CN114757120A - Method for predicting unsteady cavitation fluid-solid coupling performance of composite propeller - Google Patents
Method for predicting unsteady cavitation fluid-solid coupling performance of composite propeller Download PDFInfo
- Publication number
- CN114757120A CN114757120A CN202210373898.1A CN202210373898A CN114757120A CN 114757120 A CN114757120 A CN 114757120A CN 202210373898 A CN202210373898 A CN 202210373898A CN 114757120 A CN114757120 A CN 114757120A
- Authority
- CN
- China
- Prior art keywords
- propeller
- flow field
- fluid
- composite
- cavitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 138
- 230000008878 coupling Effects 0.000 title claims abstract description 51
- 238000010168 coupling process Methods 0.000 title claims abstract description 51
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000007787 solid Substances 0.000 title claims abstract description 13
- 238000004364 calculation method Methods 0.000 claims abstract description 70
- 230000004044 response Effects 0.000 claims abstract description 6
- 238000004458 analytical method Methods 0.000 claims abstract description 5
- 230000003993 interaction Effects 0.000 claims description 30
- 239000012530 fluid Substances 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 18
- 239000012808 vapor phase Substances 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 9
- 239000007791 liquid phase Substances 0.000 claims description 9
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 8
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000004088 simulation Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 claims description 3
- 230000016507 interphase Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000010349 pulsation Effects 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 3
- 230000002457 bidirectional effect Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003733 fiber-reinforced composite Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/26—Composites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Fluid Mechanics (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种复合材料螺旋桨非定常空化流固耦合性能预测方法,适用于基于双向流固耦合算法的复合材料螺旋桨的水动力性能及空化性能预测,属于复合材料螺旋桨性能预测技术领域。The invention relates to a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, which is suitable for predicting the hydrodynamic performance and cavitation performance of a composite material propeller based on a two-way fluid-structure coupling algorithm, and belongs to the technical field of composite material propeller performance prediction.
背景技术Background technique
为了提升螺旋桨的水动力性能和振动噪声性能,增加螺旋桨的使用寿命,国内外众多学者对新型水力机械的制造材料进行了各方面的研究。由于纤维增强复合材料具有和合金材料相似的高比强度和高比刚度,并同时具备各向异性以及优越的阻尼性能,因此适用于在复杂的水下环境下服役的各种水动力机械。与传统金属螺旋桨相比,复合材料螺旋桨在空化水动力载荷作用下的显现的流固耦合特性,能够使得螺旋桨的螺距角发生改变,抑制空泡的产生,从而提升螺旋桨的水动力性能。由于复合材料螺旋桨桨叶的复杂外形结构和内部铺层结构的多样性,复合材料螺旋桨的空化流固耦合性能预测十分困难。由于大尺度的螺旋桨的加工困难,螺旋桨的水动力性能的实验往往通过模型试验,但模型试验的设备依然造价昂贵,并且存在尺度效应,因此发展理论方法预测复合材料螺旋桨的空化水动力性能有重要工程意义。In order to improve the hydrodynamic performance and vibration and noise performance of the propeller and increase the service life of the propeller, many scholars at home and abroad have conducted various researches on the manufacturing materials of new hydraulic machinery. Because fiber reinforced composites have high specific strength and high specific stiffness similar to alloy materials, as well as anisotropy and superior damping properties, they are suitable for various hydrodynamic machinery serving in complex underwater environments. Compared with traditional metal propellers, the fluid-structure coupling characteristics of composite propellers under the action of cavitation hydrodynamic loads can change the pitch angle of the propellers and inhibit the generation of cavitation, thereby improving the hydrodynamic performance of the propellers. Due to the complex shape structure of composite propeller blades and the diversity of internal laminate structures, it is very difficult to predict the cavitation fluid-structure interaction performance of composite propellers. Due to the difficulty of processing large-scale propellers, the hydrodynamic performance experiments of the propellers often pass the model test, but the equipment for the model test is still expensive and has scale effects. Therefore, the development of theoretical methods to predict the cavitation hydrodynamic performance of composite propellers has important engineering significance.
由于纤维增强复合材料螺旋桨具有复杂的结构外形,并且在水动力作用下桨叶会产生一定的弹性变形,涉及大量的复杂非线性问题,因此适用于传统金属螺旋桨的流固耦合性能的数值计算方法不再适用,而复合材料螺旋桨的双向流固耦合性能的数值计算虽然已受到很多学者关注研究,但仍然局限于复合材料螺旋桨的水动力性能预测以及定常的空化性能预测,无法直接应用于复合材料螺旋桨的非定常空化流固耦合性能预测。因此建立复合材料螺旋桨非定常空化流固耦合性能预测方法,可以计算复合材料螺旋桨的结构变形,分析复合材料螺旋桨的非定常流场特性,对于螺旋桨的实际应用有重要的现实意义。Because the fiber reinforced composite propeller has a complex structure and shape, and the blade will produce a certain elastic deformation under the action of hydrodynamics, involving a large number of complex nonlinear problems, it is suitable for the numerical calculation method of the fluid-structure interaction performance of the traditional metal propeller It is no longer applicable, and although the numerical calculation of the two-way fluid-structure interaction performance of composite propellers has been studied by many scholars, it is still limited to the prediction of hydrodynamic performance of composite propellers and the prediction of steady cavitation performance, and cannot be directly applied to composite propellers. Prediction of unsteady cavitation fluid-structure interaction performance of material propellers. Therefore, the establishment of a prediction method for the unsteady cavitation fluid-structure coupling performance of composite propellers can calculate the structural deformation of composite propellers and analyze the unsteady flow field characteristics of composite propellers, which has important practical significance for the practical application of propellers.
发明内容SUMMARY OF THE INVENTION
本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,要解决的技术问题是:建立一种通用的复合材料螺旋桨非定常空化流固耦合性能预测方法,基于流场数值计算模型包括流场多相流模型、外流场计算的RANS方程、空化模型实现流场计算模型的建立,在流场计算模型的基础上,基于层合板理论对复合材料螺旋桨的桨叶结构进行分层建模,将结构动力学的数值计算嵌入流场计算,并设置准确的流固耦合交界面,基于紧耦合算法通过数据传递接口将流场数值计算结果与结构场数值计算结果进行双向耦合与传递,分析其适用性和准确性,获得复合材料螺旋桨的非定常空化流固耦合性能。本发明有助于对复合材料螺旋桨的空化水动力性能深入分析及预测,能够应用于复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。The invention discloses a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, and the technical problem to be solved is to establish a general method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, based on the numerical value of the flow field. The calculation model includes the multiphase flow model of the flow field, the RANS equation of the external flow field calculation, and the cavitation model to realize the establishment of the flow field calculation model. On the basis of the flow field calculation model, the blade structure of the composite propeller is calculated based on the laminate theory. Carry out hierarchical modeling, embed the numerical calculation of structural dynamics into the flow field calculation, and set up an accurate fluid-structure coupling interface. Based on the tight coupling algorithm, the numerical calculation results of the flow field and the numerical calculation results of the structure field are bidirectionally carried out through the data transfer interface. Coupling and transfer, analyze its applicability and accuracy, and obtain the unsteady cavitation fluid-structure interaction performance of composite propellers. The invention is helpful for in-depth analysis and prediction of the cavitation hydrodynamic performance of the composite material propeller, can be applied to the prediction of the structural dynamic response performance of the composite material propeller, and solves engineering problems related to the strength and stability of the composite material propeller.
所述复合材料螺旋桨非定常空化流固耦合特性预测方法的应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。本发明能够有效预测复合材料螺旋桨产生的水动力变形,具有预测效率高和精度高的优点。The application fields of the method for predicting the unsteady cavitation fluid-structure interaction characteristics of the composite propeller include the prediction of the fluid-structure interaction characteristics, the prediction of the hydrodynamic performance of the cavitation of the propeller, and the field of optimal design of the composite material propeller. The invention can effectively predict the hydrodynamic deformation generated by the composite material propeller, and has the advantages of high prediction efficiency and high precision.
本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,包括如下步骤:A method for predicting the unsteady cavitation fluid-solid coupling performance of a composite material propeller disclosed in the present invention includes the following steps:
步骤一:对刚性螺旋桨进行稳态流场的初值计算。Step 1: Calculate the initial value of the steady-state flow field for the rigid propeller.
针对刚性螺旋桨的流场进行定常的初值计算,设置螺旋桨工作的螺旋桨旋转速度及来流速度,获得定常流场的初值数据。流体稳态求解的控制方程通过质量守恒方程和动量守恒方程表示:The steady initial value calculation is performed for the flow field of the rigid propeller, and the propeller rotation speed and the incoming flow speed of the propeller are set to obtain the initial value data of the steady flow field. The governing equations for the fluid steady state solution are expressed by the mass conservation equation and the momentum conservation equation:
式中:下标i,j代表坐标方向,u为速度矢量,ρ为流体密度,p为流场压力,v为运动粘性系数,fi为单位体积质量力,δij为克罗内克函数。where the subscripts i and j represent the coordinate directions, u is the velocity vector, ρ is the fluid density, p is the flow field pressure, v is the kinematic viscosity coefficient, fi is the mass force per unit volume, and δ ij is the Kronecker function.
步骤二:建立复合材料螺旋桨结构有限元模型。Step 2: Establish a finite element model of the composite propeller structure.
基于刚性螺旋桨的几何尺寸参数,建立复合材料螺旋桨几何模型。以刚性螺旋桨的几何轮廓约束复合材料的纤维铺层,基于有限元软件依据复合材料螺旋桨的铺层顺序,逐层设置复合材料螺旋桨的铺层材料厚度及材料属性,输入每层纤维布的密度ρ、弹性模量E、剪切模量G、泊松比υ,建立复合材料螺旋桨的有限元模型。复合材料螺旋桨截面面内力、弯矩与面内应变和曲率满足如下关系式:Based on the geometric parameters of the rigid propeller, the geometric model of the composite propeller is established. The fiber layup of the composite material is constrained by the geometric contour of the rigid propeller. Based on the finite element software, according to the layup sequence of the composite material propeller, the thickness and material properties of the layup material of the composite material propeller are set layer by layer, and the density ρ of each layer of fiber cloth is input. , elastic modulus E, shear modulus G, Poisson's ratio υ, establish the finite element model of the composite propeller. The in-plane force, bending moment, in-plane strain and curvature of the composite propeller section satisfy the following relationship:
式中:[N]代表面内力,[M]为弯矩,ε°和κ为中面应变和中面曲率,[A]、[B]、[D]矩阵分别为面内刚度矩阵、耦合刚度矩阵和弯曲刚度矩阵。In the formula: [N] represents the in-plane force, [M] is the bending moment, ε° and κ are the mid-plane strain and mid-plane curvature, and the [A], [B], and [D] matrices are the in-plane stiffness matrix, the coupling Stiffness Matrix and Bending Stiffness Matrix.
作为优选,所述有限元软件选用ANSYS Workbench中的ACP模块实现。Preferably, the finite element software is implemented by using the ACP module in ANSYS Workbench.
步骤三:将定常流场的初值数据通过流固耦合交界面传递给结构场,进行有限元结构变形求解,获得结构场网格变形。Step 3: The initial value data of the steady flow field is transferred to the structure field through the fluid-solid coupling interface, and the finite element structure deformation is solved to obtain the mesh deformation of the structure field.
通过复合材料螺旋桨与流场之间的流固耦合交界面将定常流场的初值数据传递给结构场,根据步骤二建立的复合材料螺旋桨有限元模型与获得的流场初值数据,完成复合材料螺旋桨的有限元结构变形求解,获得结构场的网格变形。利用有限元方法对水动力载荷作用下的螺旋桨结构进行瞬态分析,其动力学结构控制方程如下:Through the fluid-solid coupling interface between the composite propeller and the flow field, the initial value data of the steady flow field is transferred to the structural field. According to the finite element model of the composite propeller established in step 2 and the obtained initial value data of the flow field, the composite material is completed. The finite element structural deformation of the material propeller is solved, and the mesh deformation of the structural field is obtained. The finite element method is used to conduct transient analysis of the propeller structure under the action of hydrodynamic load. The control equation of the dynamic structure is as follows:
式中[Ms]、[Cs]和[Ks]分别为结构质量矩阵、结构阻尼矩阵和结构刚度矩阵,{X}、和分别为结构位移、结构速度和结构加速度,{FEX}代表流固耦合作用下结构所受外部激励力,{FHE}代表流固耦合作用下结构所受流场力。where [M s ], [C s ] and [K s ] are the structural mass matrix, the structural damping matrix and the structural stiffness matrix, respectively, {X}, and are the structural displacement, structural velocity and structural acceleration, respectively, {F EX } represents the external excitation force on the structure under the action of fluid-structure interaction, and {F HE } represents the flow field force on the structure under the action of fluid-structure interaction.
步骤四:建立复合材料螺旋桨流场计算的湍流模型。Step 4: Establish a turbulence model for the calculation of the flow field of the composite propeller.
为了较好地捕捉多尺度非定常流场湍流结构及近壁区流动的现象,采用涡粘性模型,引入湍流粘性系数μt将雷诺应力与平均速度梯度间建立联系。确定涡粘性系数的计算采用两方程k-ωSST湍流模型封闭雷诺时均方程:In order to better capture the turbulent structure of the multi-scale unsteady flow field and the phenomenon of flow in the near-wall region, the eddy viscosity model is used, and the turbulent viscosity coefficient μ t is introduced to establish a relationship between the Reynolds stress and the average velocity gradient. The calculation to determine the eddy viscosity coefficient uses the two-equation k-ωSST turbulence model to close the Reynolds time-averaged equation:
式中,k为湍动能,ω为湍流频率,ρ为流体密度,μ为动力粘性系数,为系踪平均,速度Gk和Gw分别是由平均速度梯度和浮力影响引起的湍动能产生项,Yk和YM分别是由平均速度梯度和可压缩湍流脉动膨胀对总的耗散率的影响,Dw为横向扩散项。式中,σw和σk分别为湍动能和湍流频率的普朗特数:where k is the turbulent kinetic energy, ω is the turbulent frequency, ρ is the fluid density, μ is the dynamic viscosity coefficient, is the tethered average, the velocities G k and G w are the turbulent kinetic energy generation terms caused by the mean velocity gradient and buoyancy effects, respectively, and Y k and Y M are the total dissipation rate caused by the mean velocity gradient and the compressible turbulent pulsation expansion, respectively , Dw is the lateral diffusion term. where σw and σk are Prandtl numbers of turbulent kinetic energy and turbulent frequency, respectively:
湍流粘性系数μt的计算式如下:The formula for calculating the turbulent viscosity coefficient μ t is as follows:
式中,S为剪切应变率,F1、F2为混合函数。where S is the shear strain rate, and F 1 and F 2 are mixing functions.
步骤五:建立复合材料螺旋桨流场计算的空化模型。Step 5: Establish a cavitation model for the calculation of the flow field of the composite propeller.
复合材料螺旋桨流场计算的空化模型采用在Ralyleigh-Plesset(R-P)方程的基础上提出的基于空泡动力学的输运方程:The cavitation model for the calculation of the flow field of the composite propeller adopts the transport equation based on cavitation dynamics proposed on the basis of the Ralyleigh-Plesset (R-P) equation:
式中,RB为空泡半径,pv为环境下的饱和蒸汽压,S为表面张力系数,ρl为液体密度,T∞为远场流体温度,p∞为远场环境压强。where R B is the bubble radius, p v is the saturated vapor pressure in the environment, S is the surface tension coefficient, ρ l is the liquid density, T ∞ is the far-field fluid temperature, and p ∞ is the far-field ambient pressure.
忽略空泡半径的二阶导数及表面张力的相互作用,分别化简出空泡半径RB、空泡质量mB和空泡体积VB随时间的变化率:Ignoring the second derivative of the bubble radius and the interaction of surface tension, the rate of change of the bubble radius R B , the bubble mass m B and the bubble volume V B with time is simplified respectively:
NB为水中空化汽核密度(即单位体积内有NB个空泡),则汽相体积比ɑv为:N B is the density of cavitation vapor nucleus in water (that is, there are N B cavities in unit volume), then the vapor phase volume ratio ɑ v is:
则单位体积的相间质量交换率m为:Then the interphase mass exchange rate m per unit volume is:
上式为蒸发项,根据上述关系式求出其中,汽/液相间蒸发率和凝结率的表达式分别为:The above formula is the evaporation term. According to the above relationship, the expressions of the evaporation rate and condensation rate between the vapor and liquid phases are respectively:
式中,αnuc为空化气核体积分数,Cd和Cp分别为局部压强小于饱和蒸汽压时的液相蒸发率和局部压强大于饱和蒸汽压时的汽相凝结率,RB为空泡半径,Pv为pv(T∞)。where α nuc is the cavitation gas core volume fraction, C d and C p are the liquid phase evaporation rate when the partial pressure is lower than the saturated vapor pressure and the vapor phase condensation rate when the partial pressure is greater than the saturated vapor pressure, respectively, and R B is the empty Bubble radius, P v is p v (T ∞ ).
步骤六:将步骤三所获得的结构场变形的信息通过流固耦合交界面传递给流场,进行流场网格更新及流场求解,获得流场数值计算结果。Step 6: Transfer the deformation information of the structure field obtained in Step 3 to the flow field through the fluid-solid coupling interface, update the flow field grid and solve the flow field, and obtain the numerical calculation result of the flow field.
通过复合材料螺旋桨与流场之间的流固耦合交界面将结构场变形的数据传递给流场,进行流场网格更新,设置螺旋桨空化工况的空化数,并基于步骤三和步骤四建立的湍流模型及空化模型进行流场求解,获得流场数值计算结果。在螺旋桨的空化流动中,流场可视为由气、汽、液充分混合的连续均匀介质,采用均相流模型进行螺旋桨的流场求解。其中连续性方程和动量方程为:Through the fluid-structure coupling interface between the composite propeller and the flow field, the deformation data of the structure field is transmitted to the flow field, the flow field grid is updated, and the cavitation number of the propeller cavitation condition is set. Fourth, the established turbulence model and cavitation model are used to solve the flow field, and the numerical calculation results of the flow field are obtained. In the cavitation flow of the propeller, the flow field can be regarded as a continuous homogeneous medium fully mixed by gas, vapor and liquid, and the homogeneous flow model is used to solve the flow field of the propeller. The continuity equation and momentum equation are:
式中:u为速度矢量,ρm为混合介质密度,μm为混合介质的动力粘性系数,μt为湍流粘性系数,p为流场压力。其中混合项的介质密度ρm和介质动力粘性系数μm的定义分别为:where u is the velocity vector, ρ m is the density of the mixed medium, μ m is the dynamic viscosity coefficient of the mixed medium, μ t is the turbulent viscosity coefficient, and p is the flow field pressure. The definition of the medium density ρ m and the medium dynamic viscosity coefficient μ m of the mixing term are:
ρm=ρvαv+ρlαl (20)ρ m =ρ v α v +ρ l α l (20)
μm=μvαv+μlαl (21)μ m = μ v α v + μ l α l (21)
式中:ρl、αl和μl分别为液相的流体密度,ρv、αv和μv分别为汽相的流体密度、体积分数和流体运动粘度。where ρ l , α l and μ l are the fluid density of the liquid phase, respectively, and ρ v , α v and μ v are the fluid density, volume fraction and fluid kinematic viscosity of the vapor phase, respectively.
步骤七:给定复合材料螺旋桨的非定常空化流固耦合计算的收敛准则,使得计算结果同时满足收敛标准以及子迭代数不小于最大迭代步数,实现流固耦合计算方法的收敛。Step 7: Given the convergence criteria for the unsteady cavitation fluid-structure interaction calculation of the composite propeller, the calculation results meet the convergence criteria at the same time and the number of sub-iterations is not less than the maximum number of iteration steps, so as to realize the convergence of the fluid-structure interaction calculation method.
每一耦合步内结构场与流场经过子迭代步的不断交叉求解实现计算结果满足收敛标准,完成该时间步流固耦合计算,进入下一时间步计算;若不满足收敛标准,则判断子迭代步数的大小,若子迭代步数小于最大迭代步数,继续进行子迭代收敛求解计算,若子迭代步数不小于最大迭代步数,则进入下一步迭代计算。经过每一时间步内子迭代步的不断交叉求解,实现流固耦合计算方法的结果收敛,完成复合材料螺旋桨的非定常空化流固耦合计算。In each coupling step, the structure field and the flow field are continuously cross-solved in sub-iteration steps to achieve that the calculation results meet the convergence criteria, complete the fluid-structure coupling calculation at this time step, and enter the calculation of the next time step; if the convergence criteria are not met, the judgment The size of the number of iteration steps. If the number of sub-iteration steps is less than the maximum number of iteration steps, continue to perform the sub-iteration convergence solution calculation. If the number of sub-iteration steps is not less than the maximum number of iteration steps, enter the next iteration calculation. After continuous cross-solving of sub-iteration steps in each time step, the results of the fluid-structure interaction calculation method are converged, and the unsteady cavitation fluid-structure interaction calculation of the composite propeller is completed.
步骤八,将步骤一至步骤七所述的方法应用于复合材料螺旋桨的优化设计数值模拟领域,实现复合材料螺旋桨的非定常空化水动力性能的可预测性,有利于建立流场优劣快速评估方法和建立复合材料螺旋桨的空泡动态特征与空泡剥蚀分线评估方法;步骤八所述的复合材料螺旋桨非定常空化流固耦合性能预测方法应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。Step 8, applying the methods described in Steps 1 to 7 to the field of numerical simulation of the optimal design of the composite propeller to achieve the predictability of the unsteady cavitation hydrodynamic performance of the composite propeller, which is conducive to the establishment of a rapid evaluation of the pros and cons of the flow field The method and the method for establishing the dynamic characteristics of cavitation and cavitation erosion of the composite propeller; Hydrodynamic performance prediction, composite propeller optimization design field.
当将步骤一至步骤八所述的方法应用于复合材料螺旋桨的优化设计以及空化性能预测中,得到复合材料螺旋桨的空化水动力性能,获得复合材料铺层方式对螺旋桨空化水动力性能的影响,实现复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。When the method described in steps 1 to 8 is applied to the optimal design of the composite propeller and the prediction of the cavitation performance, the cavitation hydrodynamic performance of the composite propeller is obtained, and the effect of the composite material layering method on the cavitation hydrodynamic performance of the propeller is obtained. It can predict the structural dynamic response performance of composite propellers and solve engineering problems related to the strength and stability of composite propellers.
有益效果:Beneficial effects:
1、本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,基于紧耦合算法将流场数值计算结果与结构场数值计算结果进行双向耦合与传递,并完成时间步的迭代收敛,形成非定常空化流固耦合数值计算方法。1. A method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in the present invention, based on a tight coupling algorithm, bidirectionally couples and transfers the numerical calculation results of the flow field and the numerical calculation results of the structure field, and completes the iteration of the time step Convergence, the formation of unsteady cavitation fluid-structure interaction numerical calculation method.
2、本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,本方法采用的非定常空化流固耦合性能预测方法更符合复合材料螺旋桨实际运行的流场环境,有助于对复合材料螺旋桨的空化水动力性能深入准确的分析及预测,能够应用于复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。2. A method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in the present invention, the unsteady cavitation fluid-structure coupling performance prediction method adopted in this method is more in line with the actual operation of the composite propeller. For in-depth and accurate analysis and prediction of the cavitation hydrodynamic performance of composite propellers, it can be applied to the prediction of structural dynamic response performance of composite propellers to solve engineering problems related to the strength and stability of composite propellers.
附图说明Description of drawings
图1为本发明提供的一种复合材料螺旋桨非定常空化流固耦合性能预测方法流程图;1 is a flowchart of a method for predicting unsteady cavitation fluid-structure coupling performance of a composite propeller provided by the present invention;
图2为本发明实施实例提供的大侧斜HSP复合材料螺旋桨的来流速度示意图;2 is a schematic diagram of the incoming flow velocity of the large skew HSP composite material propeller provided by the embodiment of the present invention;
图3为本发明实施实例提供的大侧斜HSP复合材料螺旋桨的有限元模型示意图;3 is a schematic diagram of a finite element model of a large skew HSP composite propeller provided by an embodiment of the present invention;
图4为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的的非定常空化形态;Fig. 4 is the unsteady cavitation shape of the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention;
图5为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的非定常空化空泡体积对比;Fig. 5 is the unsteady cavitation cavitation volume comparison between the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention;
图6为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的推进效率变化对比。FIG. 6 is a comparison of the propulsion efficiency changes between the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention.
具体实施方式Detailed ways
结合附图,以一种单材料单铺层角复合材料大侧斜HSP船用螺旋桨的空化流固耦合特性预测为实施例。如图1所示,本实施例公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,具体实现步骤如下:With reference to the accompanying drawings, the prediction of the cavitation fluid-structure coupling characteristics of a single-material single-layer angle composite material high-slope HSP marine propeller is taken as an example. As shown in FIG. 1 , a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in this embodiment, the specific implementation steps are as follows:
步骤一:对刚性螺旋桨进行稳态流场的初值计算。Step 1: Calculate the initial value of the steady-state flow field for the rigid propeller.
针对直径为0.22m的大侧斜HSP船用刚性螺旋桨的流场进行定常的初值计算,螺旋桨转速为1050r/min,设置螺旋桨来流速度,获得定常流场的压力、速度等初值数据。流体稳态求解的控制方程可通过质量守恒方程和动量守恒方程表示:The steady initial value calculation is carried out for the flow field of the large-skew HSP marine rigid propeller with a diameter of 0.22m. The governing equations for the fluid steady state solution can be expressed by the mass conservation equation and the momentum conservation equation:
式中:下标i,j代表坐标方向,u为速度矢量,ρ为流体密度,p为流场压力,v为运动粘性系数,fi为单位体积质量力,δij为克罗内克函数。In the formula: the subscripts i and j represent the coordinate directions, u is the velocity vector, ρ is the fluid density, p is the flow field pressure, v is the kinematic viscosity coefficient, f i is the mass force per unit volume, and δ ij is the Kronecker function .
步骤二:建立复合材料螺旋桨结构有限元模型。Step 2: Establish a finite element model of the composite propeller structure.
基于刚性螺旋桨的几何尺寸参数,建立复合材料螺旋桨几何模型。以刚性螺旋桨的几何轮廓约束复合材料的纤维铺层。以单材料单铺层角的碳纤维增强复合材料螺旋桨为计算对象,其中复合材料的螺旋桨的堆叠顺序为[-45]25,复合材料的材料参数见表1。Based on the geometric parameters of the rigid propeller, the geometric model of the composite propeller is established. The fiber layup of the composite material is constrained with the geometric profile of a rigid propeller. The carbon fiber reinforced composite propeller with a single material and single layup angle is taken as the calculation object, and the stacking sequence of the propeller of the composite material is [-45] 25 , and the material parameters of the composite material are shown in Table 1.
表1复合材料参数Table 1 Composite material parameters
基于ANSYS Workbench中的ACP模块建立复合材料螺旋桨的有限元模型。复合材料螺旋桨截面面内力、弯矩与面内应变和曲率满足如下关系式:The finite element model of the composite propeller is established based on the ACP module in ANSYS Workbench. The in-plane force, bending moment, in-plane strain and curvature of the composite propeller section satisfy the following relationship:
式中:[N]代表面内力,[M]为弯矩,ε°和κ为中面应变和中面曲率,[A]、[B]、[D]矩阵分别为拉伸刚度矩阵、耦合刚度矩阵和弯曲刚度矩阵。In the formula: [N] represents the in-plane force, [M] is the bending moment, ε° and κ are the mid-plane strain and mid-plane curvature, and the [A], [B], and [D] matrices are the tensile stiffness matrix, the coupling Stiffness Matrix and Bending Stiffness Matrix.
步骤三:将定常流场初值的压力、速度等数据通过流固耦合交界面传递给结构场,进行有限元结构变形求解,获得结构场网格变形。Step 3: Transfer the pressure, velocity and other data of the initial value of the steady flow field to the structure field through the fluid-solid coupling interface, and solve the finite element structure deformation to obtain the mesh deformation of the structure field.
通过复合材料螺旋桨与流场之间的流固耦合交界面将定常流场初值的压力、速度等数据传递给结构场,根据步骤二建立的复合材料螺旋桨有限元模型与获得的流场压力、速度等数据,完成复合材料螺旋桨的有限元结构变形求解,获得结构场的网格变形。利用有限元方法对水动力载荷作用下的螺旋桨结构进行瞬态分析,其动力学结构控制方程如下:Through the fluid-structure coupling interface between the composite propeller and the flow field, the pressure, velocity and other data of the initial value of the steady flow field are transferred to the structural field. According to the finite element model of the composite propeller established in step 2 and the obtained flow field pressure, Speed and other data, complete the finite element structural deformation solution of the composite propeller, and obtain the mesh deformation of the structural field. The finite element method is used to conduct transient analysis of the propeller structure under the action of hydrodynamic load. The control equation of the dynamic structure is as follows:
式中[Ms]、[Cs]和[Ks]分别为结构质量矩阵、结构阻尼矩阵和结构刚度矩阵,{X}、和分别为结构位移、结构速度和结构加速度,{FEX}代表流固耦合作用下结构所受外部激励力,{FHE}代表流固耦合作用下结构所受流场力。where [M s ], [C s ] and [K s ] are the structural mass matrix, the structural damping matrix and the structural stiffness matrix, respectively, {X}, and are the structural displacement, structural velocity and structural acceleration, respectively, {F EX } represents the external excitation force on the structure under the action of fluid-structure interaction, and {F HE } represents the flow field force on the structure under the action of fluid-structure interaction.
步骤四:建立复合材料螺旋桨流场计算的湍流模型。Step 4: Establish a turbulence model for the calculation of the flow field of the composite propeller.
为了较好地捕捉多尺度非定常流场湍流结构及近壁区流动的现象,采用涡粘性模型,引入湍流粘性系数μt将雷诺应力与平均速度梯度间建立联系。确定涡粘性系数的计算采用两方程k-ωSST湍流模型封闭雷诺时均方程:In order to better capture the turbulent structure of the multi-scale unsteady flow field and the phenomenon of flow in the near-wall region, the eddy viscosity model is used, and the turbulent viscosity coefficient μ t is introduced to establish a relationship between the Reynolds stress and the average velocity gradient. The calculation to determine the eddy viscosity coefficient uses the two-equation k-ωSST turbulence model to close the Reynolds time-averaged equation:
式中,k为湍动能,ω为湍流频率,ρ为流体密度,μ为动力粘性系数,为系踪平均,Gk和Gw分别是由平均速度梯度和浮力影响引起的湍动能产生项,Yk和YM分别是由平均速度梯度和可压缩湍流脉动膨胀对总的耗散率的影响,Dw为横向扩散项。式中,σw和σk分别为湍动能和湍流频率的普朗特数:where k is the turbulent kinetic energy, ω is the turbulent frequency, ρ is the fluid density, μ is the dynamic viscosity coefficient, is the tethered average, G k and G w are the turbulent kinetic energy generation terms caused by the average velocity gradient and buoyancy effects, respectively, and Y k and Y M are the total dissipation rate caused by the average velocity gradient and the compressible turbulent pulsation expansion, respectively. influence, Dw is the lateral diffusion term. where σw and σk are Prandtl numbers of turbulent kinetic energy and turbulent frequency, respectively:
湍流粘性系数μt的计算式如下:The formula for calculating the turbulent viscosity coefficient μ t is as follows:
式中,S为剪切应变率,F1、F2为混合函数。where S is the shear strain rate, and F 1 and F 2 are mixing functions.
步骤五:建立复合材料螺旋桨流场计算的空化模型。Step 5: Establish a cavitation model for the calculation of the flow field of the composite propeller.
复合材料螺旋桨流场计算的空化模型采用在Ralyleigh-Plesset(R-P)方程的基础上提出的基于空泡动力学的输运方程:The cavitation model for the calculation of the flow field of the composite propeller adopts the transport equation based on cavitation dynamics proposed on the basis of the Ralyleigh-Plesset (R-P) equation:
式中,RB为空泡半径,pv为25℃环境下的饱和蒸汽压(pv=3169Pa),S为表面张力系数,ρl为液体密度,T∞为远场流体温度,p∞为远场环境压强。where R B is the bubble radius, p v is the saturated vapor pressure at 25°C (p v =3169Pa), S is the surface tension coefficient, ρ l is the liquid density, T ∞ is the far-field fluid temperature, p ∞ is the far-field ambient pressure.
忽略空泡半径的二阶导数及表面张力的相互作用,分别化简出空泡半径RB、空泡质量mB和空泡体积VB随时间的变化率:Ignoring the second derivative of the bubble radius and the interaction of surface tension, the rate of change of the bubble radius R B , the bubble mass m B and the bubble volume V B with time is simplified respectively:
水中空化汽核密度NB(即单位体积内有NB个空泡),则汽相体积比ɑv为:The density of cavitation vapor nucleus in water N B (that is, there are N B cavities in unit volume), then the vapor phase volume ratio ɑ v is:
则单位体积的相间质量交换率m为:Then the interphase mass exchange rate m per unit volume is:
上式为蒸发项,根据上述关系式可以求出其中,汽/液相间蒸发率和凝结率的表达式分别为:The above formula is the evaporation term. According to the above relationship, the expressions of the evaporation rate and condensation rate between the vapor and liquid phases can be calculated as:
式中,αnuc为空化气核体积分数,Cd和Cp分别为局部压强小于饱和蒸汽压时的液相蒸发率和局部压强大于饱和蒸汽压时的汽相凝结率,RB为空泡半径,Pv为pv(T∞)。where α nuc is the volume fraction of the cavitation gas nucleus, Cd and C p are the evaporation rate of the liquid phase when the partial pressure is lower than the saturated vapor pressure and the condensation rate of the vapor phase when the partial pressure is greater than the saturated vapor pressure, respectively, and R B is the cavitation Radius, P v is p v (T ∞ ).
步骤六:将步骤二所获得的结构场变形等信息通过流固耦合交界面传递给流场,进行流场网格更新及流场求解,获得流场水动力载荷、速度等数据。Step 6: Transfer the structural field deformation and other information obtained in Step 2 to the flow field through the fluid-solid coupling interface, update the flow field grid and solve the flow field, and obtain data such as the hydrodynamic load and velocity of the flow field.
通过复合材料螺旋桨与流场之间的流固耦合交界面将结构场变形等数据传递给结构场,进行流场网格更新,设置空化数为2.99并基于步骤三和步骤四建立的湍流模型及空化模型进行流场求解,获得流场空化水动力载荷、速度等数据。在螺旋桨的空化流动中,流场可视为由气、汽、液充分混合的连续均匀介质,采用均相流模型进行螺旋桨的流场求解。其中连续性方程和动量方程为:Through the fluid-structure coupling interface between the composite propeller and the flow field, data such as the deformation of the structure field are transferred to the structure field, and the flow field grid is updated. And the cavitation model is used to solve the flow field, and the data such as the hydrodynamic load and velocity of the flow field cavitation are obtained. In the cavitation flow of the propeller, the flow field can be regarded as a continuous homogeneous medium fully mixed by gas, vapor and liquid, and the homogeneous flow model is used to solve the flow field of the propeller. The continuity equation and momentum equation are:
式中:u为速度矢量,ρm为混合介质密度,μm为混合介质的动力粘性系数,μt为湍流粘性系数,p为流场压力。其中混合项的介质密度ρm和介质动力粘性系数μm的定义分别为:where u is the velocity vector, ρ m is the density of the mixed medium, μ m is the dynamic viscosity coefficient of the mixed medium, μ t is the turbulent viscosity coefficient, and p is the flow field pressure. The definition of the medium density ρ m and the medium dynamic viscosity coefficient μ m of the mixing term are:
ρm=ρvαv+ρlαl (20)ρ m =ρ v α v +ρ l α l (20)
μm=μvαv+μlαl (21)μ m = μ v α v + μ l α l (21)
式中:ρl、αl和μl分别为液相的流体密度,ρv、αv和μv分别为汽相的流体密度、体积分数和流体运动粘度。where ρ l , α l and μ l are the fluid density of the liquid phase, respectively, and ρ v , α v and μ v are the fluid density, volume fraction and fluid kinematic viscosity of the vapor phase, respectively.
步骤七:给定复合材料螺旋桨的非定常空化流固耦合计算的收敛准则,使得计算结果同时满足收敛标准以及子迭代数不小于最大迭代步数,实现流固耦合计算方法的收敛。Step 7: Given the convergence criteria for the unsteady cavitation fluid-structure interaction calculation of the composite propeller, the calculation results meet the convergence criteria at the same time and the number of sub-iterations is not less than the maximum number of iteration steps, so as to realize the convergence of the fluid-structure interaction calculation method.
每一耦合步内结构场与流场经过子迭代步的不断交叉求解实现计算结果满足收敛标准,完成该时间步流固耦合计算,进入下一时间步计算;若不满足收敛标准,则判断子迭代步数的大小,若子迭代步数小于最大迭代步数,继续进行子迭代收敛求解计算,若子迭代步数不小于最大迭代步数,则进入下一步迭代计算。经过每一时间步内子迭代步的不断交叉求解,实现流固耦合计算方法的结果收敛,完成复合材料螺旋桨的非定常空化流固耦合计算。复合材料螺旋桨的非定常空化流固耦合性能预测方法能够获得复合材料在不同伴流下的发生空化时的推进性能、瞬时空化形态、流场及桨叶脉动压力特性。通过计算得到的复合材料螺旋桨的推进效率和空泡体积的发展曲线一致为均匀正弦曲线并伴随五个波峰。复合材料螺旋桨的推进效率高于刚性螺旋桨的推进效率,而空泡体积显著小于刚性螺旋桨的空泡体积。结果表明该铺层的复合材料螺旋桨与刚性螺旋桨相比有推迟空化和提升空化水动力性能的优点,满足在该流域情况下的实际应用并优于传统刚性螺旋桨。计算结果说明了对复合材料螺旋桨非定常空化性能的预测研究具有重要的工程意义,能够适用于对不同伴流条件下复合材料螺旋桨的空化性能预测,实现快速评估流场优劣的可能;同时能够通过不同铺层结构的复合材料螺旋桨与刚性螺旋桨的空化性能的数值模拟预测,实现复合材料螺旋桨的性能优劣的快速评估。In each coupling step, the structure field and the flow field are continuously cross-solved in sub-iteration steps to achieve that the calculation results meet the convergence criteria, complete the fluid-structure coupling calculation at this time step, and enter the calculation of the next time step; if the convergence criteria are not met, the judgment The size of the number of iteration steps. If the number of sub-iteration steps is less than the maximum number of iteration steps, continue to perform the sub-iteration convergence solution calculation. If the number of sub-iteration steps is not less than the maximum number of iteration steps, enter the next iteration calculation. After continuous cross-solving of sub-iteration steps in each time step, the results of the fluid-structure interaction calculation method are converged, and the unsteady cavitation fluid-structure interaction calculation of the composite propeller is completed. The unsteady cavitation fluid-structure interaction performance prediction method of composite propeller can obtain the propulsion performance, instantaneous cavitation shape, flow field and blade pulsating pressure characteristics of composite materials when cavitation occurs under different wakes. The development curves of the propulsion efficiency and the cavitation volume of the composite propeller obtained by calculation are consistent with a uniform sinusoidal curve with five peaks. The propulsion efficiency of the composite propeller is higher than that of the rigid propeller, and the cavitation volume is significantly smaller than that of the rigid propeller. The results show that the laminated composite propeller has the advantages of delaying cavitation and improving the hydrodynamic performance of cavitation compared with the rigid propeller, which satisfies the practical application in this watershed and is superior to the traditional rigid propeller. The calculation results show that the prediction of the unsteady cavitation performance of the composite propeller has important engineering significance, which can be applied to the prediction of the cavitation performance of the composite propeller under different wake conditions, and it is possible to quickly evaluate the pros and cons of the flow field. At the same time, through the numerical simulation prediction of the cavitation performance of composite propellers and rigid propellers with different layup structures, a rapid evaluation of the performance of composite propellers can be achieved.
步骤八,将步骤一至步骤七所述的方法应用于复合材料螺旋桨的优化设计数值模拟领域,实现复合材料螺旋桨的非定常空化水动力性能的可预测性,有利于建立流场优劣快速评估方法和建立复合材料螺旋桨的空泡动态特征与空泡剥蚀分线评估方法;步骤八所述的复合材料螺旋桨非定常空化流固耦合性能预测方法应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。Step 8, applying the methods described in Steps 1 to 7 to the field of numerical simulation of the optimal design of the composite propeller to achieve the predictability of the unsteady cavitation hydrodynamic performance of the composite propeller, which is conducive to the establishment of a rapid evaluation of the pros and cons of the flow field The method and the method for establishing the dynamic characteristics of cavitation and cavitation erosion of the composite propeller; Hydrodynamic performance prediction, composite propeller optimization design field.
当将步骤一至步骤八所述的方法应用于复合材料螺旋桨的优化设计以及空化性能预测中,得到复合材料螺旋桨的空化水动力性能,获得复合材料铺层方式对螺旋桨空化水动力性能的影响,实现复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。When the method described in steps 1 to 8 is applied to the optimal design of the composite propeller and the prediction of the cavitation performance, the cavitation hydrodynamic performance of the composite propeller is obtained, and the effect of the composite material layering method on the cavitation hydrodynamic performance of the propeller is obtained. It can predict the structural dynamic response performance of composite propellers and solve engineering problems related to the strength and stability of composite propellers.
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above-mentioned specific descriptions further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned descriptions are only specific embodiments of the present invention, and are not intended to limit the protection of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373898.1A CN114757120B (en) | 2022-04-11 | 2022-04-11 | Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373898.1A CN114757120B (en) | 2022-04-11 | 2022-04-11 | Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114757120A true CN114757120A (en) | 2022-07-15 |
CN114757120B CN114757120B (en) | 2024-07-19 |
Family
ID=82330269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210373898.1A Active CN114757120B (en) | 2022-04-11 | 2022-04-11 | Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114757120B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115758930A (en) * | 2022-11-09 | 2023-03-07 | 哈尔滨工程大学 | A Bidirectional Fluid-Structure Interaction Numerical Simulation Method for Propeller-shaft Coupling System |
CN116605400A (en) * | 2023-06-16 | 2023-08-18 | 中国船舶科学研究中心 | A control method for autonomous optimization of ship stern flow field |
CN119005075A (en) * | 2024-10-24 | 2024-11-22 | 中国科学技术大学 | Multiphase flow numerical solving method for coupling phase change component transportation |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120065942A1 (en) * | 2010-09-10 | 2012-03-15 | Jeng-Lih Hwang | Method of an all-speed propeler |
KR101703105B1 (en) * | 2016-10-07 | 2017-02-07 | 한국해양과학기술원 | Air-hole simulation model propeller for good prediction of full-scale cavitation performance |
CN107895069A (en) * | 2017-10-30 | 2018-04-10 | 北京理工大学 | A kind of fluid structurecoupling Numerical Predicting Method based on composite structure |
CN108763800A (en) * | 2018-06-04 | 2018-11-06 | 北京理工大学 | A kind of cavitation compressible flows shock-wave dynamics method for numerical simulation |
CN110516342A (en) * | 2019-08-22 | 2019-11-29 | 北京理工大学 | A Numerical Prediction Method of Compressible Cavitation Flow in Propeller Based on OpenFOAM Platform |
CN111159950A (en) * | 2019-12-30 | 2020-05-15 | 北京理工大学 | Acoustic-solid coupling-based composite propeller prestress wet mode prediction method |
CN111444643A (en) * | 2020-03-02 | 2020-07-24 | 北京理工大学 | A neural network-based optimization method for the layup angle of composite propellers |
CN111444642A (en) * | 2020-03-02 | 2020-07-24 | 北京理工大学 | Composite propeller layering optimization method based on multi-objective genetic algorithm |
CN113312858A (en) * | 2021-06-07 | 2021-08-27 | 北京理工大学 | Two-dimensional composite material hydrofoil fluid-solid coupling characteristic prediction method based on plate theory |
CN113434961A (en) * | 2021-06-29 | 2021-09-24 | 北京理工大学 | One-dimensional composite material airfoil fluid-solid coupling characteristic prediction method based on beam theory |
US20220075911A1 (en) * | 2020-06-11 | 2022-03-10 | Dalian University Of Technology | Method for predicting structural failure by strength-criterion-driven peridynamic model |
-
2022
- 2022-04-11 CN CN202210373898.1A patent/CN114757120B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120065942A1 (en) * | 2010-09-10 | 2012-03-15 | Jeng-Lih Hwang | Method of an all-speed propeler |
KR101703105B1 (en) * | 2016-10-07 | 2017-02-07 | 한국해양과학기술원 | Air-hole simulation model propeller for good prediction of full-scale cavitation performance |
CN107895069A (en) * | 2017-10-30 | 2018-04-10 | 北京理工大学 | A kind of fluid structurecoupling Numerical Predicting Method based on composite structure |
CN108763800A (en) * | 2018-06-04 | 2018-11-06 | 北京理工大学 | A kind of cavitation compressible flows shock-wave dynamics method for numerical simulation |
CN110516342A (en) * | 2019-08-22 | 2019-11-29 | 北京理工大学 | A Numerical Prediction Method of Compressible Cavitation Flow in Propeller Based on OpenFOAM Platform |
CN111159950A (en) * | 2019-12-30 | 2020-05-15 | 北京理工大学 | Acoustic-solid coupling-based composite propeller prestress wet mode prediction method |
CN111444643A (en) * | 2020-03-02 | 2020-07-24 | 北京理工大学 | A neural network-based optimization method for the layup angle of composite propellers |
CN111444642A (en) * | 2020-03-02 | 2020-07-24 | 北京理工大学 | Composite propeller layering optimization method based on multi-objective genetic algorithm |
US20220075911A1 (en) * | 2020-06-11 | 2022-03-10 | Dalian University Of Technology | Method for predicting structural failure by strength-criterion-driven peridynamic model |
CN113312858A (en) * | 2021-06-07 | 2021-08-27 | 北京理工大学 | Two-dimensional composite material hydrofoil fluid-solid coupling characteristic prediction method based on plate theory |
CN113434961A (en) * | 2021-06-29 | 2021-09-24 | 北京理工大学 | One-dimensional composite material airfoil fluid-solid coupling characteristic prediction method based on beam theory |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115758930A (en) * | 2022-11-09 | 2023-03-07 | 哈尔滨工程大学 | A Bidirectional Fluid-Structure Interaction Numerical Simulation Method for Propeller-shaft Coupling System |
CN115758930B (en) * | 2022-11-09 | 2025-06-03 | 哈尔滨工程大学 | A bidirectional fluid-structure coupling numerical simulation method for propeller-shaft coupling system |
CN116605400A (en) * | 2023-06-16 | 2023-08-18 | 中国船舶科学研究中心 | A control method for autonomous optimization of ship stern flow field |
CN116605400B (en) * | 2023-06-16 | 2024-11-15 | 中国船舶科学研究中心 | Control method for autonomously optimizing stern flow field of ship |
CN119005075A (en) * | 2024-10-24 | 2024-11-22 | 中国科学技术大学 | Multiphase flow numerical solving method for coupling phase change component transportation |
CN119005075B (en) * | 2024-10-24 | 2024-12-27 | 中国科学技术大学 | A numerical solution method for multiphase flow with coupled phase change component transport |
Also Published As
Publication number | Publication date |
---|---|
CN114757120B (en) | 2024-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114757120B (en) | Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method | |
CN111444643B (en) | A neural network-based optimization method for the layup angle of composite propellers | |
CN107895069B (en) | Fluid-solid coupling numerical value prediction method based on composite material structure | |
Young | Fluid–structure interaction analysis of flexible composite marine propellers | |
Liao et al. | Viscous fluid–structure interaction response of composite hydrofoils | |
CN104298869B (en) | A Numerical Prediction Method for Fluid-Structure Interaction Characteristics of Elastic Hydrofoils | |
CN101706832B (en) | Optimization design method of fibre enhanced composite material marine propeller blade | |
CN105653781B (en) | A kind of computational methods of composite propeller vacuole performance | |
Das et al. | On the use of bend–twist coupling in full-scale composite marine propellers for improving hydrodynamic performance | |
Han et al. | Structural design of the composite blades for a marine ducted propeller based on a two-way fluid-structure interaction method | |
CN101706833A (en) | Design method for marine propeller made of carbon fiber composite material | |
Hong et al. | Numerical analysis and performance comparison of the same series of composite propellers | |
CN109117504B (en) | Bidirectional functional gradient curved shell vibration analysis method | |
Zhang et al. | Numerical investigation of the deformation characteristics of a composite hydrofoil with different ply angles | |
CN114896722B (en) | Method for accurately predicting multi-scale cavitation flow around hydrofoils | |
An et al. | Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller | |
CN109711093A (en) | A pre-deformation optimization method for marine composite propellers | |
Liang et al. | Hydrodynamic performance optimization of marine propellers based on fluid-structure coupling | |
Young | Hydroelastic behavior of flexible composite propellers in wake inflow | |
Zhang et al. | Global cavitation and hydrodynamic characteristics of a composite propeller in non-uniform wake | |
Zhang et al. | Numerical analysis on propulsive efficiency and pre-deformated optimization of a composite marine propeller | |
Shayanpoor et al. | Hydroelastic analysis of composite marine propeller basis fluid-structure interaction (FSI) | |
An et al. | Tip clearance influence on hydrodynamic performance and pressure fluctuation of a composite ducted propeller using a two-way FSI method | |
Sun et al. | Fluid-structure interaction analysis of flexible marine propellers | |
Liao et al. | Hydrostructural optimization of single-layer and multi-layer composite lifting surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |