CN114767875A - 一种用于胃癌治疗的纳米颗粒及其制备方法与应用 - Google Patents

一种用于胃癌治疗的纳米颗粒及其制备方法与应用 Download PDF

Info

Publication number
CN114767875A
CN114767875A CN202210311920.XA CN202210311920A CN114767875A CN 114767875 A CN114767875 A CN 114767875A CN 202210311920 A CN202210311920 A CN 202210311920A CN 114767875 A CN114767875 A CN 114767875A
Authority
CN
China
Prior art keywords
nps
nanoparticles
gastric cancer
phosphoethanolamine
distearoyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210311920.XA
Other languages
English (en)
Inventor
张鑫
黄禾菁
王伟军
卫子然
杨德君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Changzheng Hospital
Original Assignee
Shanghai Changzheng Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Changzheng Hospital filed Critical Shanghai Changzheng Hospital
Priority to CN202210311920.XA priority Critical patent/CN114767875A/zh
Publication of CN114767875A publication Critical patent/CN114767875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • A61K47/6937Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种用于胃癌治疗的纳米颗粒及其制备方法与应用;叶酸修饰的纳米颗粒,组分包括:7‑乙基‑10‑羟基喜树碱、叶酸、聚乳酸‑乙醇酸以及1,2‑二硬脂酰‑sn‑甘油‑3‑磷酸乙醇胺‑聚乙二醇;本发明的纳米颗粒具有良好的生物相容性,由本发明的纳米颗粒制备的胃癌治疗药物具有更高的溶解性,叶酸的修饰使得纳米颗粒具有更好的靶向性,由于化疗药物被纳米颗粒封装,使得药物能在病灶处缓释,增加治疗效果。

Description

一种用于胃癌治疗的纳米颗粒及其制备方法与应用
技术领域
本发明涉及生物医药领域,尤其涉及一种用于胃癌治疗的纳米颗粒及其制备方法与应用。
背景技术
胃癌是一种起源于胃粘膜上皮的恶性肿瘤,已成为一个全球性的健康问题,全世界每年新诊断的病例超过一百万。然而,胃癌的治疗并没有取得很大进展。在临床实践中,化疗仍然是治疗胃癌患者最常用的策略之一。喜树碱化疗药物,如7-乙基-10-羟基喜树碱(SN-38),因其能通过抑制拓扑异构酶的活性来抑制DNA复制而引起人们的极大关注。然而,SN-38的高度非极性导致其在水溶液中的溶解度很差,而且内酯环在pH>6时水解成无活性的羧酸盐形式,限制了SN-38的临床应用。此外,影响剂量的副作用,如骨髓抑制、腹泻和吐血,进一步限制了SN-38的应用。
在过去的几十年里,为了解决化疗药物的局限性,人们探索了纳米载体,特别是聚合物纳米颗粒(NP)传输系统,它具有良好的水分散性和生物相容性,用于癌症治疗。聚合物纳米颗粒稳定且易于制造,它们具有可调控的特性,且它们具有生物相容性,易于在临床上转化;近几十年来,它们在临床前和临床上都有研究。
叶酸受体是一种糖基磷脂酰肌醇连接的蛋白质,已被证明在许多肿瘤中经常过度表达,如胃癌、卵巢癌和乳腺癌。许多研究表明,靶向配体修饰增加了纳米粒子的肿瘤积累,如含有叶酸(FA)的纳米粒子,它可以与叶酸受体结合。叶酸修饰的纳米粒子在肿瘤诊断和治疗中显示出高效的靶向能力。
核成像,如单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET),是一种无创的成像方式,可定量检测放射性核素发射的无限穿透性伽马射线,并能提供适合临床前研究和临床诊断的功能信息。例如,Sirianni等人报道了使用18F放射性标记的聚乳酸-乙醇酸(PLGA)纳米粒子进行脑部成像。此外,结合成像和治疗的方法,也就是所谓的治疗学,作为未来的个性化医疗战略,在近几十年来引起了巨大的关注。由于纳米粒子的许多优点,它们可以为诊断和治疗提供一个平台,实现治疗学的目的。
发明内容
本发明的目的是针对现有技术中的不足,提供一种用于胃癌治疗的纳米颗粒及其制备方法与应用。
为实现上述目的,本发明采取的技术方案是:
本发明的第一方面是提供一种用于胃癌治疗的纳米颗粒,组分包括:7-乙基-10-羟基喜树碱、叶酸、聚乳酸-乙醇酸以及1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇。
优选地,所述纳米颗粒的流体力学尺寸为90nm-110nm。
本发明的第二方面是提供一种上述纳米颗粒的制备方法,步骤包括:
将1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇、1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸、聚乳酸-乙醇酸以及7-乙基-10-羟基喜树碱溶于氯仿以及二甲基亚砜的二元溶剂中,以制得混合溶液;将所述混合溶液加入去离子水中,超速离心后,即得所述纳米颗粒。
优选地,步骤S1中,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇、所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸、所述聚乳酸-乙醇酸以及所述7-乙基-10-羟基喜树碱的质量比为(4-5):(1-2):4:1。
优选地,所述混合溶液中,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇的浓度为0.02mg/μL-0.03mg/μL,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸的浓度为0.004mg/μL-0.008mg/μL,所述聚乳酸-乙醇酸的浓度为0.015mg/μL-0.025mg/μL,所述7-乙基-10-羟基喜树碱的浓度为0.004mg/μL-0.006mg/μL。
优选地,步骤S2中,所述超速离心的转速为2500r/min-3500r/min。
优选地,步骤S2中,所述纳米颗粒在去离子水中的浓度为8mg/mL-12mg/mL。
本发明的第三方面是提供一种上述纳米颗粒在制备胃癌治疗药物中的应用。
本发明的第四方面是提供一种上述纳米颗粒在构建胃癌诊断模型中的应用。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
本发明的用于胃癌治疗的纳米颗粒具有良好的生物相容性,由本发明的纳米颗粒制备的胃癌治疗药物具有更高的溶解性,叶酸的修饰使得纳米颗粒具有更好的靶向性,由于化疗药物被纳米颗粒封装,使得药物能在病灶处缓释,增加治疗效果。
附图说明
图1为本发明检测实施例中纳米颗粒的特征结果图;
图2为本发明检测实施例中细胞摄取以及细胞毒性结果图;
图3为本发明检测实施例中药代动力学研究以及生物分布结果图;
图4为本发明检测实施例中125I的放射性信号的SPECT图像以及纳米颗粒的积累结果图;
图5为本发明检测实施例中对小鼠体内治疗的结果图;
图6为本发明检测实施例中H&E染色的图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
实施例1
本实施例提供一种用于胃癌治疗的纳米颗粒的制备方法,步骤包括:
将4.8mg 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇(DSPE-PEG)、1.2mg 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸(DSPE-PEG-FA)、4mg聚乳酸-乙醇酸(PLGA)以及1mg 7-乙基-10-羟基喜树碱(SN-38)溶于100μL氯仿以及100μL二甲基亚砜(DMSO)中,以制得混合溶液;将所述混合溶液加入去离子水中,以3000r/min的速度进行超速离心,除去DMSO,即得所述纳米颗粒(SN-38-FA-NPs);通过超滤控制溶剂的体积,使得所述纳米颗粒在去离子水中的浓度为10mg/mL。
实施例2
本实施例提供另一种用于胃癌治疗的纳米颗粒的制备方法,步骤包括:
将4mg DSPE-PEG、0.8mg DSPE-PEG-FA、3mg PLGA以及0.8mg SN-38溶于100μL氯仿以及100μL DMSO中,以制得混合溶液;将所述混合溶液加入去离子水中,以2500r/min的速度进行超速离心,除去DMSO,即得所述纳米颗粒(SN-38-FA-NPs);通过超滤控制溶剂的体积,使得所述纳米颗粒在去离子水中的浓度为8mg/mL。
实施例3
本实施例提供另一种用于胃癌治疗的纳米颗粒的制备方法,步骤包括:
将6mg DSPE-PEG、1.6mg DSPE-PEG-FA、5mg PLGA以及1.2mg SN-38溶于100μL氯仿以及100μL DMSO中,以制得混合溶液;将所述混合溶液加入去离子水中,以3500r/min的速度进行超速离心,除去DMSO,即得所述纳米颗粒(SN-38-FA-NPs);通过超滤控制溶剂的体积,使得所述纳米颗粒在去离子水中的浓度为12mg/mL。
检测实施例
1、纳米颗粒的特征
1.1PLGA纳米颗粒(NPs)的制备
将6mg DSPE-PEG以及4mg PLGA溶于100μL氯仿以及100μL DMSO中,制得混合溶液;将混合溶液加入去离子水中,并以3000r/min的速度进行超速离心,去除DMSO,即得NPs。
1.2叶酸装饰的PLGA纳米颗粒(FA-NPs)的制备
将4.8mg DSPE-PEG、1.2mg DSPE-PEG-FA以及4mg PLGA溶于100μL氯仿和100μLDMSO中,制得混合溶液;将混合溶液加入去离子水中,并以3000r/min的速度进行超速离心,去除DMSO,即得FA-NPs。
1.3SN-38负载的叶酸装饰的PLGA纳米颗粒(SN-38-FA-NPs)的制备方法同实施例1。
1.4 125I-放射性标记的SN-38(125I-SN-38)的制备
将SN-38溶于DMSO中,并加入到有NaI(125I)(1mCi)的碘源管中30分钟,即得125I-SN-38。
1.5 125I放射性标记的SN-38负载的PLGA纳米颗粒(125I-SN-38-NP)的制备方法同实施例1。
1.6NPs的流体动力学直径测量以及形态表征
在25℃下通过动态光散射(DLS)测量NPs的流体动力学直径,在马尔文ZetasizerNano ZS90上配备固态He-Ne激光(λ=633nm),测量重复三次,在相同的条件下,通过DLS在第1、2、3、5和7天测量NP的稳定性。
通过透射电子显微镜(Tecnai F20,FEI,日本)在120keV电压下进行表征。将NP溶液滴在涂有碳的铜格子上,孵育15min。用滤纸除去多余的溶液。将磷钨酸水溶液(10mg/mL,10μL)滴到铜网上,对纳米颗粒进行3min的染色。
结果如图1A所示,DLS显示,NPs、FA-NPs、SN-38-NPs和SN-38-FA-NPs的流体力学尺寸约为100nm,尺寸分布窄(PDI<0.2),透射电子显微镜(TEM)证实,NPs的形态是球形的,大小约为100nm。
1.7NPs的胶体稳定性
在室温下用DLS测量了随时间变化的流体力学尺寸,结果如图1B所示,NPs在PBS中的流体力学尺寸甚至在一周内都是相似的,这表明NPs具有良好的胶体稳定性。
1.8SN-38的生物分布研究
通过使用碘原作为氧化剂的氧化还原方法对125I-SN-38进行放射性标记。用盐酸(pH=3)溶液作为流动相,用薄层色谱法(TLC)测定放射性标记效率。125I的放射性由伽马计数器(Multi Crystal LB2111,德国)测量。通过TLC得到125I-SN-38的保留系数(Rf)为~0.1,游离125I的Rf为~0.9。辐射标记效率为69.2±1.5%;此外,通过TLC检测了125I-SN-38在37℃的10%胎牛血清(FBS)中的放射性稳定性。
结果如图1C所示,96h后,溶液中发现的游离放射性碘(125I)少于2%,表明125I-SN-38具有良好的放射性稳定性,可用于进一步的体内研究。
1.9SN-38的封装效率和装载效率
125I-SN-38装载到纳米颗粒中,并通过伽马计数器测量125I-SN-38的放射性。通过使用125I-SN-38制备125I放射性标记的SN-38负载的PLGA纳米颗粒(125I-SN-38-NP)来确定SN-38的封装效率(EE%)和药物负载效率(DL%)。
封装效率(EE%)和药物装载效率(DL%)按照以下公式计算。
Figure BDA0003568722340000061
Figure BDA0003568722340000062
R1和R2是指未封装和封装的125I-SN-38的放射性,w1和w2是指125I-SN-38和NPs的质量。
结果显示,封装效率为93.3±1.3%,而装载效率为8.5±0.1%。
通过对PBS进行透析,在pH7.4和5时测量125I-SN-38的放射性,从而测量SN-38的累积释放。125I-SN-38-NP溶液在37℃下培养,并在1、2、4、24、48、72、96、120和144h测量放射性。
结果如图1D所示,125I-SN-38很快被释放,在pH5的溶液中144h时,发现有85.9±1.8%的125I-SN-38;PLGA在低pH值环境下会加速降解。
2、细胞摄取
人胃癌细胞系MKN7和NCI-N87购自分子细胞科学卓越中心(CAS)。细胞在补充有10%胎牛血清(FBS)的DMEM中,在37℃、CO2浓度为5%的气氛中培养24h。将不同浓度(35、70、140、280和560μg/mL的纳米颗粒)的125I-SN-38-NPs和125I-SN-38-FA-NPs纳米颗粒加入细胞中,培养2h,通过离心除去介质,用PBS洗涤颗粒三次。用伽马计数器测量细胞的放射性。
结果如图2A所示,125I-SN-38-FA-NPs的细胞吸收率高于125I-SN-38-NPs,尤其是在高浓度孵育时;在纳米粒子浓度为560mg/mL时,125I-SN-38-FA-NPs在MKN7细胞中的摄取量是125I-SN-38-NPs的2.5倍。此外,125I-SN-38-FA-NPs在NCI-N87细胞中的摄取量很低,与125I-SN-38-NPs在MKN7细胞中的摄取量相似。上述结果表明,FA可以增强纳米颗粒在MKN7细胞中的摄取。
3、细胞毒性
甲基噻唑四氮唑(MTT)实验用于评估NPs、FA-NPs、SN-38-NPs和SN-38-FA-NPs的细胞毒性。MKN7细胞被播种在96孔板中(1×104个细胞/孔),在含有10%FBS的DMEM中,并置于温度为37℃、CO2浓度为5%的气氛中培养24h。吸取培养基并在37℃下用不同浓度的NPs、FA-NPs、SN-38-NPs和SN-38-FA-NPs(0、12.5、25、50和100μg/mL的纳米粒子)替换24h。在加入DMSO(100μL)之前,用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溶液(100μL,0.5mg/mL)培养细胞4h。使用微板阅读器(Thermo,Varioskan Flash)测量每种溶液在490nm处的吸收。
结果如图2B所示,即使NPs的浓度为100μg/mL,也没有明显的细胞毒性。SN-38-NPs和SN-38-FA-NPs的半最大抑制浓度(IC50)分别为66.5μmol/L和14.0μmol/L。细胞毒性结果表明,NPs和FA-NPs具有良好的生物相容性,SN-38-NPs和SN-38-FA-NPs可以有效地抑制MKN7细胞的生长,这可能是由于PLGA在癌细胞中晚期内体(pH=4.5-5.5)的降解和SN-38的释放所致。
4、药代动力学研究
125I-SN-38-FA-NPs的药代动力学研究采用健康裸体BALB/c小鼠经尾静脉注射的方式进行。雌性BALB/c小鼠(每只18-20g,6周龄)购自上海SLAC实验动物有限公司,无特定病原体(SPF)等级。
125I-SN-38-NPs(100mg/kg的纳米颗粒,20μCi)和125I-SN-38-FA-NPs(100mg/kg的纳米颗粒,20μCi)通过尾静脉静脉注射到健康小鼠体内。随着时间的推移,从小鼠的后轨道上获得血液,并对小鼠进行称重。用伽马计数器测量血液的放射性。
每克血液中的注射剂量百分比随时间变化的结果如图3A所示,纳米粒子的血液循环遵循一个两室模型。根据该模型,125I-SN-38-NPs和125I-SN-38-FA-NPs显示出较长的血液循环时间,分布半衰期分别为0.22h和0.14h。125I-SN-38-NPs和125I-SN-38-FA-NPs的消除半衰期分别为6.6h和5h。据报道,大鼠用药后SN-38很快被SN-38葡萄糖醛酸和一种未知的代谢物(M-2)所取代,未改变的SN-38的半衰期只有大约7min。这些结果表明,125I-SN-38-NPs和125I-SN-38-FA-NPs表现出明显延长的血液循环,而且比直接给药的SN-38水解得更少。
5、生物分布
将MKN7细胞(5×106)注射到裸体BALB/c小鼠(6周,20-25g)的右后腿建立胃肿瘤模型。当肿瘤体积达到约100mm3时进行抗肿瘤效率研究,当肿瘤体积达到约200-250mm3时进行生物分布和成像研究。
为了研究生物分布,对MKN7肿瘤的裸体BALB/c小鼠静脉注射125I-SN-38-NPs(100mg/kg的纳米颗粒,20μCi)和125I-SN-38-FA-NPs(100mg/kg的纳米颗粒,20μCi)。在注射后24h,小鼠被牺牲,并收获主要器官(心、肺、肝、脾和肾)和肿瘤。用伽马计数器测量器官和肿瘤的放射性。测定器官和肿瘤的重量。
对于成像研究,通过静脉注射125I-SN-38-NPs(100mg/kg的纳米颗粒,200μCi)和125I-SN-38-FA-NPs(100mg/kg的纳米颗粒,200μCi)并对MKN7肿瘤小鼠进行微SPECT扫描。microSPECT/CT在0.5、3、6、9和24h进行扫描,microSPECT扫描设置为15min,CT扫描设置为55keV管电压和615mA管电流。
此外,125I-SN-38-FA-NPs在MKN7肿瘤裸体BALB/c小鼠中的生物分布是通过尾静脉注射确定的。在注射后24h,小鼠被牺牲。对主要器官和肿瘤进行称重,并通过伽马计数器测量每个组织的放射性。
125I-SN-38-FA-NPs在肿瘤中的累积量为9.2±0.6ID%/g,高于125I-SN-38-NPs(3.3±0.6ID%/g),表明FA装饰的纳米粒子具有更好的靶向肿瘤的能力。纳米颗粒可以通过EPR效应或纳米材料诱导的内皮渗漏在肿瘤中积累,而定向修饰可以增强在肿瘤内的积累。125I-SN-38-FA-NPs和125I-SN-38-NPs在主要器官中的生物分布是通过SPECT图像随时间推移而量化的。125I-SN-38-FA-NPs在肝脏(28.2±1.4ID%/g)和脾脏(25.5±3.2ID%/g)的积累很高,这与其他纳米粒子的行为一致(图3B)。由于单核吞噬细胞系统的摄取,纳米颗粒在肝脏和脾脏的生物分布很高。
SPECT图像显示,125I的放射性信号与125I-SN-38-FA-NPs的分布相符(图4A),主要信号出现在肝脏和脾脏,这与生物分布研究的结果一致。125I-SN-38-FA-NPs在肿瘤中的放射性信号随时间增加。根据SPECT图像进行量化,发现125I-SN-38-FA-NPs的积累在注射后3h内迅速增加,在注射后24h达到9.2±0.6ID%/g。相比之下,125I-SN-38-NPs的积累缓慢增加,在注射后24h只有3.3±0.6ID%/g(图4B)。这些结果表明,SN-38-FA-NPs在体内的肿瘤积累效率很高。
6、体内治疗
根据在microSPECT图像中观察到的肿瘤积累情况,对MKN7肿瘤小鼠(~100mm3)进行体内肿瘤治疗。MKN7肿瘤小鼠被随机分为五个治疗组。PBS组、NP组、FA-NP组、SN-38-NP组和SN-38-FA-NP组。在第0、5、10、15和20天通过尾静脉向小鼠静脉注射PBS、NP、FA-NP、SN-38-NP和SN-38-FA-NP,剂量为100mg/kg的纳米颗粒。恢复期为20天,肿瘤体积用游标卡尺每5天测量一次,小鼠的体重用天平每5天测量一次。
肿瘤体积按以下公式计算。
Figure BDA0003568722340000091
L和W分别对应于肿瘤的长度和宽度。在第21天,每组中的一只小鼠被牺牲。对主要器官和肿瘤进行切片,进行苏木精和伊红(H&E)和TUNNEL染色。染色后,用光学显微镜(Olympus IX73)和激光扫描共聚焦显微镜(Olympus FV1200)观察切片。
NP组和FA-NP组的肿瘤生长与PBS组相似,表明NP和FA-NP组没有表现出肿瘤抑制作用;肿瘤的生长在SN-38-NP组中被轻微抑制,在SN-38-FA-NP组中被显著抑制;肿瘤生长抑制率(TGI)是根据肿瘤体积计算的;SN-38-FA-NPs和SN-38-NPs的TGIs分别为73%和34%;这些结果表明,SN-38-FA-NPs可以有效地杀死肿瘤细胞(图5A)。
经过20天的治疗和20天的恢复,小鼠被牺牲,并收集肿瘤。图5B显示了所有五个组的肿瘤照片。在治疗期间没有发现明显的体重下降(图5C)。此外,TUNEL染色的图像显示,SN-38-FA-NPs组比其他组表现出更多的细胞凋亡(图5D)。更重要的是,在H&E染色的图像中没有发现健康器官的明显损伤(图6)。这些结果表明,SN-38-FA-NPs可以有效地杀死肿瘤细胞而不损害健康组织,这对治疗胃癌患者是很有希望的。
综上所述,本发明的叶酸修饰的纳米颗粒具有良好的生物相容性,由本发明的纳米颗粒制备的胃癌治疗药物具有更高的溶解性,叶酸的修饰使得纳米颗粒具有更好的靶向性,由于化疗药物被纳米颗粒封装,使得药物能在病灶处缓释,增加治疗效果。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (9)

1.一种用于胃癌治疗的纳米颗粒,其特征在于,包括:7-乙基-10-羟基喜树碱、叶酸、聚乳酸-乙醇酸以及1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇。
2.根据权利要求1所述的纳米颗粒,其特征在于,所述纳米颗粒的流体力学尺寸为90nm-110nm。
3.一种如权利要求1-2任一项所述纳米颗粒的制备方法,其特征在于,步骤包括:
将1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇、1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸、聚乳酸-乙醇酸以及7-乙基-10-羟基喜树碱溶于氯仿以及二甲基亚砜的二元溶剂中,以制得混合溶液;将所述混合溶液加入去离子水中,超速离心后,即得所述纳米颗粒。
4.根据权利要求3所述的制备方法,其特征在于,步骤S1中,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇、所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸、所述聚乳酸-乙醇酸以及所述7-乙基-10-羟基喜树碱的质量比为(4-5):(1-2):4:1。
5.根据权利要求3所述的制备方法,其特征在于,所述混合溶液中,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-聚乙二醇的浓度为0.02mg/μL-0.03mg/μL,所述1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-(聚乙二醇)-叶酸的浓度为0.004mg/μL-0.008mg/μL,所述聚乳酸-乙醇酸的浓度为0.015mg/μL-0.025mg/μL,所述7-乙基-10-羟基喜树碱的浓度为0.004mg/μL-0.006mg/μL。
6.根据权利要求3所述的制备方法,其特征在于,步骤S2中,所述超速离心的转速为2500r/min-3500r/min。
7.根据权利要求3所述的制备方法,其特征在于,步骤S2中,所述纳米颗粒在去离子水中的浓度为8mg/mL-12mg/mL。
8.一种如权利要求1-2任一项所述纳米颗粒在制备胃癌治疗药物中的应用。
9.一种如权利要求1-2任一项所述纳米颗粒在构建胃癌诊断模型中的应用。
CN202210311920.XA 2022-03-28 2022-03-28 一种用于胃癌治疗的纳米颗粒及其制备方法与应用 Pending CN114767875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210311920.XA CN114767875A (zh) 2022-03-28 2022-03-28 一种用于胃癌治疗的纳米颗粒及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210311920.XA CN114767875A (zh) 2022-03-28 2022-03-28 一种用于胃癌治疗的纳米颗粒及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN114767875A true CN114767875A (zh) 2022-07-22

Family

ID=82425973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210311920.XA Pending CN114767875A (zh) 2022-03-28 2022-03-28 一种用于胃癌治疗的纳米颗粒及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114767875A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103040724A (zh) * 2012-12-22 2013-04-17 中国科学院深圳先进技术研究院 含聚合物与磷脂的纳米载药系统及其制备方法
CN104434806A (zh) * 2014-11-06 2015-03-25 中国人民解放军第四军医大学 一种具有高载药量及主动靶向效应的脂质混合plga纳米粒
WO2015136477A1 (en) * 2014-03-12 2015-09-17 Murli Krishna Pharma Pvt. Ltd. Nanoparticles of polymer and lipid mixture core for targeted drug delivery
CN109438707A (zh) * 2018-08-29 2019-03-08 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
CN114129232A (zh) * 2021-11-09 2022-03-04 上海长征医院 一种超声穿刺引导系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103040724A (zh) * 2012-12-22 2013-04-17 中国科学院深圳先进技术研究院 含聚合物与磷脂的纳米载药系统及其制备方法
WO2015136477A1 (en) * 2014-03-12 2015-09-17 Murli Krishna Pharma Pvt. Ltd. Nanoparticles of polymer and lipid mixture core for targeted drug delivery
CN104434806A (zh) * 2014-11-06 2015-03-25 中国人民解放军第四军医大学 一种具有高载药量及主动靶向效应的脂质混合plga纳米粒
CN109438707A (zh) * 2018-08-29 2019-03-08 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
CN114129232A (zh) * 2021-11-09 2022-03-04 上海长征医院 一种超声穿刺引导系统及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SANGEETHA KRISHNAMURTHY,等: "Lipid-coated polymeric nanoparticles for cancer drug delivery", BIOMATERIALS SCIENCE, vol. 3, pages 924 *
XIN ZHANG,等: "Folate Decorated Multifunctional Biodegradable Nanoparticles for Gastric Carcinoma Active Targeting Theranostics", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 17, pages 2493 - 2502 *
ZHE YANG,等: "Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid–polymer hybrid nanoparticles", BIOMEDICAL MATERIALS, vol. 8, pages 1 - 12 *
刘丹;张军东;廉云飞;房秋雨;李娟;: "核-壳结构的脂质-聚合物杂化纳米粒的研究进展", 药学实践杂志, vol. 36, no. 01, pages 13 - 17 *
张林,等: "叶酸受体介导的靶向给药系统研究进展", 中国生化药物杂志, vol. 33, no. 1, pages 77 *

Similar Documents

Publication Publication Date Title
Li et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer
Huang et al. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics
Kang et al. Renal clearable organic nanocarriers for bioimaging and drug delivery
Seo et al. Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat glioblastoma
Chen et al. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio-and photothermal therapy of cancer
Greish et al. Nanomedicine: is it lost in translation?
Yin et al. Poly (iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging
Cormode et al. Nanoparticle contrast agents for computed tomography: a focus on micelles
Li et al. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate
Shih et al. EGFR-targeted micelles containing near-infrared dye for enhanced photothermal therapy in colorectal cancer
Suarez-Garcia et al. Coordination polymers nanoparticles for bioimaging
Hirsjärvi et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting
Boissenot et al. Paclitaxel-loaded PEGylated nanocapsules of perfluorooctyl bromide as theranostic agents
Lee et al. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug
CN110664753B (zh) 一种负载抗癌药物骨靶向低氧响应纳米胶束及其制备方法
Song et al. Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers
Mondon et al. MPEG‐hexPLA micelles as novel carriers for hypericin, a fluorescent marker for use in cancer diagnostics
Lee et al. Multimeric grain-marked micelles for highly efficient photodynamic therapy and magnetic resonance imaging of tumors
Li et al. Design of 99m Tc-labeled low generation dendrimer-entrapped gold nanoparticles for targeted single photon emission computed tomography/computed tomography imaging of gliomas
Liu et al. An activatable theranostic nanomedicine platform based on self-quenchable indocyanine green-encapsulated polymeric micelles
JP7317038B2 (ja) がん治療に使用するためのポリ(アルキルシアノアクリレート)ナノ粒子
Tang et al. Construction and evaluation of hyaluronic acid-based copolymers as a targeted chemotherapy drug carrier for cancer therapy
Verma et al. Augmentation of anti–tumour activity of cisplatin by pectin nano–conjugates in B–16 mouse model: pharmacokinetics and in–vivo biodistribution of radio–labelled, hydrophilic nano–conjugates
Lv et al. “Carrier–drug” layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy
Zhang et al. Folate decorated multifunctional biodegradable nanoparticles for gastric carcinoma active targeting theranostics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination