冰片烯-2-羧酸甲酯开环易位聚合后所得产物P2的核磁氢谱图;
图4是本发明实施例2中基于骨架结构为1,5-二溴戊烷的C2的核磁氢谱图;
图5是本发明实施例3中基于骨架结构为1,4-二(溴甲基)苯的C3的核磁氢谱图;
图6(a)是本发明实施例2,3中5-降冰烯-2-基乙酸酯开环易位聚合的分子量、分子量分布与催化剂的关系图;(b)是本发明实施,2,3中5-降冰片烯-2-羧酸甲酯开环易位聚合的分子量、分子量分布与催化剂的关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种双核钌催化剂的制备方法,包括以下步骤:
(1)双核钌催化剂前体的制备:在氮气流保护下,称取1,10-二溴癸烷(201mg,0.67mmol)于15mLAce耐压管中,加入5mL甲苯,再加入2,4,6-三甲基苯基咪唑(250mg,1.34mmol),将Ace耐压管置于油浴锅中,110℃下搅拌12h后,浅黄色反应溶液析出固体,真空除去溶剂后将固体溶于二氯甲烷成浅黄色液体,滴入乙醚中白色粉末析出,超声均匀后静置,重复用二氯甲烷、乙醚洗涤,冰箱静置,真空除去溶剂,得到白色粉末癸烷连双1-(2,4,6-三甲基苯基)-咪唑溴化物293mg,产率65%;
(2)双核钌催化剂的制备:称取步骤(1)产物(20.2mg,0.03mmol)放入到螺口瓶中,加入5mL甲苯,缓慢加入叔丁醇钾(6.7mg,0.06mmol),室温搅拌3h后,得到浅浊黄色反应液,再加入Grubbs 1代催化剂(50mg,0.06mmol)继续室温搅拌24h,反应液由紫色变成红棕色,硅藻土过滤后真空浓缩,滴加到冷己烷中沉淀得到棕红色粉末,真空除去溶剂,得到主催化剂C1,结构式如下:
图1是基于骨架结构为1,10-二溴癸烷的C1的核磁氢谱图,表明制备产物结构正确。
5-降冰烯-2-基乙酸酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304mg5-降冰烯-2-基乙酸酯和4mL甲苯,再加入1.0μmol双核钌配合物,室温搅拌,60min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰烯-2-基乙酸酯聚合物P1,结构式如下:
图2是5-降冰烯-2-基乙酸酯开环易位聚合后所得产物P1的核磁氢谱图,表明所得聚合物结构正确。
5-降冰片烯-2-羧酸甲酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304g5-降冰片烯-2-羧酸甲酯和4mL甲苯,再加入2.0μmol双核钌配合物,室温搅拌,45min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰片烯-2-羧酸甲酯聚合物P2,结构式如下:
图3是5-降冰片烯-2-羧酸甲酯开环易位聚合后所得产物P2的核磁氢谱图,表明所得聚合物结构正确。
实施例2
一种双核钌催化剂的制备方法,包括以下步骤:
(1)双核钌催化剂前体的制备:在氮气流保护下,称取1,5-二溴戊烷(154mg,0.67mmol)于15mLAce耐压管中,加入5mL甲苯,再加入2,4,6-三甲基苯基咪唑(250mg,1.34mmol),将Ace耐压管置于油浴锅中,110℃下搅拌12h后,浅黄色反应溶液析出固体,真空除去溶剂后将固体溶于二氯甲烷成浅黄色液体,滴入乙醚中白色粉末析出,超声均匀后静置,重复用二氯甲烷、乙醚洗涤,冰箱静置,真空除去溶剂,得到白色粉末戊烷连双1-(2,4,6-三甲基苯基)-咪唑溴化物279mg(69%);
(2)双核钌催化剂的制备:称取步骤(1)产物(18.1mg,0.03mmol)放入到螺口瓶中,加入5mL甲苯,缓慢加入叔丁醇钾(6.7mg,0.06mmol),室温搅拌3h后,得到浅浊黄色反应液,再加入Grubbs 1代催化剂(50mg,0.06mmol)继续室温搅拌24h,反应液由紫色变成红棕色,硅藻土过滤后真空浓缩,滴加到冷己烷中沉淀得到棕红色粉末,真空除去溶剂,得到主催化剂C2,结构式如下:
图4是基于骨架结构为1,5-二溴戊烷的C2的核磁氢谱图,表明制备产物结构正确。
5-降冰烯-2-基乙酸酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304mg5-降冰烯-2-基乙酸酯和4mL甲苯,再加入1.0μmol双核钌配合物,室温搅拌,60min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰烯-2-基乙酸酯聚合物P3。
5-降冰片烯-2-羧酸甲酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304g5-降冰片烯-2-羧酸甲酯和4mL甲苯,再加入2.0μmol双核钌配合物,室温搅拌,45min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰片烯-2-羧酸甲酯聚合物P4。
实施例3
一种双核钌催化剂的制备方法,包括以下步骤:
(1)双核钌催化剂前体的制备:在氮气流保护下,称取1,4-二(溴甲基)苯(305mg,1.15mmol)于15mLAce耐压管中,加入5mL二氯甲烷,再加入2,4,6-三甲基苯基咪唑(453mg,2.43mmol),将Ace耐压管置于油浴锅中,45℃下搅拌12h后,浅黄色反应溶液析出固体,将固体溶于甲醇成浅黄色液体,滴入乙醚中白色粉末析出,超声均匀后静置,重复用甲醇、乙醚洗涤,冰箱静置,真空除去溶剂,得到白色粉末环二亚甲基连双1-(2,4,6-三甲基苯基)-咪唑640mg(84%);
