CN114768797A - Pd基双金属乙炔双羰基化催化剂的制备方法 - Google Patents

Pd基双金属乙炔双羰基化催化剂的制备方法 Download PDF

Info

Publication number
CN114768797A
CN114768797A CN202210143998.5A CN202210143998A CN114768797A CN 114768797 A CN114768797 A CN 114768797A CN 202210143998 A CN202210143998 A CN 202210143998A CN 114768797 A CN114768797 A CN 114768797A
Authority
CN
China
Prior art keywords
catalyst
acetylene
reaction
dicarbonylation
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210143998.5A
Other languages
English (en)
Inventor
王环江
刘总成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Minzu University
Original Assignee
Guizhou Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Minzu University filed Critical Guizhou Minzu University
Priority to CN202210143998.5A priority Critical patent/CN114768797A/zh
Publication of CN114768797A publication Critical patent/CN114768797A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/122Halides of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Pd基双金属乙炔双羰基化催化剂,还提供了Pd基双金属乙炔双羰基化催化剂的制备方法,以及用制得Pd基双金属纳米催化剂催化乙炔双羰化反应的方法。本发明通过采用一步还原法制备了一系列钯基双金属纳米催化剂,获得一种优秀的新型乙炔双羰化催化剂,其中,第二类金属元素(Co、Cu、Fe)的引入能够调节Pd基催化剂催化活性,发现以甲醇为溶剂时Fe/Pd纳米催化剂活性最高,而以Fe/Pd纳米颗粒为主催化剂,KI(80mg)为助催化剂,在甲醇溶剂中,一氧化碳压力为1.8MPa,总压为4.0MPa,50℃下反应8h,实现了提高丁烯二酸二甲酯的总收率,使其达到了98.39%,而且提高了Pd基催化剂的选择性,使产物顺反异构体比提高到3.23:1。

Description

Pd基双金属乙炔双羰基化催化剂的制备方法
技术领域
本发明涉及乙炔双羰基化催化剂的制备技术领域,具体为一种Pd基双金 属乙炔双羰基化催化剂的制备方法。
背景技术
1836年爱尔兰的皇家学院化学教授Edmund Davy首次发现乙炔,随后, 法国的Marcellin Berthelot、美国的Julius Nieuwl and、德国的Walter Reppe等化学家对其进行了广泛的研究,他们的研究对乙炔作为生产商品化学品的 重要原料工业化做出重要贡献,乙炔中的三键的存在,使乙炔具有非常丰富 的化学性质,被称为“有机合成之母”是化学产品和碳材料生产中最重要的 原料之一。
羰基化反应因其具有优良的原子经济性,自1938年由德国化学家Roelen首次报道以来,有关该反应的研究成果层出不穷,经过几十年发展,由最初 的烃类化合物拓展到卤代烷、胺和硝基化合物等,炔烃作为廉价易得的原料, 在工业生产中受到了极大的关注,炔烃中引入羰基(C=O),是生产高附加值 含羰基化合物的重要途径之一,其中CO作为羰基源在过渡金属催化作用下实 现的羰基化反应是工业生产中羰基合成最重要的方法,乙炔单羰化产物丙烯 酸(酯)早已实现工业化生产,丁烯二酸二酯作为精细化学品,传统的生产方式原料主要来源于石油资源。
随着石油和天然气资源的日益枯竭和我国富煤少油的特殊国情,以煤和 电生产高储能电石再将其转化为基本化工原料乙炔,再将其转化为基本化工 原料乙炔,在我国是一条弥补石油化工原料不足的有效途径,但是传统乙炔 羰化反应多为均相反应体系,虽然均相体系具有活性高、选择性好、反应机 理清晰明了等优点,但乙炔羰化反应催化剂多为贵金属催化剂,而均相体系 存在催化剂无法循环利用且易造成环境污染等固有缺点,不符合现代绿色化 学的主题,因此,实现均相催化多相化,发展乙炔双羰化催化剂是未来极具潜力的研究和发展方向,但是,目前相关乙炔双羰化反应多相化的研究报道 相对较少,而乙炔双羰化产物又具有较高的经济价值,基于当前以电石乙炔、 一氧化碳为原料,合成不饱和羧酸酯具有良好的发展前景和现实意义,因此, 我们提供一种Pd基双金属乙炔双羰基化催化剂的制备方法。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种Pd基双金属乙炔双羰基化催化 剂的制备方法,该Pd基双金属乙炔双羰基化催化剂的制备方法通过引入第二 类金属元素(Co、Cu、Fe),能够调节Pd基催化剂催化活性,提高丁烯二酸 二甲酯的总收率,而且提高了Pd基催化剂的选择性,使产物顺反异构体比提 高。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:
Pd基双金属乙炔双羰基化催化剂,所述催化剂通过将PVP、去离子水、 PdCl2、金属盐和NaBH4混合均匀并在氮气的保护下反应得到。
其中,所述金属盐中的金属元素为Zn、Al、Ni、Sn、Co、Cu及Fe中的 一种,Pd基双金属乙炔双羰基化催化剂用于催化乙炔双羰化反应。
同时,本申请还提供了Pd基双金属乙炔双羰基化催化剂的制备方法,包 括将PVP、去离子水、PdCl2、金属盐和NaBH4混合均匀并在氮气的保护下反应 的过程,其中,所述金属盐中的金属元素为Zn、Al、Ni、Sn、Co、Cu及Fe 中的一种。
在反应过程中,将NaBH4溶液逐滴添加到烧瓶中,同时超声处理10分钟, 获得Pd基双金属纳米催化剂的黑色悬浮液,经乙醇与去离子水离心洗涤后冷 冻干燥获得目标产物。
此外,本申请还提供了一种用上述方法制得的Pd基双金属纳米催化剂催 化乙炔双羰化反应的方法,包括用常规催化剂催化乙炔双羰化反应的过程, 其中,催化剂为Pd基双金属纳米催化剂。
优选的,在所述反应过程中加入的溶剂为二氯甲烷、四氢呋喃、三氯甲 烷、乙腈、丙酮、二氧六环及甲醇中的一种。
在具体实施方案中,在所述反应过程中加入助催化剂。
优选的,所述助催化剂为NaI、CuBr、LiI、KI、LiBr及KBr中的一种。
(三)有益效果
与现有技术相比,本发明提供了一种Pd基双金属乙炔双羰基化催化剂的 制备方法,具备以下有益效果:
该Pd基双金属乙炔双羰基化催化剂的制备方法,通过采用一步还原法制 备了一系列钯基双金属纳米催化剂,获得一种优秀的新型乙炔双羰化催化剂, 其中,第二类金属元素(Co、Cu、Fe)的引入能够调节Pd基催化剂催化活性, 发现以甲醇为溶剂时Fe/Pd纳米催化剂活性最高,而以Fe/Pd纳米颗粒为主 催化剂,KI(80mg)为助催化剂,在甲醇溶剂中,一氧化碳压力为1.8MPa, 总压为4.0MPa,50℃下反应8h,实现了提高丁烯二酸二甲酯的总收率,使其 达到了98.39%,而且提高了Pd基催化剂的选择性,使产物顺反异构体比提高 到3.23:1,并且采用TEM、XRD、XPS等现代表征技术对催化剂结构组成进行 表征,通过FTIR-CO研究了可能的反应机理,发现乙炔双羰化反应,产物分 布不仅受催化剂组成影响,而且溶剂对反应活性和产物分布也有十分重要的 影响。
附图说明
图1为本发明中Fe/Pd双金属纳米催化剂和Pd纳米催化剂进行表征分析 后的透射电子显微镜(TEM)图;
图2为本发明中Fe/Pd双金属纳米催化剂和Pd纳米催化剂进行表征分析 后的X射线衍射(XRD)图;
图3为本发明中Fe/Pd双金属纳米催化剂和Pd纳米催化剂进行表征分析 后的X射线光电子能谱(XPS)图;
图4为本发明中Fe/Pd双金属纳米催化剂和Pd纳米催化剂进行表征分析 后的程序升温还原(H2-TPR)图;
图5为本发明以Fe/Pd双金属纳米催化剂为催化剂进行催化乙炔双羰化 反应中不同溶剂对反应的影响对比结果图;
图6为本发明中采用不同助催化剂进行催化乙炔双羰化反应的影响对比 结果图;
图7为本发明在其他反应条件不变的情况下,不同的KI用量催化对乙炔 双羰化反应的影响对比结果;
图8为本发明在单因素实验得到的最佳条件下进行催化剂使用寿命实验 的结果图。
具体实施方式
本发明实施例中所用的试剂如下表:
主要化学试剂
Figure BDA0003507923690000041
Figure BDA0003507923690000051
Figure BDA0003507923690000061
Figure BDA0003507923690000071
本发明实施例中所用的气体如下表:
气体
Figure BDA0003507923690000072
本发明实施例中所用的仪器如下表:
实验仪器
Figure BDA0003507923690000073
Figure BDA0003507923690000081
本发明实施例中的样品分析包括定性分析和定量分析,具体如下:
定性分析:
(1)气相色谱质谱联用仪(GC-MS):
采用Agilent 7890A-5975C型气相色谱质谱联用仪对反应后的液体样品 进行定性分析,确定顺反丁烯二酸二甲酯及其副产物的构成;
气相色谱条件:
毛细管色谱柱:Agilent 19091F-112(25m×320μm×0.5μm),进样口 温度230℃,载气为氦气,分流进样,分流比10:1,柱流量2.0mL/min;
柱温:采用程序升温,起始温度50℃,以10℃/min升至160℃,保持2min, 以50℃/min升至230℃,保持5min;
质谱条件:离子源为EI源,电子能量70Ev,离子源温度为230℃,四级 杆温度150℃;
(2)核磁共振谱(NMR);
采用瑞士布鲁克公司AVANCE NEO600型核磁共振谱光谱仪;
定量分析:
采用Agilent 6890N型气相色谱仪对反应后的液体样品进行定量分析, 确定顺反丁烯二酸二甲酯及其副产物的含量;
气相色谱条件:载气为氮气,FID检测器,色谱柱为J&W1701型 (30.0m×250μm×0.25μm)毛细管柱,采用程序升温,初始温度为50℃,保 持2min,以10℃/min升温到200℃,分流进样,分流比:20:1,进样量:1μL, 进样口温度为280℃,检测器温度为280℃;
定量方法:内标法,苯甲酸甲酯为内标。
下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全 部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
煤经电石制乙炔工艺已实现产业化多年,相关技术成熟,而研究应用的 乙炔羰化催化体系多为均相体系,催化剂钯及其盐在强无机酸(浓盐酸或浓 硫酸)的作用下实现的,其反应复杂、副产物多,价格昂贵,实用性不高, 负载型催化剂是近年来的研究热点,但Pd基催化剂对载体结构极为敏感,为 了提高钯催化剂的利用效率和催化剂稳定性,与第二类金属元素形成合金, 是一种行而有效的方法。
实施例A1-A7:催化剂的制备。
实施例A1:
称取0.100g的PVP在烧瓶中,加5mL去离子水混合均匀,加入PdCl2和 金属盐,金属盐中金属元素为Zn,再将0.050gNaBH4溶于5mL去离子水中,然 后在氮气的保护下,将NaBH4溶液逐滴添加到烧瓶中,同时超声处理10分钟, 获得M/Pd纳米催化剂的黑色悬浮液,经乙醇与去离子水离心洗涤后冷冻干燥 获得目标产物。
实施例A2:其他条件同实施例A1,金属盐中金属元素为Al。
实施例A3:其他条件同实施例A1,金属盐中金属元素为Ni。
实施例A4:其他条件同实施例A1,金属盐中金属元素为Sn。
实施例A5:其他条件同实施例A1,金属盐中金属元素为Co。
实施例A6:其他条件同实施例A1,金属盐中金属元素为Cu。
实施例A7:其他条件同实施例A1,金属盐中金属元素为Fe。
将实施例A7制得的Fe/Pd双金属纳米催化剂和Pd纳米催化剂进行催化 剂的表征分析,其中,表征分析包括:透射电子显微镜(TEM)、X射线光电子 能谱(XPS)、X射线衍射(XRD)以及程序升温还原(H2-TPR)。
透射电子显微镜(TEM):采用美国FEI公司Tecnai G2 F20型透射电子 显微镜对催化剂形貌进行分析,制样:研磨好的样品粉末用乙醇超声,均匀 分散后滴在双联铜网上,干燥后进行透射电镜观察。
请参阅图1,Fe/Pd、Pd金属催化剂的平均粒径分别为(3.7±0.85)、 (5.7±0.78)nm,表明用PVP做分散剂、NaBH4做还原剂可以制得粒径较小的 Fe/Pd纳米催化剂。
X射线衍射(XRD):采用帕纳科X’Pert PRO型X射线衍射仪对催化剂 进行物相结构分析,使用Cu Kα为射线源λ=0.15406nm,电压45KV,电流 40mA,扫描速度5°/min,扫描范围2θ=10-80°。
请参阅图2,Fe/Pd、Pd纳米催化剂的X射线衍射图谱如图2示,Fe/Pd 样品的XRD图谱在40.1°、46.6°、68.1°出现3个衍射峰,分别对应Pd(111)、 Pd(200)、Pd(220)面,Pd样品的XRD图谱处以上3个峰外,还在25.3°、 33.3°出现较弱的衍射峰,对应PdO(111)、PdO(200)面,这可能是由于铁 的掺杂有利于阻止钯的氧化。
X射线光电子能谱(XPS):采用美国Thermo Scientific公司K-Alpha型 X射线光电子能谱仪对催化剂样品进行分析,X射线激发源:Al Kα射线 (1486.6eV),合能校正:以C1s=284.80eV结合能为能量标准,采用Avantage 分峰软件处理数据。
请参阅图3,用X射线光电子能谱对催化剂的表面结构及价态进行表征, Fe/Pd纳米催化剂的XPS图3表明,表面有C、N、O、Pd、Fe等元素,结合能 为334.85eV、340.00eV分别归属于Pd(0)3d5/2、Pd(0)3d3/2,Pd纳米催 化剂中Pd(0)3d5/2、Pd(0)3d3/2的结合能分别为335.05eV、340.31eV, Fe/Pd纳米催化剂的Pd 3d峰相较Pd纳米催化剂的Pd 3d发生轻微负移,结 合能降低,Pd的d-band中心转向较低能量,根据合金表面配体效应,Pd-d 态的能量随着邻域Fe引入而减少归因于Fe原子引起的局部压缩,Pd 3d发生 轻微负移,d-band中心的上移,有利于提高金属催化羰化乙炔活性,结合能 为710.73eV、724.17eV分别归属于Fe(III)2p3/2、Fe(III)2p1/2,结合 能为714.61eV、727.91eV分别归属于Fe(II)-N的Fe 2p3/2、Fe 2p1/2的峰, 结合能为719.50eV、732.30eV分别归属于Fe(III)2p3/2、2p1/2的卫星 峰,说明存在铁的氧化相,Fe/Pd纳米催化剂中Pd主要以Pd(0)形式存在, Fe主要以Fe(III)形式存在。
程序升温还原(H2-TPR):使用热导检测器(TCD)的Micromeritics ChemiSorb2920记录样品的程序升温还原(TPR)曲线,将样品(50mg)放入 石英U型管中,100℃恒温通氩气2h,吹扫样品,然后,在还原气H2/Ar(体 积比为1:9,总流量为50mL/min)气流中,以5℃/min的升温速率,从0℃升 温至700℃,研究催化剂还原温度和可能的组成。
请参阅图4,如催化剂H2-TPR谱图所示,Pd纳米颗粒耗氢峰出现在72℃ 为PdO还原峰,而对于Fe/Pd纳米颗粒第一个耗氢峰出现在66℃处,说明Fe 元素的引入使得PdO更容易还原,Fe/Pd纳米颗粒第二个耗氢峰出现在305℃ 为Fe(III)的还原峰,相比文献报道其还原温度也所降低,说明Pd与Fe间 电子发生了相互便宜,使其更容易被还原,基于XPS、XRD和H2-TPR分析我 们可以肯定是,铁的元素的引入使Pd更不容易被氧化,多以单质形式存在。
实施例B1-B7:以甲醇为溶剂,用M/Pd双金属纳米催化剂催化乙炔双羰化 反应,其中,M=Zn、Al、Ni、Sn、Co、Cu、Fe。
实施例B1:
将制备好的Zn/Pd双金属纳米催化剂称取10mg,称取一定量的助催化剂, 量取一定量的溶剂于50mL高压反应釜中,关闭反应釜并检漏,排气,先通 11mmol的乙炔,再通一定量的一氧化碳,最后通入空气,总压4.0Mpa,设置 所需温度和时间,开始反应,反应结束后等反应釜的温度降至室温,泄压开 釜取液,过滤。
实施例B2:其他条件同实施例B1,反应的催化剂为Al/Pd双金属纳米催 化剂。
实施例B3:其他条件同实施例B1,反应的催化剂为Ni/Pd双金属纳米催 化剂。
实施例B4:其他条件同实施例B1,反应的催化剂为Sn/Pd双金属纳米催 化剂。
实施例B5:其他条件同实施例B1,反应的催化剂为Co/Pd双金属纳米催 化剂。
实施例B6:其他条件同实施例B1,反应的催化剂为Cu/Pd双金属纳米催 化剂。
实施例B7:其他条件同实施例B1,反应的催化剂为Fe/Pd双金属纳米催 化剂。
对比例B1:其他条件同实施例B1,反应的催化剂为PdCl2纳米。
对比例B2:其他条件同实施例B1,反应的催化剂为Pd纳米。
将实施例B1-B7及对比例B1-B2进行分析对比,考察甲醇为溶剂时PdCl2、 Pd纳米、M/Pd双金属纳米(M=Zn、Al、Ni、Sn、Co、Cu、Fe)催化剂对乙炔 双羰化反应的影响,结果如下表所示:
不同催化剂催化乙炔双羰化合成丁烯二酸甲酯的影响
Figure BDA0003507923690000131
其中,反应条件:10mg催化剂,20mL甲醇,0.677mmol碘化钾,乙炔:11mmol, CO:1.8MPa,总压4MPa,70℃,5h。
虽然PdCl2的催化效果不错,但作为均相催化剂,难以与产物分离,不利 于循环利用,Fe/Pd双金属纳米催化剂的催化效果最好,且为多相催化剂,主 要产物为丁烯二酸二甲酯,产率为83.94%,其中顺反异构比为2.78:1。
实施例C1-C7:以Fe/Pd双金属纳米催化剂为催化剂进行催化乙炔双羰化 反应,反应在不同溶剂中进行。
实施例C1:
将制备好的Fe/Pd双金属纳米催化剂称取10mg,称取一定量的助催化剂, 量取一定量的二氯甲烷溶剂于50mL高压反应釜中,关闭反应釜并检漏,排气, 先通11mmol的乙炔,再通一定量的一氧化碳,最后通入空气,总压4.0Mpa, 设置所需温度和时间,开始反应,反应结束后等反应釜的温度降至室温,泄 压开釜取液,过滤。
实施例C2:其他条件同实施例C1,反应溶剂为四氢呋喃。
实施例C3:其他条件同实施例C1,反应溶剂为三氯甲烷。
实施例C4:其他条件同实施例C1,反应溶剂为乙腈。
实施例C5:其他条件同实施例C1,反应溶剂为丙酮。
实施例C6:其他条件同实施例C1,反应溶剂为二氧六环。
实施例C7:其他条件同实施例C1,反应溶剂为甲醇。
将实施例C1-C7进行分析对比,考察不同溶剂对反应的影响,结果如图5 所示。
图中,反应条件:10mgPd/Fe催化剂,3mL甲醇,20mL溶剂,0.677mmol 碘化钾,乙炔:11mmol,CO:1.8MPa,总压4MPa,70℃,5h。
如图5所示,二氯甲烷、四氢呋喃、三氯甲烷、甲醇的总产率较高分别 为72.36%、78.05%、79.53%、83.94%,乙腈、丙酮、二氧六环较低分别为50.94%、 47.21%、31.41%,对比实验结果发现,溶剂不但影响反应的总产率而且改变 了产物顺反比,说明溶剂改变了反应进程和机理,多相反应的实质为界面反 应,而在不同溶剂中,溶剂分子很有可能吸附强度或者吸附方式不同,改变 了界面反应的机理与过程。
实施例D1—D7,以Fe/Pd双金属纳米催化剂作为反应催化剂,催化过程 中以甲醇为溶剂,在催化乙炔双羰化反应过程中加入不同助催化剂。
实施例D1:
将制备好的Fe/Pd双金属纳米催化剂称取10mg,称取一定量的NaI,量 取一定量的甲醇溶剂于50mL高压反应釜中,关闭反应釜并检漏,排气,先通 11mmol的乙炔,再通一定量的一氧化碳,最后通入空气,总压4.0Mpa,设置 所需温度和时间,开始反应,反应结束后等反应釜的温度降至室温,泄压开 釜取液,过滤。
实施例D2:其他条件同实施例D1,添加助催化剂为CuBr。
实施例D3:其他条件同实施例D1,添加助催化剂为LiI。
实施例D4:其他条件同实施例D1,添加助催化剂为KI。
实施例D5:其他条件同实施例D1,添加助催化剂为LiBr。
实施例D6:其他条件同实施例D1,添加助催化剂为KBr。
对比例D1:其他条件同实施例D1,不添加助催化剂。
将实施例D1-D6及对比例D1进行分析对比,考察不同助催化剂对反应的 影响,结果如图6所示。
图中,反应条件:10mgPd/Fe催化剂,20mL甲醇,0.677mmol助催化剂, 乙炔:11mmol,CO:1.8MPa,总压4MPa,70℃,5h。
在不加助剂的条件下反应几乎不进行,结果如图6所示,可以看出NaI、 CuBr、LiI、KI提升了Fe/Pd催化剂的催化活性,其中KI是最高效的助剂, KI容易氧化成I2,而I2使Pd(0)氧化成Pd(II),Pd(II)活性物种催化乙 炔、一氧化碳、甲醇反应生成顺、反丁烯二酸二甲酯后,自身被还原成Pd(0), 实现催化循环,而且I-做为弱碱配体有可能参与反应改变反应活性和机理, 相比空气氧化I-到I2,Cu+到Cu2+较难实现,因此影响循环效率。
为进一步的考察整个反应过程中其他因素对乙炔双羰化反应影响程度及 得出最佳实验条件,本发明还进行了选择了三个影响因素:反应温度、一氧 化碳压力、反应时间,通过这三个影响因素设计了一个三因素四水平的正交 实验,见下表:
三因素四水平正交实验表
Figure BDA0003507923690000151
Figure BDA0003507923690000161
正交实验结果见下表:
正交实验结果表
Figure BDA0003507923690000162
Figure BDA0003507923690000171
其中,R值代表K1,K2,K3,K4的极差,它的大小反映了各个影响因素 对乙炔双羰化反应的影响程度,从表中可以看出RB>RC>RA,即一氧化碳压力对 反应速率的影响最为显著,其次是反应时间,反应温度的影响最小,根据正 交实验结果表中K值的比较,得出反应的最佳条件为A1B3C4,即反应温度为 50℃,一氧化碳压力为1.8MPa,反应时间为8h,我们在最佳反应条件下进行 了验证实验,得到的总产率为96.34%,证明了该正交实验的可行性。
此外,我们还研究了在其他反应条件不变的情况下,Fe/Pd纳米催化剂 10mg,甲醇为溶剂,一氧化碳压力1.8MPa,总压为4.0MPa,50℃下反应8h, 选择添加KI作为助催化剂,KI用量的不同对反应的影响,结果如图7所示。
图中,反应条件:10mgPd/Fe催化剂,20mL甲醇,乙炔:11mmol,CO:1.8MPa, 总压4MPa,50℃,8h。
从图7中可以看出,未添加KI时,没有目标产物的生成,在其它条件最 优时,考察KI用量的实验结果如图7所示,未添加KI时,没有产物丁烯二 酸二甲酯,产率随着KI用量的增加而增加,当KI用量为80mg时,产率达到 最大98.39%,进一步增加KI用量反而使产率降低,可能是因为在空气氧化 I-到I2,当助剂量过大时I2与I-生产I3-,造成助剂失活导致反应产率下降, 而随着KI用量的增加,顺反异构比减小,我们推测是I-浓度的增加有利于配 位乙炔的反式插入。
在进一步的,请参阅图8,为评价催化剂的使用寿命,反应后催化剂经分 离后,使用乙酸乙酯、无水乙醇过滤洗涤,在30℃下真空干燥,在单因素实 验得到的最佳条件:催化剂10mg,KI助催化剂80mg,甲醇为溶剂,一氧化碳 压力1.8MPa,总压为4.0MPa,50℃下反应8h,以评价催化剂的循环使用寿命, 实验如图8所示,结果表明催化剂循环使用第三次,产物收率仍可达到81.14% 以上,说明Fe/Pd纳米催化剂具有较好的使用寿命和循环催化性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而 言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行 多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限 定。

Claims (10)

1.Pd基双金属乙炔双羰基化催化剂,其特征在于,所述催化剂通过将PVP、去离子水、PdCl2、金属盐和NaBH4混合均匀并在氮气的保护下反应得到。
2.根据权利要求1所述的催化剂,其特征在于,所述金属盐中的金属元素为Zn、Al、Ni、Sn、Co、Cu及Fe中的一种。
3.权利要求1或2中所述的Pd基双金属乙炔双羰基化催化剂在催化乙炔双羰化反应中的用途。
4.Pd基双金属乙炔双羰基化催化剂的制备方法,其特征在于,包括将PVP、去离子水、PdCl2、金属盐和NaBH4混合均匀并在氮气的保护下反应的过程。
5.根据权利要求4所述的方法,其特征在于,所述金属盐中的金属元素为Zn、Al、Ni、Sn、Co、Cu及Fe中的一种。
6.根据权利要求5所述的方法,其特征在于,反应过程中,将NaBH4溶液逐滴添加到烧瓶中,同时超声处理10分钟,获得Pd基双金属纳米催化剂的黑色悬浮液,经乙醇与去离子水离心洗涤后冷冻干燥获得目标产物。
7.权利要求4-6中任一项方法制得的Pd基双金属纳米催化剂催化乙炔双羰化反应的方法,包括用催化剂催化乙炔双羰化反应的过程,其特征在于,催化剂为权利要求4-6中任一项方法制得的Pd基双金属纳米催化剂。
8.根据权利要求7所述的方法,其特征在于,所述反应过程中加入的溶剂为二氯甲烷、四氢呋喃、三氯甲烷、乙腈、丙酮、二氧六环及甲醇中的一种。
9.根据权利要求7所述的方法,其特征在于,在所述反应过程中加入助催化剂。
10.根据权利要求9所述的方法,其特征在于,所述助催化剂为NaI、CuBr、LiI、KI、LiBr及KBr中的一种。
CN202210143998.5A 2022-02-17 2022-02-17 Pd基双金属乙炔双羰基化催化剂的制备方法 Withdrawn CN114768797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210143998.5A CN114768797A (zh) 2022-02-17 2022-02-17 Pd基双金属乙炔双羰基化催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210143998.5A CN114768797A (zh) 2022-02-17 2022-02-17 Pd基双金属乙炔双羰基化催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN114768797A true CN114768797A (zh) 2022-07-22

Family

ID=82423357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210143998.5A Withdrawn CN114768797A (zh) 2022-02-17 2022-02-17 Pd基双金属乙炔双羰基化催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114768797A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160332953A1 (en) * 2014-01-07 2016-11-17 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences A process for vapor-phase methanol carbonylation to methyl formate, a catalyst used in the process and a method for preparing the catalyst
US20190247918A1 (en) * 2016-10-26 2019-08-15 Council Of Scientific And Industrial Research An improved process for the preparation of bimetallic core-shell nanoparticles and their catalytic applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160332953A1 (en) * 2014-01-07 2016-11-17 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences A process for vapor-phase methanol carbonylation to methyl formate, a catalyst used in the process and a method for preparing the catalyst
US20190247918A1 (en) * 2016-10-26 2019-08-15 Council Of Scientific And Industrial Research An improved process for the preparation of bimetallic core-shell nanoparticles and their catalytic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵晶璨等: "双金属Co /Pd 纳米催化剂催化乙炔双羰化反应的性能研究", 《化学试剂》 *

Similar Documents

Publication Publication Date Title
Bi et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation
Ren et al. Ultrathin graphene encapsulated Cu nanoparticles: A highly stable and efficient catalyst for photocatalytic H2 evolution and degradation of isopropanol
Liao et al. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural
CN111229218B (zh) 一种单原子钯复合催化剂及其制备方法和用途
Liu et al. gC 3 N 4 supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid
CN114011413A (zh) 一种制备铁钴双金属单原子锚定氮杂石墨烯助催化剂的方法及其应用
Zhou et al. Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction
CN112973729B (zh) 一种富含氧空位/AuCu合金的TiO2纳米方片的制备方法及用途
Duan et al. Ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides
Ma et al. The preparation and photocatalytic activity of Ag-Pd/g-C3N4 for the coupling reaction between benzyl alcohol and aniline
CN103191744B (zh) 一种改性蛭石负载镍催化剂及其制备方法
CN113769789B (zh) 一种UiO-66缺陷位诱导单原子负载催化剂的制备方法及其应用
Shi et al. The homojunction formed by h-In2O3 (1 1 0) and c-In2O3 (4 4 0) promotes carbon dioxide hydrogenation to methanol on graphene oxide modified In2O3
Fan et al. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation
Liu et al. In–Co–Zn/C–N catalysts derived from ZIFs for selective hydrogenation of CO 2 into methanol
Wei et al. Strong metal–support interactions between palladium nanoclusters and hematite toward enhanced acetylene dicarbonylation at low temperature
CN114768797A (zh) Pd基双金属乙炔双羰基化催化剂的制备方法
CN116178244A (zh) 一种富勒烯吡咯烷衍生物及其制备方法与应用
CN113578348B (zh) 一种二维面内异质CuS/CuO及其制备方法和应用
CN114160137B (zh) 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及制备方法和使用方法
Hao et al. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst
CN115337926A (zh) 一种铑基催化剂及其制备方法和应用
CN110252309B (zh) 一种CuNi/SiO2复合型双金属负载型催化剂及其制备方法和用途
Ma et al. Stabilizing Cu 0–Cu+ sites by Pb-doping for highly efficient CO 2 electroreduction to C 2 products
CN113856735A (zh) 一种复合型光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220722