CN114759997A - 一种基于数据模型双驱动的mimo系统信号检测方法 - Google Patents
一种基于数据模型双驱动的mimo系统信号检测方法 Download PDFInfo
- Publication number
- CN114759997A CN114759997A CN202210365707.7A CN202210365707A CN114759997A CN 114759997 A CN114759997 A CN 114759997A CN 202210365707 A CN202210365707 A CN 202210365707A CN 114759997 A CN114759997 A CN 114759997A
- Authority
- CN
- China
- Prior art keywords
- dnn
- training
- network
- channel
- signal detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 50
- 238000013499 data model Methods 0.000 title claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 74
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 27
- 238000013135 deep learning Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 10
- 230000009977 dual effect Effects 0.000 claims abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 3
- 230000006870 function Effects 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 238000005562 fading Methods 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000013136 deep learning model Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 2
- 230000008034 disappearance Effects 0.000 claims description 2
- 238000012795 verification Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 14
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000000284 extract Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3911—Fading models or fading generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0254—Channel estimation channel estimation algorithms using neural network algorithms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radio Transmission System (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210365707.7A CN114759997B (zh) | 2022-04-08 | 2022-04-08 | 一种基于数据模型双驱动的mimo系统信号检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210365707.7A CN114759997B (zh) | 2022-04-08 | 2022-04-08 | 一种基于数据模型双驱动的mimo系统信号检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114759997A true CN114759997A (zh) | 2022-07-15 |
CN114759997B CN114759997B (zh) | 2023-06-20 |
Family
ID=82329464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210365707.7A Active CN114759997B (zh) | 2022-04-08 | 2022-04-08 | 一种基于数据模型双驱动的mimo系统信号检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114759997B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694571A (zh) * | 2022-10-31 | 2023-02-03 | 西安科技大学 | 一种大规模mimo系统中基于深度学习的信号检测方法和装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110719239A (zh) * | 2019-09-29 | 2020-01-21 | 东南大学 | 一种数据模型双驱动的联合mimo信道估计和信号检测方法 |
WO2020092391A1 (en) * | 2018-10-29 | 2020-05-07 | Board Of Regents, The University Of Texas System | Low resolution ofdm receivers via deep learning |
WO2020157754A1 (en) * | 2019-01-30 | 2020-08-06 | Technology Innovation Momentum Fund (Israel) Limited Partnership | System and method for reconstruction of compressed signal data using artificial neural networking |
WO2020253690A1 (zh) * | 2019-06-17 | 2020-12-24 | 浙江大学 | 一种基于近似消息传递算法的深度学习波束域信道估计方法 |
CN112600772A (zh) * | 2020-12-09 | 2021-04-02 | 齐鲁工业大学 | 一种基于数据驱动神经网络的ofdm信道估计与信号检测方法 |
CN112637093A (zh) * | 2020-12-09 | 2021-04-09 | 齐鲁工业大学 | 一种基于模型驱动深度学习的信号检测方法 |
CN112637094A (zh) * | 2020-12-17 | 2021-04-09 | 南京爱而赢科技有限公司 | 一种基于模型驱动深度学习的多用户mimo接收方法 |
-
2022
- 2022-04-08 CN CN202210365707.7A patent/CN114759997B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020092391A1 (en) * | 2018-10-29 | 2020-05-07 | Board Of Regents, The University Of Texas System | Low resolution ofdm receivers via deep learning |
WO2020157754A1 (en) * | 2019-01-30 | 2020-08-06 | Technology Innovation Momentum Fund (Israel) Limited Partnership | System and method for reconstruction of compressed signal data using artificial neural networking |
WO2020253690A1 (zh) * | 2019-06-17 | 2020-12-24 | 浙江大学 | 一种基于近似消息传递算法的深度学习波束域信道估计方法 |
CN110719239A (zh) * | 2019-09-29 | 2020-01-21 | 东南大学 | 一种数据模型双驱动的联合mimo信道估计和信号检测方法 |
CN112600772A (zh) * | 2020-12-09 | 2021-04-02 | 齐鲁工业大学 | 一种基于数据驱动神经网络的ofdm信道估计与信号检测方法 |
CN112637093A (zh) * | 2020-12-09 | 2021-04-09 | 齐鲁工业大学 | 一种基于模型驱动深度学习的信号检测方法 |
CN112637094A (zh) * | 2020-12-17 | 2021-04-09 | 南京爱而赢科技有限公司 | 一种基于模型驱动深度学习的多用户mimo接收方法 |
Non-Patent Citations (4)
Title |
---|
XIAOMING WANG等: "Pilot-Assisted Channel Estimation and Signal Detection in Uplink Multi-User MIMO Systems With Deep Learning", 《IEEE ACCESS》 * |
XIAOMING WANG等: "Pilot-Assisted Channel Estimation and Signal Detection in Uplink Multi-User MIMO Systems With Deep Learning", 《IEEE ACCESS》, 4 March 2020 (2020-03-04), pages 44936 - 44946, XP011777754, DOI: 10.1109/ACCESS.2020.2978253 * |
花航: "基于深度学习的MIMO信号检测与信道估计研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 * |
花航: "基于深度学习的MIMO信号检测与信道估计研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》, 15 March 2022 (2022-03-15), pages 17 - 18 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694571A (zh) * | 2022-10-31 | 2023-02-03 | 西安科技大学 | 一种大规模mimo系统中基于深度学习的信号检测方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114759997B (zh) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111630787B (zh) | 基于深度学习的mimo多天线信号传输与检测技术 | |
CN112637093B (zh) | 一种基于模型驱动深度学习的信号检测方法 | |
CN110365612B (zh) | 一种基于近似消息传递算法的深度学习波束域信道估计方法 | |
Ozpoyraz et al. | Deep learning-aided 6G wireless networks: A comprehensive survey of revolutionary PHY architectures | |
CN112600772B (zh) | 一种基于数据驱动神经网络的ofdm信道估计与信号检测方法 | |
CN113472706B (zh) | 一种基于深度神经网络的mimo-ofdm系统信道估计方法 | |
CN111713035B (zh) | 基于人工智能的mimo多天线信号传输与检测技术 | |
CN114584448B (zh) | 基于深度神经网络的sm-ofdm信号分组检测方法 | |
CN110336594B (zh) | 一种基于共轭梯度下降法的深度学习信号检测方法 | |
CN112235023B (zh) | 一种基于模型驱动深度学习的mimo-scfde自适应传输方法 | |
CN111669344B (zh) | 一种基于深度学习的时变ofdm系统信号检测方法 | |
CN110808932B (zh) | 基于多分布测试数据融合的多层感知器快速调制识别方法 | |
CN113206809B (zh) | 一种联合深度学习与基扩展模型的信道预测方法 | |
Zhang et al. | On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications | |
CN114650199A (zh) | 一种基于数据驱动的深度神经网络信道估计方法及系统 | |
KR102064301B1 (ko) | Mimo 시스템 기반의 앙상블 기계 학습을 이용한 신호 검출 장치 및 그 방법 | |
CN114759997B (zh) | 一种基于数据模型双驱动的mimo系统信号检测方法 | |
CN114513394B (zh) | 一种基于注意力机制图神经网络的信号调制格式识别方法、系统、装置及存储介质 | |
Hua et al. | Signal detection in uplink pilot-assisted multi-user MIMO systems with deep learning | |
Ye et al. | Bilinear convolutional auto-encoder based pilot-free end-to-end communication systems | |
CN114745233A (zh) | 一种基于导频设计的联合信道估计方法 | |
Zou et al. | Generative adversarial network for wireless communication: Principle, application, and trends | |
Zhang et al. | Generative adversarial network-based channel estimation in high-speed mobile scenarios | |
CN117176517A (zh) | 采用遗传算法和深度学习对mimo-ofdm可见光通信实施信道估计的方法及系统 | |
CN113541726B (zh) | 一种基于循环神经网络的码索引扩频水声通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 250061 No. 17922, Jingshi Road, Lixia District, Jinan City, Shandong Province Patentee after: SHANDONG University Country or region after: China Patentee after: Qilu University of Technology (Shandong Academy of Sciences) Address before: 250061 No. 17922, Jingshi Road, Lixia District, Jinan City, Shandong Province Patentee before: SHANDONG University Country or region before: China Patentee before: Qilu University of Technology |