(2)双核钌催化剂的制备:称取步骤(1)产物(19.3mg,0.03mmol)放入到螺口瓶中,加入5mL甲苯,缓慢加入叔丁醇钾(6.7mg,0.06mmol),室温搅拌3h后,得到浅浊黄色反应液,再加入Grubbs 1代催化剂(50mg,0.06mmol)继续室温搅拌24h,反应液由紫色变成红棕色,硅藻土过滤后真空浓缩,滴加到冷己烷中沉淀得到棕红色粉末,真空除去溶剂,得到主催化剂C3,结构式如下:
图5是基于骨架结构为1,4-二(溴甲基)苯的C3的核磁氢谱图,表明制备产物结构正确。
5-降冰烯-2-基乙酸酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304mg5-降冰烯-2-基乙酸酯和4mL甲苯,再加入1.0μmol双核钌配合物,室温搅拌,60min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰烯-2-基乙酸酯聚合物P5。
5-降冰片烯-2-羧酸甲酯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入304g5-降冰片烯-2-羧酸甲酯和4mL甲苯,再加入2.0μmol双核钌配合物,室温搅拌,45min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到5-降冰片烯-2-羧酸甲酯聚合物P6。
各实施例中聚合反应的结果如下表:
上表中,C1指实施例1中制备得到的双核钌催化剂,C2指实施例2中制备得到的双核钌催化剂,C3指实施例3中制备得到的双核钌催化剂。所用单体5-降冰烯-2-基乙酸酯及5-降冰片烯-2-羧酸甲酯的摩尔量均为2mmol,聚合反应在室温下进行。
聚合物的分子量通过GPC测得,室温下聚苯乙烯为标准样品的相对分子量。
图6(a)是本发明实施例2、3即上表数据中5-降冰烯-2-基乙酸酯开环易位聚合的分子量、分子量分布与催化剂的关系图,可看出双核钌催化剂C2所得聚合物的分子量更大,分子量分布控制也更好;(b)是本发明实施例2、3中即上表数据中5-降冰片烯-2-羧酸甲酯开环易位聚合的分子量、分子量分布与催化剂的关系图,可看出双核钌催化剂C3所得聚合物的分子量更大,分子量分布控制更好。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (10)

1.一种双核钌催化剂,其特征在于,结构通式如下:
其中,Linker的结构式为
中的一种。
2.一种根据权利要求1所述的双核钌催化剂的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)双核钌催化剂前体的制备:在氮气流保护下,称取试剂A于耐压管中,加入试剂E,再加入2,4,6-三甲基苯基咪唑,将Ace耐压管置于油浴锅中,搅拌12h后,析出固体,真空除去溶剂后将固体溶于二氯甲烷,滴入乙醚中白色粉末析出,超声均匀后静置,重复用二氯甲烷、乙醚洗涤三次,冰箱静置,真空除去溶剂,得到白色粉末产物a;其中,所述试剂A是1,5-二溴戊烷、1,10-二溴癸烷、1,4-二(溴甲基)苯中的一种,所述试剂E为甲苯或二氯甲烷;
(2)双核钌催化剂的制备:称取步骤(1)产物放入到螺口瓶中,加入甲苯,缓慢加入试剂B,室温搅拌3h后,得到浅浊黄色反应液,再加入试剂C继续室温搅拌24h,将反应液过滤后真空浓缩,滴加到冷己烷中沉淀得到棕红色粉末,得到所述双核钌催化剂;其中,所述试剂B是叔丁醇钾;所述的试剂C为Grubbs 1代催化剂。
3.根据权利要求2所述的双核钌催化剂的制备方法,其特征在于:所述步骤(1)中,试剂A与2,4,6-三甲基苯基咪唑之间的摩尔量比为1:2,甲苯5mL,二氯甲烷5mL。
4.根据权利要求2所述的双核钌催化剂的制备方法,其特征在于:所述步骤(2)中,步骤(1)产物与试剂B、试剂C之间的摩尔比为1:2:2。
5.根据权利要求2所述的双核钌催化剂的制备方法,其特征在于:所述步骤(1)中,当试剂E采用甲苯时,油浴锅温度为110℃,在110℃下搅拌12h,当试剂E采用二氯甲烷时,油浴锅温度为50℃,在50℃下搅拌12h。
6.一种根据权利要求1所述的双核钌催化剂的用途,其特征在于:所述双核钌催化剂应用于催化环烯烃开环易位聚合。
7.根据权利要求6所述的双核钌催化剂的用途,其特征在于:所述双核钌催化剂应用于环烯烃开环易位聚合后得到线性、环状聚合物。
8.根据权利要求6所述的双核钌催化剂的用途,其特征在于:所述双核钌催化剂应用于催化环烯烃开环易位聚合的过程如下,在无水无氧氮气保护下,在螺口瓶中依次加入单体D和溶剂甲苯,再加入双核钌催化剂,室温搅拌,45-60min后,加入乙烯基乙醚终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到开环易位聚合产物;其中,单体D为5-降冰烯-2-基乙酸酯、5-降冰片烯-2-羧酸甲酯、降冰片烯、环戊烯、环辛烯、2,3-二氢呋喃中的任一种。
9.根据权利要求8所述的双核钌催化剂的用途,其特征在于:当所加入的单体D为5-降冰烯-2-基乙酸酯时,所述的双核钌催化剂与单体D的摩尔比为1:2000。
10.根据权利要求8所述的双核钌催化剂的用途,其特征在于:当所加入的单体D为5-降冰片烯-2-羧酸甲酯时,所述的双核钌催化剂与单体D的摩尔比为1:1000。
CN202210367203.9A 2022-04-08 2022-04-08 一种双核钌催化剂及其制备方法和用途 Active CN114773392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210367203.9A CN114773392B (zh) 2022-04-08 2022-04-08 一种双核钌催化剂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210367203.9A CN114773392B (zh) 2022-04-08 2022-04-08 一种双核钌催化剂及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN114773392A CN114773392A (zh) 2022-07-22
CN114773392B true CN114773392B (zh) 2023-09-26

Family

ID=82426363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210367203.9A Active CN114773392B (zh) 2022-04-08 2022-04-08 一种双核钌催化剂及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN114773392B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284152A (zh) * 2023-02-14 2023-06-23 合肥工业大学 一种双氮杂环卡宾-金属绿色催化剂及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651598A (zh) * 2019-01-31 2019-04-19 上海交通大学 一种钌金属复合催化剂及其应用
CN109692709A (zh) * 2018-12-10 2019-04-30 天津科技大学 一种烯烃复分解反应的催化剂及其制备和应用方法
CN114195986A (zh) * 2022-01-14 2022-03-18 南京先进生物材料与过程装备研究院有限公司 一种金属催化开环易位聚合制备聚烯烃的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109692709A (zh) * 2018-12-10 2019-04-30 天津科技大学 一种烯烃复分解反应的催化剂及其制备和应用方法
CN109651598A (zh) * 2019-01-31 2019-04-19 上海交通大学 一种钌金属复合催化剂及其应用
CN114195986A (zh) * 2022-01-14 2022-03-18 南京先进生物材料与过程装备研究院有限公司 一种金属催化开环易位聚合制备聚烯烃的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Homodinuclear Ruthenium Catalysts for Dimer Ring-Closing Metathesis;Eyal Tzur et al.;《Angew. Chem. Int. Ed.》;Scheme 3、5 *
Monomeric and dendritic second generation Grubbs- and Hoveyda–Grubbs-type catalysts for olefin metathesis;N.J.M. Pijnenburg et al.;《Inorganica Chimica Acta》;Fig 3 *
Self-Supported Oligomeric Grubbs/ Hoveyda-Type Ru−Carbene Complexes for Ring-Closing Metathesis;Shu-Wei Chen et al.;《Organic Letters》;Scheme 1、Table 1 *
Supramolecular Alternating Block Copolymers via Metal Coordination;Si Kyung Yang et al.;《Chemistry-A European Journal》;Scheme 1、3 *
Synthesis of ABA Triblock Copolymers of Norbornenes and 7-Oxanorbornenes via Living Ring-Opening Metathesis Polymerization Using Well-Defined, Bimetallic Ruthenium Catalysts;Marcus Weck et al.;《Macromolecules》;Scheme1-2 *

Also Published As

Publication number Publication date
CN114773392A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Monsaert et al. Latent olefin metathesis catalysts
US6806325B2 (en) High metathesis activity ruthenium and osmium metal carbene complexes
van Koten et al. Periphery-functionalized organometallic dendrimers for homogeneous catalysis
Courchay et al. Metathesis activity and stability of new generation ruthenium polymerization catalysts
Rosen et al. Olefin metathesis catalysts containing acyclic diaminocarbenes
CN114773392B (zh) 一种双核钌催化剂及其制备方法和用途
Gerber et al. Synthesis of Methylidene Complexes that Contain a 2, 6-Dimesitylphenylimido Ligand and Ethenolysis of 2, 3-Dicarbomethoxynorbornadiene
Jamil et al. Simple NMR predictors of catalytic hydrogenation activity for [Rh (cod) Cl (NHC)] complexes featuring fluorinated NHC ligands
CA2302652A1 (en) Ruthenium or osmium catalysts for olefin metathesis reactions
Tanaka et al. Impact of Methylaluminoxane Oxidation on Ethylene Polymerization Using Ni Catalysts
Matsuo et al. Synthesis and structural characterization of 2, 5-bis (N-aryliminomethyl) pyrrolyl complexes of aluminum
Yan et al. Synthesis of tungsten oxo alkylidene biphenolate complexes and ring-opening metathesis polymerization of norbornenes and norbornadienes
Wache et al. Single component ruthenium (IV) catalysts for the ring-opening polymerization of norbornene
Lee et al. Synthesis of Novel Palladium Complexes Containing β‐Diketonate and NHC Ligands and their Catalytic Ability for Addition Polymerizations of the Functional Norbornenes
Gómez et al. Germanium-containing polymers via acyclic diene metathesis
Okada et al. Synthesis of anilinonaphthoquinone-based nickel complexes and their application for olefin polymerization
Yao et al. Synthesis, structure and catalytic polymerization activity of half‐sandwich cyclometallated iridium complexes
Tzur et al. Latent ruthenium catalysts for ring opening metathesis polymerization (ROMP)
Blosch et al. Progress toward new catalysts for acyclic diene metathesis (ADMET) polymerization reactions
Gajda et al. Towards (C, C)‐cyclometalated N‐(9‐alkylfluorenyl) NHC Ruthenium Complexes for Z‐selective Olefin Metathesis
CN111748081B (zh) 一种双核钒催化剂及其制备方法和应用
CN107200803B (zh) 一种用于环烯烃开环聚合的催化体系以及环烯烃开环聚合的方法
Nayab et al. Synthesis and characterization of novel tungsten complexes and their activity in the ROMP of cyclic olefins
Senthil et al. A Vanadium Methylidene
RU2768465C1 (ru) Способ получения аддитивных полимеров на основе норборнена (варианты)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant