CN114757120A - Method for predicting unsteady cavitation fluid-solid coupling performance of composite propeller - Google Patents

Method for predicting unsteady cavitation fluid-solid coupling performance of composite propeller Download PDF

Info

Publication number
CN114757120A
CN114757120A CN202210373898.1A CN202210373898A CN114757120A CN 114757120 A CN114757120 A CN 114757120A CN 202210373898 A CN202210373898 A CN 202210373898A CN 114757120 A CN114757120 A CN 114757120A
Authority
CN
China
Prior art keywords
propeller
flow field
fluid
composite
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210373898.1A
Other languages
Chinese (zh)
Other versions
CN114757120B (en
Inventor
张丹丹
吴钦
董璐璐
黄彪
王国玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210373898.1A priority Critical patent/CN114757120B/en
Publication of CN114757120A publication Critical patent/CN114757120A/en
Application granted granted Critical
Publication of CN114757120B publication Critical patent/CN114757120B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a method for predicting unsteady cavitation fluid-solid coupling performance of a composite propeller, and belongs to the technical field of composite propeller performance prediction. The implementation method of the invention comprises the following steps: on the basis of a flow field calculation model, a blade structure of the composite propeller is subjected to layered modeling based on a laminated plate theory, numerical calculation of structural dynamics is embedded into flow field calculation, an accurate fluid-solid coupling interface is set, bidirectional coupling and transmission are performed on a flow field numerical calculation result and a structural field numerical calculation result through a data transmission interface based on a tight coupling algorithm, the applicability and the accuracy of the bidirectional coupling and transmission are analyzed, and the unsteady cavitation fluid-solid coupling performance of the composite propeller is obtained. The method is beneficial to deep analysis and prediction of the cavitation hydrodynamic performance of the composite material propeller, can be applied to prediction of the structure dynamic response performance of the composite material propeller, and solves the engineering problems related to the strength and stability of the composite material propeller. The method has the advantages of high prediction efficiency and high precision.

Description

一种复合材料螺旋桨非定常空化流固耦合性能预测方法A prediction method for unsteady cavitation fluid-structure interaction performance of composite propellers

技术领域technical field

本发明涉及一种复合材料螺旋桨非定常空化流固耦合性能预测方法,适用于基于双向流固耦合算法的复合材料螺旋桨的水动力性能及空化性能预测,属于复合材料螺旋桨性能预测技术领域。The invention relates to a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, which is suitable for predicting the hydrodynamic performance and cavitation performance of a composite material propeller based on a two-way fluid-structure coupling algorithm, and belongs to the technical field of composite material propeller performance prediction.

背景技术Background technique

为了提升螺旋桨的水动力性能和振动噪声性能,增加螺旋桨的使用寿命,国内外众多学者对新型水力机械的制造材料进行了各方面的研究。由于纤维增强复合材料具有和合金材料相似的高比强度和高比刚度,并同时具备各向异性以及优越的阻尼性能,因此适用于在复杂的水下环境下服役的各种水动力机械。与传统金属螺旋桨相比,复合材料螺旋桨在空化水动力载荷作用下的显现的流固耦合特性,能够使得螺旋桨的螺距角发生改变,抑制空泡的产生,从而提升螺旋桨的水动力性能。由于复合材料螺旋桨桨叶的复杂外形结构和内部铺层结构的多样性,复合材料螺旋桨的空化流固耦合性能预测十分困难。由于大尺度的螺旋桨的加工困难,螺旋桨的水动力性能的实验往往通过模型试验,但模型试验的设备依然造价昂贵,并且存在尺度效应,因此发展理论方法预测复合材料螺旋桨的空化水动力性能有重要工程意义。In order to improve the hydrodynamic performance and vibration and noise performance of the propeller and increase the service life of the propeller, many scholars at home and abroad have conducted various researches on the manufacturing materials of new hydraulic machinery. Because fiber reinforced composites have high specific strength and high specific stiffness similar to alloy materials, as well as anisotropy and superior damping properties, they are suitable for various hydrodynamic machinery serving in complex underwater environments. Compared with traditional metal propellers, the fluid-structure coupling characteristics of composite propellers under the action of cavitation hydrodynamic loads can change the pitch angle of the propellers and inhibit the generation of cavitation, thereby improving the hydrodynamic performance of the propellers. Due to the complex shape structure of composite propeller blades and the diversity of internal laminate structures, it is very difficult to predict the cavitation fluid-structure interaction performance of composite propellers. Due to the difficulty of processing large-scale propellers, the hydrodynamic performance experiments of the propellers often pass the model test, but the equipment for the model test is still expensive and has scale effects. Therefore, the development of theoretical methods to predict the cavitation hydrodynamic performance of composite propellers has important engineering significance.

由于纤维增强复合材料螺旋桨具有复杂的结构外形,并且在水动力作用下桨叶会产生一定的弹性变形,涉及大量的复杂非线性问题,因此适用于传统金属螺旋桨的流固耦合性能的数值计算方法不再适用,而复合材料螺旋桨的双向流固耦合性能的数值计算虽然已受到很多学者关注研究,但仍然局限于复合材料螺旋桨的水动力性能预测以及定常的空化性能预测,无法直接应用于复合材料螺旋桨的非定常空化流固耦合性能预测。因此建立复合材料螺旋桨非定常空化流固耦合性能预测方法,可以计算复合材料螺旋桨的结构变形,分析复合材料螺旋桨的非定常流场特性,对于螺旋桨的实际应用有重要的现实意义。Because the fiber reinforced composite propeller has a complex structure and shape, and the blade will produce a certain elastic deformation under the action of hydrodynamics, involving a large number of complex nonlinear problems, it is suitable for the numerical calculation method of the fluid-structure interaction performance of the traditional metal propeller It is no longer applicable, and although the numerical calculation of the two-way fluid-structure interaction performance of composite propellers has been studied by many scholars, it is still limited to the prediction of hydrodynamic performance of composite propellers and the prediction of steady cavitation performance, and cannot be directly applied to composite propellers. Prediction of unsteady cavitation fluid-structure interaction performance of material propellers. Therefore, the establishment of a prediction method for the unsteady cavitation fluid-structure coupling performance of composite propellers can calculate the structural deformation of composite propellers and analyze the unsteady flow field characteristics of composite propellers, which has important practical significance for the practical application of propellers.

发明内容SUMMARY OF THE INVENTION

本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,要解决的技术问题是:建立一种通用的复合材料螺旋桨非定常空化流固耦合性能预测方法,基于流场数值计算模型包括流场多相流模型、外流场计算的RANS方程、空化模型实现流场计算模型的建立,在流场计算模型的基础上,基于层合板理论对复合材料螺旋桨的桨叶结构进行分层建模,将结构动力学的数值计算嵌入流场计算,并设置准确的流固耦合交界面,基于紧耦合算法通过数据传递接口将流场数值计算结果与结构场数值计算结果进行双向耦合与传递,分析其适用性和准确性,获得复合材料螺旋桨的非定常空化流固耦合性能。本发明有助于对复合材料螺旋桨的空化水动力性能深入分析及预测,能够应用于复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。The invention discloses a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, and the technical problem to be solved is to establish a general method for predicting the unsteady cavitation fluid-structure coupling performance of a composite material propeller, based on the numerical value of the flow field. The calculation model includes the multiphase flow model of the flow field, the RANS equation of the external flow field calculation, and the cavitation model to realize the establishment of the flow field calculation model. On the basis of the flow field calculation model, the blade structure of the composite propeller is calculated based on the laminate theory. Carry out hierarchical modeling, embed the numerical calculation of structural dynamics into the flow field calculation, and set up an accurate fluid-structure coupling interface. Based on the tight coupling algorithm, the numerical calculation results of the flow field and the numerical calculation results of the structure field are bidirectionally carried out through the data transfer interface. Coupling and transfer, analyze its applicability and accuracy, and obtain the unsteady cavitation fluid-structure interaction performance of composite propellers. The invention is helpful for in-depth analysis and prediction of the cavitation hydrodynamic performance of the composite material propeller, can be applied to the prediction of the structural dynamic response performance of the composite material propeller, and solves engineering problems related to the strength and stability of the composite material propeller.

所述复合材料螺旋桨非定常空化流固耦合特性预测方法的应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。本发明能够有效预测复合材料螺旋桨产生的水动力变形,具有预测效率高和精度高的优点。The application fields of the method for predicting the unsteady cavitation fluid-structure interaction characteristics of the composite propeller include the prediction of the fluid-structure interaction characteristics, the prediction of the hydrodynamic performance of the cavitation of the propeller, and the field of optimal design of the composite material propeller. The invention can effectively predict the hydrodynamic deformation generated by the composite material propeller, and has the advantages of high prediction efficiency and high precision.

本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,包括如下步骤:A method for predicting the unsteady cavitation fluid-solid coupling performance of a composite material propeller disclosed in the present invention includes the following steps:

步骤一:对刚性螺旋桨进行稳态流场的初值计算。Step 1: Calculate the initial value of the steady-state flow field for the rigid propeller.

针对刚性螺旋桨的流场进行定常的初值计算,设置螺旋桨工作的螺旋桨旋转速度及来流速度,获得定常流场的初值数据。流体稳态求解的控制方程通过质量守恒方程和动量守恒方程表示:The steady initial value calculation is performed for the flow field of the rigid propeller, and the propeller rotation speed and the incoming flow speed of the propeller are set to obtain the initial value data of the steady flow field. The governing equations for the fluid steady state solution are expressed by the mass conservation equation and the momentum conservation equation:

Figure BDA0003589517480000021
Figure BDA0003589517480000021

Figure BDA0003589517480000022
Figure BDA0003589517480000022

式中:下标i,j代表坐标方向,u为速度矢量,ρ为流体密度,p为流场压力,v为运动粘性系数,fi为单位体积质量力,δij为克罗内克函数。where the subscripts i and j represent the coordinate directions, u is the velocity vector, ρ is the fluid density, p is the flow field pressure, v is the kinematic viscosity coefficient, fi is the mass force per unit volume, and δ ij is the Kronecker function.

步骤二:建立复合材料螺旋桨结构有限元模型。Step 2: Establish a finite element model of the composite propeller structure.

基于刚性螺旋桨的几何尺寸参数,建立复合材料螺旋桨几何模型。以刚性螺旋桨的几何轮廓约束复合材料的纤维铺层,基于有限元软件依据复合材料螺旋桨的铺层顺序,逐层设置复合材料螺旋桨的铺层材料厚度及材料属性,输入每层纤维布的密度ρ、弹性模量E、剪切模量G、泊松比υ,建立复合材料螺旋桨的有限元模型。复合材料螺旋桨截面面内力、弯矩与面内应变和曲率满足如下关系式:Based on the geometric parameters of the rigid propeller, the geometric model of the composite propeller is established. The fiber layup of the composite material is constrained by the geometric contour of the rigid propeller. Based on the finite element software, according to the layup sequence of the composite material propeller, the thickness and material properties of the layup material of the composite material propeller are set layer by layer, and the density ρ of each layer of fiber cloth is input. , elastic modulus E, shear modulus G, Poisson's ratio υ, establish the finite element model of the composite propeller. The in-plane force, bending moment, in-plane strain and curvature of the composite propeller section satisfy the following relationship:

Figure BDA0003589517480000023
Figure BDA0003589517480000023

式中:[N]代表面内力,[M]为弯矩,ε°和κ为中面应变和中面曲率,[A]、[B]、[D]矩阵分别为面内刚度矩阵、耦合刚度矩阵和弯曲刚度矩阵。In the formula: [N] represents the in-plane force, [M] is the bending moment, ε° and κ are the mid-plane strain and mid-plane curvature, and the [A], [B], and [D] matrices are the in-plane stiffness matrix, the coupling Stiffness Matrix and Bending Stiffness Matrix.

作为优选,所述有限元软件选用ANSYS Workbench中的ACP模块实现。Preferably, the finite element software is implemented by using the ACP module in ANSYS Workbench.

步骤三:将定常流场的初值数据通过流固耦合交界面传递给结构场,进行有限元结构变形求解,获得结构场网格变形。Step 3: The initial value data of the steady flow field is transferred to the structure field through the fluid-solid coupling interface, and the finite element structure deformation is solved to obtain the mesh deformation of the structure field.

通过复合材料螺旋桨与流场之间的流固耦合交界面将定常流场的初值数据传递给结构场,根据步骤二建立的复合材料螺旋桨有限元模型与获得的流场初值数据,完成复合材料螺旋桨的有限元结构变形求解,获得结构场的网格变形。利用有限元方法对水动力载荷作用下的螺旋桨结构进行瞬态分析,其动力学结构控制方程如下:Through the fluid-solid coupling interface between the composite propeller and the flow field, the initial value data of the steady flow field is transferred to the structural field. According to the finite element model of the composite propeller established in step 2 and the obtained initial value data of the flow field, the composite material is completed. The finite element structural deformation of the material propeller is solved, and the mesh deformation of the structural field is obtained. The finite element method is used to conduct transient analysis of the propeller structure under the action of hydrodynamic load. The control equation of the dynamic structure is as follows:

Figure BDA0003589517480000031
Figure BDA0003589517480000031

式中[Ms]、[Cs]和[Ks]分别为结构质量矩阵、结构阻尼矩阵和结构刚度矩阵,{X}、

Figure BDA0003589517480000032
Figure BDA0003589517480000033
分别为结构位移、结构速度和结构加速度,{FEX}代表流固耦合作用下结构所受外部激励力,{FHE}代表流固耦合作用下结构所受流场力。where [M s ], [C s ] and [K s ] are the structural mass matrix, the structural damping matrix and the structural stiffness matrix, respectively, {X},
Figure BDA0003589517480000032
and
Figure BDA0003589517480000033
are the structural displacement, structural velocity and structural acceleration, respectively, {F EX } represents the external excitation force on the structure under the action of fluid-structure interaction, and {F HE } represents the flow field force on the structure under the action of fluid-structure interaction.

步骤四:建立复合材料螺旋桨流场计算的湍流模型。Step 4: Establish a turbulence model for the calculation of the flow field of the composite propeller.

为了较好地捕捉多尺度非定常流场湍流结构及近壁区流动的现象,采用涡粘性模型,引入湍流粘性系数μt将雷诺应力与平均速度梯度间建立联系。确定涡粘性系数的计算采用两方程k-ωSST湍流模型封闭雷诺时均方程:In order to better capture the turbulent structure of the multi-scale unsteady flow field and the phenomenon of flow in the near-wall region, the eddy viscosity model is used, and the turbulent viscosity coefficient μ t is introduced to establish a relationship between the Reynolds stress and the average velocity gradient. The calculation to determine the eddy viscosity coefficient uses the two-equation k-ωSST turbulence model to close the Reynolds time-averaged equation:

Figure BDA0003589517480000034
Figure BDA0003589517480000034

Figure BDA0003589517480000035
Figure BDA0003589517480000035

式中,k为湍动能,ω为湍流频率,ρ为流体密度,μ为动力粘性系数,

Figure BDA0003589517480000036
为系踪平均,速度Gk和Gw分别是由平均速度梯度和浮力影响引起的湍动能产生项,Yk和YM分别是由平均速度梯度和可压缩湍流脉动膨胀对总的耗散率的影响,Dw为横向扩散项。式中,σw和σk分别为湍动能和湍流频率的普朗特数:where k is the turbulent kinetic energy, ω is the turbulent frequency, ρ is the fluid density, μ is the dynamic viscosity coefficient,
Figure BDA0003589517480000036
is the tethered average, the velocities G k and G w are the turbulent kinetic energy generation terms caused by the mean velocity gradient and buoyancy effects, respectively, and Y k and Y M are the total dissipation rate caused by the mean velocity gradient and the compressible turbulent pulsation expansion, respectively , Dw is the lateral diffusion term. where σw and σk are Prandtl numbers of turbulent kinetic energy and turbulent frequency, respectively:

Figure BDA0003589517480000037
Figure BDA0003589517480000037

Figure BDA0003589517480000038
Figure BDA0003589517480000038

湍流粘性系数μt的计算式如下:The formula for calculating the turbulent viscosity coefficient μ t is as follows:

Figure BDA0003589517480000039
Figure BDA0003589517480000039

式中,S为剪切应变率,F1、F2为混合函数。where S is the shear strain rate, and F 1 and F 2 are mixing functions.

步骤五:建立复合材料螺旋桨流场计算的空化模型。Step 5: Establish a cavitation model for the calculation of the flow field of the composite propeller.

复合材料螺旋桨流场计算的空化模型采用在Ralyleigh-Plesset(R-P)方程的基础上提出的基于空泡动力学的输运方程:The cavitation model for the calculation of the flow field of the composite propeller adopts the transport equation based on cavitation dynamics proposed on the basis of the Ralyleigh-Plesset (R-P) equation:

Figure BDA00035895174800000310
Figure BDA00035895174800000310

式中,RB为空泡半径,pv为环境下的饱和蒸汽压,S为表面张力系数,ρl为液体密度,T为远场流体温度,p为远场环境压强。where R B is the bubble radius, p v is the saturated vapor pressure in the environment, S is the surface tension coefficient, ρ l is the liquid density, T is the far-field fluid temperature, and p is the far-field ambient pressure.

忽略空泡半径的二阶导数及表面张力的相互作用,分别化简出空泡半径RB、空泡质量mB和空泡体积VB随时间的变化率:Ignoring the second derivative of the bubble radius and the interaction of surface tension, the rate of change of the bubble radius R B , the bubble mass m B and the bubble volume V B with time is simplified respectively:

Figure BDA0003589517480000041
Figure BDA0003589517480000041

Figure BDA0003589517480000042
Figure BDA0003589517480000042

Figure BDA0003589517480000043
Figure BDA0003589517480000043

NB为水中空化汽核密度(即单位体积内有NB个空泡),则汽相体积比ɑv为:N B is the density of cavitation vapor nucleus in water (that is, there are N B cavities in unit volume), then the vapor phase volume ratio ɑ v is:

Figure BDA0003589517480000044
Figure BDA0003589517480000044

则单位体积的相间质量交换率m为:Then the interphase mass exchange rate m per unit volume is:

Figure BDA0003589517480000045
Figure BDA0003589517480000045

上式为蒸发项,根据上述关系式求出其中,汽/液相间蒸发率和凝结率的表达式分别为:The above formula is the evaporation term. According to the above relationship, the expressions of the evaporation rate and condensation rate between the vapor and liquid phases are respectively:

Figure BDA0003589517480000046
Figure BDA0003589517480000046

Figure BDA0003589517480000047
Figure BDA0003589517480000047

式中,αnuc为空化气核体积分数,Cd和Cp分别为局部压强小于饱和蒸汽压时的液相蒸发率和局部压强大于饱和蒸汽压时的汽相凝结率,RB为空泡半径,Pv为pv(T)。where α nuc is the cavitation gas core volume fraction, C d and C p are the liquid phase evaporation rate when the partial pressure is lower than the saturated vapor pressure and the vapor phase condensation rate when the partial pressure is greater than the saturated vapor pressure, respectively, and R B is the empty Bubble radius, P v is p v (T ).

步骤六:将步骤三所获得的结构场变形的信息通过流固耦合交界面传递给流场,进行流场网格更新及流场求解,获得流场数值计算结果。Step 6: Transfer the deformation information of the structure field obtained in Step 3 to the flow field through the fluid-solid coupling interface, update the flow field grid and solve the flow field, and obtain the numerical calculation result of the flow field.

通过复合材料螺旋桨与流场之间的流固耦合交界面将结构场变形的数据传递给流场,进行流场网格更新,设置螺旋桨空化工况的空化数,并基于步骤三和步骤四建立的湍流模型及空化模型进行流场求解,获得流场数值计算结果。在螺旋桨的空化流动中,流场可视为由气、汽、液充分混合的连续均匀介质,采用均相流模型进行螺旋桨的流场求解。其中连续性方程和动量方程为:Through the fluid-structure coupling interface between the composite propeller and the flow field, the deformation data of the structure field is transmitted to the flow field, the flow field grid is updated, and the cavitation number of the propeller cavitation condition is set. Fourth, the established turbulence model and cavitation model are used to solve the flow field, and the numerical calculation results of the flow field are obtained. In the cavitation flow of the propeller, the flow field can be regarded as a continuous homogeneous medium fully mixed by gas, vapor and liquid, and the homogeneous flow model is used to solve the flow field of the propeller. The continuity equation and momentum equation are:

Figure BDA0003589517480000048
Figure BDA0003589517480000048

Figure BDA0003589517480000049
Figure BDA0003589517480000049

式中:u为速度矢量,ρm为混合介质密度,μm为混合介质的动力粘性系数,μt为湍流粘性系数,p为流场压力。其中混合项的介质密度ρm和介质动力粘性系数μm的定义分别为:where u is the velocity vector, ρ m is the density of the mixed medium, μ m is the dynamic viscosity coefficient of the mixed medium, μ t is the turbulent viscosity coefficient, and p is the flow field pressure. The definition of the medium density ρ m and the medium dynamic viscosity coefficient μ m of the mixing term are:

ρm=ρvαvlαl (20)ρ mv α vl α l (20)

μm=μvαvlαl (21)μ m = μ v α v + μ l α l (21)

式中:ρl、αl和μl分别为液相的流体密度,ρv、αv和μv分别为汽相的流体密度、体积分数和流体运动粘度。where ρ l , α l and μ l are the fluid density of the liquid phase, respectively, and ρ v , α v and μ v are the fluid density, volume fraction and fluid kinematic viscosity of the vapor phase, respectively.

步骤七:给定复合材料螺旋桨的非定常空化流固耦合计算的收敛准则,使得计算结果同时满足收敛标准以及子迭代数不小于最大迭代步数,实现流固耦合计算方法的收敛。Step 7: Given the convergence criteria for the unsteady cavitation fluid-structure interaction calculation of the composite propeller, the calculation results meet the convergence criteria at the same time and the number of sub-iterations is not less than the maximum number of iteration steps, so as to realize the convergence of the fluid-structure interaction calculation method.

每一耦合步内结构场与流场经过子迭代步的不断交叉求解实现计算结果满足收敛标准,完成该时间步流固耦合计算,进入下一时间步计算;若不满足收敛标准,则判断子迭代步数的大小,若子迭代步数小于最大迭代步数,继续进行子迭代收敛求解计算,若子迭代步数不小于最大迭代步数,则进入下一步迭代计算。经过每一时间步内子迭代步的不断交叉求解,实现流固耦合计算方法的结果收敛,完成复合材料螺旋桨的非定常空化流固耦合计算。In each coupling step, the structure field and the flow field are continuously cross-solved in sub-iteration steps to achieve that the calculation results meet the convergence criteria, complete the fluid-structure coupling calculation at this time step, and enter the calculation of the next time step; if the convergence criteria are not met, the judgment The size of the number of iteration steps. If the number of sub-iteration steps is less than the maximum number of iteration steps, continue to perform the sub-iteration convergence solution calculation. If the number of sub-iteration steps is not less than the maximum number of iteration steps, enter the next iteration calculation. After continuous cross-solving of sub-iteration steps in each time step, the results of the fluid-structure interaction calculation method are converged, and the unsteady cavitation fluid-structure interaction calculation of the composite propeller is completed.

步骤八,将步骤一至步骤七所述的方法应用于复合材料螺旋桨的优化设计数值模拟领域,实现复合材料螺旋桨的非定常空化水动力性能的可预测性,有利于建立流场优劣快速评估方法和建立复合材料螺旋桨的空泡动态特征与空泡剥蚀分线评估方法;步骤八所述的复合材料螺旋桨非定常空化流固耦合性能预测方法应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。Step 8, applying the methods described in Steps 1 to 7 to the field of numerical simulation of the optimal design of the composite propeller to achieve the predictability of the unsteady cavitation hydrodynamic performance of the composite propeller, which is conducive to the establishment of a rapid evaluation of the pros and cons of the flow field The method and the method for establishing the dynamic characteristics of cavitation and cavitation erosion of the composite propeller; Hydrodynamic performance prediction, composite propeller optimization design field.

当将步骤一至步骤八所述的方法应用于复合材料螺旋桨的优化设计以及空化性能预测中,得到复合材料螺旋桨的空化水动力性能,获得复合材料铺层方式对螺旋桨空化水动力性能的影响,实现复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。When the method described in steps 1 to 8 is applied to the optimal design of the composite propeller and the prediction of the cavitation performance, the cavitation hydrodynamic performance of the composite propeller is obtained, and the effect of the composite material layering method on the cavitation hydrodynamic performance of the propeller is obtained. It can predict the structural dynamic response performance of composite propellers and solve engineering problems related to the strength and stability of composite propellers.

有益效果:Beneficial effects:

1、本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,基于紧耦合算法将流场数值计算结果与结构场数值计算结果进行双向耦合与传递,并完成时间步的迭代收敛,形成非定常空化流固耦合数值计算方法。1. A method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in the present invention, based on a tight coupling algorithm, bidirectionally couples and transfers the numerical calculation results of the flow field and the numerical calculation results of the structure field, and completes the iteration of the time step Convergence, the formation of unsteady cavitation fluid-structure interaction numerical calculation method.

2、本发明公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,本方法采用的非定常空化流固耦合性能预测方法更符合复合材料螺旋桨实际运行的流场环境,有助于对复合材料螺旋桨的空化水动力性能深入准确的分析及预测,能够应用于复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。2. A method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in the present invention, the unsteady cavitation fluid-structure coupling performance prediction method adopted in this method is more in line with the actual operation of the composite propeller. For in-depth and accurate analysis and prediction of the cavitation hydrodynamic performance of composite propellers, it can be applied to the prediction of structural dynamic response performance of composite propellers to solve engineering problems related to the strength and stability of composite propellers.

附图说明Description of drawings

图1为本发明提供的一种复合材料螺旋桨非定常空化流固耦合性能预测方法流程图;1 is a flowchart of a method for predicting unsteady cavitation fluid-structure coupling performance of a composite propeller provided by the present invention;

图2为本发明实施实例提供的大侧斜HSP复合材料螺旋桨的来流速度示意图;2 is a schematic diagram of the incoming flow velocity of the large skew HSP composite material propeller provided by the embodiment of the present invention;

图3为本发明实施实例提供的大侧斜HSP复合材料螺旋桨的有限元模型示意图;3 is a schematic diagram of a finite element model of a large skew HSP composite propeller provided by an embodiment of the present invention;

图4为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的的非定常空化形态;Fig. 4 is the unsteady cavitation shape of the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention;

图5为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的非定常空化空泡体积对比;Fig. 5 is the unsteady cavitation cavitation volume comparison between the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention;

图6为本发明实施实例计算得到的大侧斜HSP复合材料螺旋桨与刚性螺旋桨的推进效率变化对比。FIG. 6 is a comparison of the propulsion efficiency changes between the large skew HSP composite propeller and the rigid propeller calculated by the embodiment of the present invention.

具体实施方式Detailed ways

结合附图,以一种单材料单铺层角复合材料大侧斜HSP船用螺旋桨的空化流固耦合特性预测为实施例。如图1所示,本实施例公开的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,具体实现步骤如下:With reference to the accompanying drawings, the prediction of the cavitation fluid-structure coupling characteristics of a single-material single-layer angle composite material high-slope HSP marine propeller is taken as an example. As shown in FIG. 1 , a method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller disclosed in this embodiment, the specific implementation steps are as follows:

步骤一:对刚性螺旋桨进行稳态流场的初值计算。Step 1: Calculate the initial value of the steady-state flow field for the rigid propeller.

针对直径为0.22m的大侧斜HSP船用刚性螺旋桨的流场进行定常的初值计算,螺旋桨转速为1050r/min,设置螺旋桨来流速度,获得定常流场的压力、速度等初值数据。流体稳态求解的控制方程可通过质量守恒方程和动量守恒方程表示:The steady initial value calculation is carried out for the flow field of the large-skew HSP marine rigid propeller with a diameter of 0.22m. The governing equations for the fluid steady state solution can be expressed by the mass conservation equation and the momentum conservation equation:

Figure BDA0003589517480000061
Figure BDA0003589517480000061

Figure BDA0003589517480000062
Figure BDA0003589517480000062

式中:下标i,j代表坐标方向,u为速度矢量,ρ为流体密度,p为流场压力,v为运动粘性系数,fi为单位体积质量力,δij为克罗内克函数。In the formula: the subscripts i and j represent the coordinate directions, u is the velocity vector, ρ is the fluid density, p is the flow field pressure, v is the kinematic viscosity coefficient, f i is the mass force per unit volume, and δ ij is the Kronecker function .

步骤二:建立复合材料螺旋桨结构有限元模型。Step 2: Establish a finite element model of the composite propeller structure.

基于刚性螺旋桨的几何尺寸参数,建立复合材料螺旋桨几何模型。以刚性螺旋桨的几何轮廓约束复合材料的纤维铺层。以单材料单铺层角的碳纤维增强复合材料螺旋桨为计算对象,其中复合材料的螺旋桨的堆叠顺序为[-45]25,复合材料的材料参数见表1。Based on the geometric parameters of the rigid propeller, the geometric model of the composite propeller is established. The fiber layup of the composite material is constrained with the geometric profile of a rigid propeller. The carbon fiber reinforced composite propeller with a single material and single layup angle is taken as the calculation object, and the stacking sequence of the propeller of the composite material is [-45] 25 , and the material parameters of the composite material are shown in Table 1.

表1复合材料参数Table 1 Composite material parameters

Figure BDA0003589517480000063
Figure BDA0003589517480000063

基于ANSYS Workbench中的ACP模块建立复合材料螺旋桨的有限元模型。复合材料螺旋桨截面面内力、弯矩与面内应变和曲率满足如下关系式:The finite element model of the composite propeller is established based on the ACP module in ANSYS Workbench. The in-plane force, bending moment, in-plane strain and curvature of the composite propeller section satisfy the following relationship:

Figure BDA0003589517480000064
Figure BDA0003589517480000064

式中:[N]代表面内力,[M]为弯矩,ε°和κ为中面应变和中面曲率,[A]、[B]、[D]矩阵分别为拉伸刚度矩阵、耦合刚度矩阵和弯曲刚度矩阵。In the formula: [N] represents the in-plane force, [M] is the bending moment, ε° and κ are the mid-plane strain and mid-plane curvature, and the [A], [B], and [D] matrices are the tensile stiffness matrix, the coupling Stiffness Matrix and Bending Stiffness Matrix.

步骤三:将定常流场初值的压力、速度等数据通过流固耦合交界面传递给结构场,进行有限元结构变形求解,获得结构场网格变形。Step 3: Transfer the pressure, velocity and other data of the initial value of the steady flow field to the structure field through the fluid-solid coupling interface, and solve the finite element structure deformation to obtain the mesh deformation of the structure field.

通过复合材料螺旋桨与流场之间的流固耦合交界面将定常流场初值的压力、速度等数据传递给结构场,根据步骤二建立的复合材料螺旋桨有限元模型与获得的流场压力、速度等数据,完成复合材料螺旋桨的有限元结构变形求解,获得结构场的网格变形。利用有限元方法对水动力载荷作用下的螺旋桨结构进行瞬态分析,其动力学结构控制方程如下:Through the fluid-structure coupling interface between the composite propeller and the flow field, the pressure, velocity and other data of the initial value of the steady flow field are transferred to the structural field. According to the finite element model of the composite propeller established in step 2 and the obtained flow field pressure, Speed and other data, complete the finite element structural deformation solution of the composite propeller, and obtain the mesh deformation of the structural field. The finite element method is used to conduct transient analysis of the propeller structure under the action of hydrodynamic load. The control equation of the dynamic structure is as follows:

Figure BDA0003589517480000071
Figure BDA0003589517480000071

式中[Ms]、[Cs]和[Ks]分别为结构质量矩阵、结构阻尼矩阵和结构刚度矩阵,{X}、

Figure BDA0003589517480000072
Figure BDA0003589517480000073
分别为结构位移、结构速度和结构加速度,{FEX}代表流固耦合作用下结构所受外部激励力,{FHE}代表流固耦合作用下结构所受流场力。where [M s ], [C s ] and [K s ] are the structural mass matrix, the structural damping matrix and the structural stiffness matrix, respectively, {X},
Figure BDA0003589517480000072
and
Figure BDA0003589517480000073
are the structural displacement, structural velocity and structural acceleration, respectively, {F EX } represents the external excitation force on the structure under the action of fluid-structure interaction, and {F HE } represents the flow field force on the structure under the action of fluid-structure interaction.

步骤四:建立复合材料螺旋桨流场计算的湍流模型。Step 4: Establish a turbulence model for the calculation of the flow field of the composite propeller.

为了较好地捕捉多尺度非定常流场湍流结构及近壁区流动的现象,采用涡粘性模型,引入湍流粘性系数μt将雷诺应力与平均速度梯度间建立联系。确定涡粘性系数的计算采用两方程k-ωSST湍流模型封闭雷诺时均方程:In order to better capture the turbulent structure of the multi-scale unsteady flow field and the phenomenon of flow in the near-wall region, the eddy viscosity model is used, and the turbulent viscosity coefficient μ t is introduced to establish a relationship between the Reynolds stress and the average velocity gradient. The calculation to determine the eddy viscosity coefficient uses the two-equation k-ωSST turbulence model to close the Reynolds time-averaged equation:

Figure BDA0003589517480000074
Figure BDA0003589517480000074

Figure BDA0003589517480000075
Figure BDA0003589517480000075

式中,k为湍动能,ω为湍流频率,ρ为流体密度,μ为动力粘性系数,

Figure BDA0003589517480000076
为系踪平均,Gk和Gw分别是由平均速度梯度和浮力影响引起的湍动能产生项,Yk和YM分别是由平均速度梯度和可压缩湍流脉动膨胀对总的耗散率的影响,Dw为横向扩散项。式中,σw和σk分别为湍动能和湍流频率的普朗特数:where k is the turbulent kinetic energy, ω is the turbulent frequency, ρ is the fluid density, μ is the dynamic viscosity coefficient,
Figure BDA0003589517480000076
is the tethered average, G k and G w are the turbulent kinetic energy generation terms caused by the average velocity gradient and buoyancy effects, respectively, and Y k and Y M are the total dissipation rate caused by the average velocity gradient and the compressible turbulent pulsation expansion, respectively. influence, Dw is the lateral diffusion term. where σw and σk are Prandtl numbers of turbulent kinetic energy and turbulent frequency, respectively:

Figure BDA0003589517480000077
Figure BDA0003589517480000077

Figure BDA0003589517480000078
Figure BDA0003589517480000078

湍流粘性系数μt的计算式如下:The formula for calculating the turbulent viscosity coefficient μ t is as follows:

Figure BDA0003589517480000079
Figure BDA0003589517480000079

式中,S为剪切应变率,F1、F2为混合函数。where S is the shear strain rate, and F 1 and F 2 are mixing functions.

步骤五:建立复合材料螺旋桨流场计算的空化模型。Step 5: Establish a cavitation model for the calculation of the flow field of the composite propeller.

复合材料螺旋桨流场计算的空化模型采用在Ralyleigh-Plesset(R-P)方程的基础上提出的基于空泡动力学的输运方程:The cavitation model for the calculation of the flow field of the composite propeller adopts the transport equation based on cavitation dynamics proposed on the basis of the Ralyleigh-Plesset (R-P) equation:

Figure BDA0003589517480000081
Figure BDA0003589517480000081

式中,RB为空泡半径,pv为25℃环境下的饱和蒸汽压(pv=3169Pa),S为表面张力系数,ρl为液体密度,T为远场流体温度,p为远场环境压强。where R B is the bubble radius, p v is the saturated vapor pressure at 25°C (p v =3169Pa), S is the surface tension coefficient, ρ l is the liquid density, T is the far-field fluid temperature, p is the far-field ambient pressure.

忽略空泡半径的二阶导数及表面张力的相互作用,分别化简出空泡半径RB、空泡质量mB和空泡体积VB随时间的变化率:Ignoring the second derivative of the bubble radius and the interaction of surface tension, the rate of change of the bubble radius R B , the bubble mass m B and the bubble volume V B with time is simplified respectively:

Figure BDA0003589517480000082
Figure BDA0003589517480000082

Figure BDA0003589517480000083
Figure BDA0003589517480000083

Figure BDA0003589517480000084
Figure BDA0003589517480000084

水中空化汽核密度NB(即单位体积内有NB个空泡),则汽相体积比ɑv为:The density of cavitation vapor nucleus in water N B (that is, there are N B cavities in unit volume), then the vapor phase volume ratio ɑ v is:

Figure BDA0003589517480000085
Figure BDA0003589517480000085

则单位体积的相间质量交换率m为:Then the interphase mass exchange rate m per unit volume is:

Figure BDA0003589517480000086
Figure BDA0003589517480000086

上式为蒸发项,根据上述关系式可以求出其中,汽/液相间蒸发率和凝结率的表达式分别为:The above formula is the evaporation term. According to the above relationship, the expressions of the evaporation rate and condensation rate between the vapor and liquid phases can be calculated as:

Figure BDA0003589517480000087
Figure BDA0003589517480000087

Figure BDA0003589517480000088
Figure BDA0003589517480000088

式中,αnuc为空化气核体积分数,Cd和Cp分别为局部压强小于饱和蒸汽压时的液相蒸发率和局部压强大于饱和蒸汽压时的汽相凝结率,RB为空泡半径,Pv为pv(T)。where α nuc is the volume fraction of the cavitation gas nucleus, Cd and C p are the evaporation rate of the liquid phase when the partial pressure is lower than the saturated vapor pressure and the condensation rate of the vapor phase when the partial pressure is greater than the saturated vapor pressure, respectively, and R B is the cavitation Radius, P v is p v (T ).

步骤六:将步骤二所获得的结构场变形等信息通过流固耦合交界面传递给流场,进行流场网格更新及流场求解,获得流场水动力载荷、速度等数据。Step 6: Transfer the structural field deformation and other information obtained in Step 2 to the flow field through the fluid-solid coupling interface, update the flow field grid and solve the flow field, and obtain data such as the hydrodynamic load and velocity of the flow field.

通过复合材料螺旋桨与流场之间的流固耦合交界面将结构场变形等数据传递给结构场,进行流场网格更新,设置空化数为2.99并基于步骤三和步骤四建立的湍流模型及空化模型进行流场求解,获得流场空化水动力载荷、速度等数据。在螺旋桨的空化流动中,流场可视为由气、汽、液充分混合的连续均匀介质,采用均相流模型进行螺旋桨的流场求解。其中连续性方程和动量方程为:Through the fluid-structure coupling interface between the composite propeller and the flow field, data such as the deformation of the structure field are transferred to the structure field, and the flow field grid is updated. And the cavitation model is used to solve the flow field, and the data such as the hydrodynamic load and velocity of the flow field cavitation are obtained. In the cavitation flow of the propeller, the flow field can be regarded as a continuous homogeneous medium fully mixed by gas, vapor and liquid, and the homogeneous flow model is used to solve the flow field of the propeller. The continuity equation and momentum equation are:

Figure BDA0003589517480000089
Figure BDA0003589517480000089

Figure BDA0003589517480000091
Figure BDA0003589517480000091

式中:u为速度矢量,ρm为混合介质密度,μm为混合介质的动力粘性系数,μt为湍流粘性系数,p为流场压力。其中混合项的介质密度ρm和介质动力粘性系数μm的定义分别为:where u is the velocity vector, ρ m is the density of the mixed medium, μ m is the dynamic viscosity coefficient of the mixed medium, μ t is the turbulent viscosity coefficient, and p is the flow field pressure. The definition of the medium density ρ m and the medium dynamic viscosity coefficient μ m of the mixing term are:

ρm=ρvαvlαl (20)ρ mv α vl α l (20)

μm=μvαvlαl (21)μ m = μ v α v + μ l α l (21)

式中:ρl、αl和μl分别为液相的流体密度,ρv、αv和μv分别为汽相的流体密度、体积分数和流体运动粘度。where ρ l , α l and μ l are the fluid density of the liquid phase, respectively, and ρ v , α v and μ v are the fluid density, volume fraction and fluid kinematic viscosity of the vapor phase, respectively.

步骤七:给定复合材料螺旋桨的非定常空化流固耦合计算的收敛准则,使得计算结果同时满足收敛标准以及子迭代数不小于最大迭代步数,实现流固耦合计算方法的收敛。Step 7: Given the convergence criteria for the unsteady cavitation fluid-structure interaction calculation of the composite propeller, the calculation results meet the convergence criteria at the same time and the number of sub-iterations is not less than the maximum number of iteration steps, so as to realize the convergence of the fluid-structure interaction calculation method.

每一耦合步内结构场与流场经过子迭代步的不断交叉求解实现计算结果满足收敛标准,完成该时间步流固耦合计算,进入下一时间步计算;若不满足收敛标准,则判断子迭代步数的大小,若子迭代步数小于最大迭代步数,继续进行子迭代收敛求解计算,若子迭代步数不小于最大迭代步数,则进入下一步迭代计算。经过每一时间步内子迭代步的不断交叉求解,实现流固耦合计算方法的结果收敛,完成复合材料螺旋桨的非定常空化流固耦合计算。复合材料螺旋桨的非定常空化流固耦合性能预测方法能够获得复合材料在不同伴流下的发生空化时的推进性能、瞬时空化形态、流场及桨叶脉动压力特性。通过计算得到的复合材料螺旋桨的推进效率和空泡体积的发展曲线一致为均匀正弦曲线并伴随五个波峰。复合材料螺旋桨的推进效率高于刚性螺旋桨的推进效率,而空泡体积显著小于刚性螺旋桨的空泡体积。结果表明该铺层的复合材料螺旋桨与刚性螺旋桨相比有推迟空化和提升空化水动力性能的优点,满足在该流域情况下的实际应用并优于传统刚性螺旋桨。计算结果说明了对复合材料螺旋桨非定常空化性能的预测研究具有重要的工程意义,能够适用于对不同伴流条件下复合材料螺旋桨的空化性能预测,实现快速评估流场优劣的可能;同时能够通过不同铺层结构的复合材料螺旋桨与刚性螺旋桨的空化性能的数值模拟预测,实现复合材料螺旋桨的性能优劣的快速评估。In each coupling step, the structure field and the flow field are continuously cross-solved in sub-iteration steps to achieve that the calculation results meet the convergence criteria, complete the fluid-structure coupling calculation at this time step, and enter the calculation of the next time step; if the convergence criteria are not met, the judgment The size of the number of iteration steps. If the number of sub-iteration steps is less than the maximum number of iteration steps, continue to perform the sub-iteration convergence solution calculation. If the number of sub-iteration steps is not less than the maximum number of iteration steps, enter the next iteration calculation. After continuous cross-solving of sub-iteration steps in each time step, the results of the fluid-structure interaction calculation method are converged, and the unsteady cavitation fluid-structure interaction calculation of the composite propeller is completed. The unsteady cavitation fluid-structure interaction performance prediction method of composite propeller can obtain the propulsion performance, instantaneous cavitation shape, flow field and blade pulsating pressure characteristics of composite materials when cavitation occurs under different wakes. The development curves of the propulsion efficiency and the cavitation volume of the composite propeller obtained by calculation are consistent with a uniform sinusoidal curve with five peaks. The propulsion efficiency of the composite propeller is higher than that of the rigid propeller, and the cavitation volume is significantly smaller than that of the rigid propeller. The results show that the laminated composite propeller has the advantages of delaying cavitation and improving the hydrodynamic performance of cavitation compared with the rigid propeller, which satisfies the practical application in this watershed and is superior to the traditional rigid propeller. The calculation results show that the prediction of the unsteady cavitation performance of the composite propeller has important engineering significance, which can be applied to the prediction of the cavitation performance of the composite propeller under different wake conditions, and it is possible to quickly evaluate the pros and cons of the flow field. At the same time, through the numerical simulation prediction of the cavitation performance of composite propellers and rigid propellers with different layup structures, a rapid evaluation of the performance of composite propellers can be achieved.

步骤八,将步骤一至步骤七所述的方法应用于复合材料螺旋桨的优化设计数值模拟领域,实现复合材料螺旋桨的非定常空化水动力性能的可预测性,有利于建立流场优劣快速评估方法和建立复合材料螺旋桨的空泡动态特征与空泡剥蚀分线评估方法;步骤八所述的复合材料螺旋桨非定常空化流固耦合性能预测方法应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。Step 8, applying the methods described in Steps 1 to 7 to the field of numerical simulation of the optimal design of the composite propeller to achieve the predictability of the unsteady cavitation hydrodynamic performance of the composite propeller, which is conducive to the establishment of a rapid evaluation of the pros and cons of the flow field The method and the method for establishing the dynamic characteristics of cavitation and cavitation erosion of the composite propeller; Hydrodynamic performance prediction, composite propeller optimization design field.

当将步骤一至步骤八所述的方法应用于复合材料螺旋桨的优化设计以及空化性能预测中,得到复合材料螺旋桨的空化水动力性能,获得复合材料铺层方式对螺旋桨空化水动力性能的影响,实现复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。When the method described in steps 1 to 8 is applied to the optimal design of the composite propeller and the prediction of the cavitation performance, the cavitation hydrodynamic performance of the composite propeller is obtained, and the effect of the composite material layering method on the cavitation hydrodynamic performance of the propeller is obtained. It can predict the structural dynamic response performance of composite propellers and solve engineering problems related to the strength and stability of composite propellers.

以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above-mentioned specific descriptions further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned descriptions are only specific embodiments of the present invention, and are not intended to limit the protection of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (4)

1.一种复合材料螺旋桨非定常空化流固耦合性能预测方法,其特征在于:包括如下步骤:1. a composite propeller unsteady cavitation fluid-structure coupling performance prediction method, is characterized in that: comprise the steps: 步骤一:对刚性螺旋桨进行稳态流场的初值计算;Step 1: Calculate the initial value of the steady flow field for the rigid propeller; 针对刚性螺旋桨的流场进行定常的初值计算,设置螺旋桨工作的螺旋桨旋转速度及来流速度,获得定常流场的初值数据;流体稳态求解的控制方程通过质量守恒方程和动量守恒方程表示:Carry out the steady initial value calculation for the flow field of the rigid propeller, set the propeller rotation speed and the incoming flow speed for the propeller to work, and obtain the initial value data of the steady flow field; the control equation of the fluid steady state solution is expressed by the mass conservation equation and the momentum conservation equation :
Figure FDA0003589517470000011
Figure FDA0003589517470000011
Figure FDA0003589517470000012
Figure FDA0003589517470000012
式中:下标i,j代表坐标方向,u为速度矢量,ρ为流体密度,p为流场压力,v为运动粘性系数,fi为单位体积质量力,δij为克罗内克函数;In the formula: the subscripts i and j represent the coordinate directions, u is the velocity vector, ρ is the fluid density, p is the flow field pressure, v is the kinematic viscosity coefficient, f i is the mass force per unit volume, and δ ij is the Kronecker function ; 步骤二:建立复合材料螺旋桨结构有限元模型;Step 2: Establish a finite element model of the composite propeller structure; 基于刚性螺旋桨的几何尺寸参数,建立复合材料螺旋桨几何模型;以刚性螺旋桨的几何轮廓约束复合材料的纤维铺层,基于有限元软件依据复合材料螺旋桨的铺层顺序,逐层设置复合材料螺旋桨的铺层材料厚度及材料属性,输入每层纤维布的密度ρ、弹性模量E、剪切模量G、泊松比υ,建立复合材料螺旋桨的有限元模型;复合材料螺旋桨截面面内力、弯矩与面内应变和曲率满足如下关系式:Based on the geometric parameters of the rigid propeller, the geometric model of the composite propeller is established; the fiber layup of the composite material is constrained by the geometric contour of the rigid propeller, and the layup of the composite propeller is set layer by layer according to the layup sequence of the composite propeller based on the finite element software. Layer material thickness and material properties, input the density ρ, elastic modulus E, shear modulus G, and Poisson’s ratio υ of each layer of fiber cloth to establish the finite element model of the composite propeller; the internal force and bending moment of the composite propeller section It satisfies the following relation with the in-plane strain and curvature:
Figure FDA0003589517470000013
Figure FDA0003589517470000013
式中:[N]代表面内力,[M]为弯矩,ε°和κ为中面应变和中面曲率,[A]、[B]、[D]矩阵分别为面内刚度矩阵、耦合刚度矩阵和弯曲刚度矩阵;In the formula: [N] represents the in-plane force, [M] is the bending moment, ε° and κ are the mid-plane strain and mid-plane curvature, and the [A], [B], and [D] matrices are the in-plane stiffness matrix, the coupling stiffness matrix and bending stiffness matrix; 步骤三:将定常流场的初值数据通过流固耦合交界面传递给结构场,进行有限元结构变形求解,获得结构场网格变形;Step 3: Transfer the initial value data of the steady flow field to the structure field through the fluid-solid coupling interface, and solve the finite element structure deformation to obtain the mesh deformation of the structure field; 通过复合材料螺旋桨与流场之间的流固耦合交界面将定常流场的初值数据传递给结构场,根据步骤二建立的复合材料螺旋桨有限元模型与获得的流场初值数据,完成复合材料螺旋桨的有限元结构变形求解,获得结构场的网格变形;利用有限元方法对水动力载荷作用下的螺旋桨结构进行瞬态分析,其动力学结构控制方程如下:Through the fluid-solid coupling interface between the composite propeller and the flow field, the initial value data of the steady flow field is transferred to the structural field. According to the finite element model of the composite propeller established in step 2 and the obtained initial value data of the flow field, the composite material is completed. The finite element structural deformation of the material propeller is solved, and the mesh deformation of the structural field is obtained; the finite element method is used to perform a transient analysis of the propeller structure under the action of hydrodynamic load, and the dynamic structure control equation is as follows:
Figure FDA0003589517470000014
Figure FDA0003589517470000014
式中[Ms]、[Cs]和[Ks]分别为结构质量矩阵、结构阻尼矩阵和结构刚度矩阵,{X}、
Figure FDA0003589517470000015
Figure FDA0003589517470000016
分别为结构位移、结构速度和结构加速度,{FEX}代表流固耦合作用下结构所受外部激励力,{FHE}代表流固耦合作用下结构所受流场力;
where [M s ], [C s ] and [K s ] are the structural mass matrix, the structural damping matrix and the structural stiffness matrix, respectively, {X},
Figure FDA0003589517470000015
and
Figure FDA0003589517470000016
are the structural displacement, structural velocity and structural acceleration, respectively, {F EX } represents the external excitation force on the structure under the action of fluid-structure interaction, {F HE } represents the flow field force on the structure under the action of fluid-structure interaction;
步骤四:建立复合材料螺旋桨流场计算的湍流模型;Step 4: Establish a turbulence model for the calculation of the flow field of the composite propeller; 为了较好地捕捉多尺度非定常流场湍流结构及近壁区流动的现象,采用涡粘性模型,引入湍流粘性系数μt将雷诺应力与平均速度梯度间建立联系;确定涡粘性系数的计算采用两方程k-ωSST湍流模型封闭雷诺时均方程:In order to better capture the turbulent structure of the multi-scale unsteady flow field and the phenomenon of flow in the near-wall region, the eddy viscosity model is used, and the turbulent viscosity coefficient μ t is introduced to establish a relationship between the Reynolds stress and the average velocity gradient; the calculation of the eddy viscosity coefficient is determined by using The two-equation k-ωSST turbulence model closes the Reynolds time-averaged equation:
Figure FDA0003589517470000021
Figure FDA0003589517470000021
Figure FDA0003589517470000022
Figure FDA0003589517470000022
式中,k为湍动能,ω为湍流频率,ρ为流体密度,μ为动力粘性系数,
Figure FDA0003589517470000023
为系踪平均,速度Gk和Gw分别是由平均速度梯度和浮力影响引起的湍动能产生项,Yk和YM分别是由平均速度梯度和可压缩湍流脉动膨胀对总的耗散率的影响,Dw为横向扩散项;式中,σw和σk分别为湍动能和湍流频率的普朗特数:
where k is the turbulent kinetic energy, ω is the turbulent frequency, ρ is the fluid density, μ is the dynamic viscosity coefficient,
Figure FDA0003589517470000023
is the tethered average, the velocities G k and G w are the turbulent kinetic energy generation terms caused by the mean velocity gradient and buoyancy effects, respectively, and Y k and Y M are the total dissipation rate caused by the mean velocity gradient and the compressible turbulent pulsation expansion, respectively , D w is the lateral diffusion term; in the formula, σ w and σ k are the Prandtl number of turbulent kinetic energy and turbulent frequency, respectively:
Figure FDA0003589517470000024
Figure FDA0003589517470000024
Figure FDA0003589517470000025
Figure FDA0003589517470000025
湍流粘性系数μt的计算式如下:The formula for calculating the turbulent viscosity coefficient μ t is as follows:
Figure FDA0003589517470000026
Figure FDA0003589517470000026
式中,S为剪切应变率,F1、F2为混合函数;where S is the shear strain rate, F 1 and F 2 are the mixing functions; 步骤五:建立复合材料螺旋桨流场计算的空化模型;Step 5: Establish a cavitation model for the calculation of the flow field of the composite propeller; 复合材料螺旋桨流场计算的空化模型采用在Ralyleigh-Plesset(R-P)方程的基础上提出的基于空泡动力学的输运方程:The cavitation model for the calculation of the flow field of the composite propeller adopts the transport equation based on cavitation dynamics proposed on the basis of the Ralyleigh-Plesset (R-P) equation:
Figure FDA0003589517470000027
Figure FDA0003589517470000027
式中,RB为空泡半径,pv为环境下的饱和蒸汽压,S为表面张力系数,ρl为液体密度,T为远场流体温度,p为远场环境压强;where R B is the bubble radius, p v is the saturated vapor pressure in the environment, S is the surface tension coefficient, ρl is the liquid density, T is the far-field fluid temperature, and p is the far-field ambient pressure; 忽略空泡半径的二阶导数及表面张力的相互作用,分别化简出空泡半径RB、空泡质量mB和空泡体积VB随时间的变化率:Ignoring the second derivative of the bubble radius and the interaction of surface tension, the rate of change of the bubble radius R B , the bubble mass m B and the bubble volume V B with time is simplified respectively:
Figure FDA0003589517470000031
Figure FDA0003589517470000031
Figure FDA0003589517470000032
Figure FDA0003589517470000032
Figure FDA0003589517470000033
Figure FDA0003589517470000033
NB为水中空化汽核密度,则汽相体积比ɑv为:N B is the density of cavitation vapor nucleus in water, then the vapor phase volume ratio ɑ v is:
Figure FDA0003589517470000034
Figure FDA0003589517470000034
则单位体积的相间质量交换率m为:Then the interphase mass exchange rate m per unit volume is:
Figure FDA0003589517470000035
Figure FDA0003589517470000035
上式为蒸发项,根据上述关系式求出其中,汽/液相间蒸发率和凝结率的表达式分别为:The above formula is the evaporation term. According to the above relationship, the expressions of the evaporation rate and condensation rate between the vapor and liquid phases are respectively:
Figure FDA0003589517470000036
Figure FDA0003589517470000036
Figure FDA0003589517470000037
Figure FDA0003589517470000037
式中,αnuc为空化气核体积分数,Cd和Cp分别为局部压强小于饱和蒸汽压时的液相蒸发率和局部压强大于饱和蒸汽压时的汽相凝结率,RB为空泡半径,Pv为pv(T);where α nuc is the cavitation gas core volume fraction, C d and C p are the liquid phase evaporation rate when the partial pressure is lower than the saturated vapor pressure and the vapor phase condensation rate when the partial pressure is greater than the saturated vapor pressure, respectively, and R B is the empty bubble radius, P v is p v (T ); 步骤六:将步骤三所获得的结构场变形的信息通过流固耦合交界面传递给流场,进行流场网格更新及流场求解,获得流场数值计算结果;Step 6: Transfer the information of the deformation of the structure field obtained in Step 3 to the flow field through the fluid-solid coupling interface, update the flow field grid and solve the flow field, and obtain the numerical calculation result of the flow field; 通过复合材料螺旋桨与流场之间的流固耦合交界面将结构场变形的数据传递给流场,进行流场网格更新,设置螺旋桨空化工况的空化数,并基于步骤三和步骤四建立的湍流模型及空化模型进行流场求解,获得流场数值计算结果;在螺旋桨的空化流动中,流场可视为由气、汽、液充分混合的连续均匀介质,采用均相流模型进行螺旋桨的流场求解;其中连续性方程和动量方程为:Through the fluid-structure coupling interface between the composite propeller and the flow field, the deformation data of the structure field is transmitted to the flow field, the flow field grid is updated, and the cavitation number of the propeller cavitation condition is set. Fourth, the established turbulence model and cavitation model are used to solve the flow field, and the numerical calculation results of the flow field are obtained. The flow model is used to solve the flow field of the propeller; the continuity equation and momentum equation are:
Figure FDA0003589517470000038
Figure FDA0003589517470000038
Figure FDA0003589517470000039
Figure FDA0003589517470000039
式中:u为速度矢量,ρm为混合介质密度,μm为混合介质的动力粘性系数,μt为湍流粘性系数,p为流场压力;其中混合项的介质密度ρm和介质动力粘性系数μm的定义分别为:where u is the velocity vector, ρ m is the density of the mixed medium, μ m is the dynamic viscosity coefficient of the mixed medium, μ t is the turbulent viscosity coefficient, and p is the flow field pressure; the medium density ρ m of the mixing term and the dynamic viscosity of the medium are The coefficients μm are defined as: ρm=ρvαvlαl (20)ρ mv α vl α l (20) μm=μvαvlαl (21)μ m = μ v α v + μ l α l (21) 式中:ρl、αl和μl分别为液相的流体密度,ρv、αv和μv分别为汽相的流体密度、体积分数和流体运动粘度;where ρ l , α l and μ l are the fluid density of the liquid phase, respectively, and ρ v , α v and μ v are the fluid density, volume fraction and fluid kinematic viscosity of the vapor phase, respectively; 步骤七:给定复合材料螺旋桨的非定常空化流固耦合计算的收敛准则,使得计算结果同时满足收敛标准以及子迭代数不小于最大迭代步数,实现流固耦合计算方法的收敛;Step 7: Given the convergence criterion of the unsteady cavitation fluid-structure interaction calculation of the composite propeller, make the calculation result satisfy the convergence criteria at the same time and the number of sub-iterations is not less than the maximum number of iteration steps, so as to realize the convergence of the fluid-structure interaction calculation method; 每一耦合步内结构场与流场经过子迭代步的不断交叉求解实现计算结果满足收敛标准,完成该时间步流固耦合计算,进入下一时间步计算;若不满足收敛标准,则判断子迭代步数的大小,若子迭代步数小于最大迭代步数,继续进行子迭代收敛求解计算,若子迭代步数不小于最大迭代步数,则进入下一步迭代计算;经过每一时间步内子迭代步的不断交叉求解,实现流固耦合计算方法的结果收敛,完成复合材料螺旋桨的非定常空化流固耦合计算。In each coupling step, the structure field and the flow field are continuously cross-solved in sub-iteration steps to achieve that the calculation results meet the convergence criteria, complete the fluid-structure coupling calculation at this time step, and enter the calculation of the next time step; if the convergence criteria are not met, the judgment The size of the number of iteration steps. If the number of sub-iteration steps is less than the maximum number of iteration steps, continue the sub-iteration convergence solution calculation. If the number of sub-iteration steps is not less than the maximum number of iteration steps, enter the next iteration calculation; after the sub-iteration steps within each time step The continuous cross-solving of the composite material realizes the convergence of the results of the fluid-structure coupling calculation method, and completes the unsteady cavitation fluid-structure coupling calculation of the composite propeller.
2.如权利要求1所述的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,其特征在于:步骤八,将步骤一至步骤七所述的方法应用于复合材料螺旋桨的优化设计数值模拟领域,实现复合材料螺旋桨的非定常空化水动力性能的可预测性,有利于建立流场优劣快速评估方法和建立复合材料螺旋桨的空泡动态特征与空泡剥蚀分线评估方法;步骤八所述的复合材料螺旋桨非定常空化流固耦合性能预测方法应用领域包括流固耦合特性预测、螺旋桨空化水动力性能预测、复合材料螺旋桨优化设计领域。2. The method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller according to claim 1, wherein in step 8, the method described in steps 1 to 7 is applied to the optimal design value of the composite propeller In the field of simulation, realizing the predictability of the unsteady cavitation hydrodynamic performance of the composite propeller is conducive to the establishment of a rapid evaluation method for the pros and cons of the flow field and the establishment of a method for evaluating the dynamic characteristics of cavitation and cavitation erosion of the composite propeller; steps The application fields of the method for predicting the unsteady cavitation fluid-structure interaction performance of the composite propeller include the prediction of fluid-structure interaction characteristics, the prediction of the cavitation hydrodynamic performance of the propeller, and the optimization design of the composite material propeller. 3.如权利要求2所述的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,其特征在于:当将步骤一至步骤八所述的方法应用于复合材料螺旋桨的优化设计以及空化性能预测中,得到复合材料螺旋桨的空化水动力性能,获得复合材料铺层方式对螺旋桨空化水动力性能的影响,实现复合材料螺旋桨的结构动态响应性能预测,解决与复合材料螺旋桨强度及稳定性相关的工程问题。3. A method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller according to claim 2, wherein: when the method described in steps 1 to 8 is applied to the optimal design and cavitation of the composite propeller In the performance prediction, the cavitation hydrodynamic performance of the composite propeller is obtained, the influence of the composite material layering method on the cavitation hydrodynamic performance of the propeller is obtained, the structural dynamic response performance prediction of the composite propeller is realized, and the strength and stability of the composite propeller are solved. Sex-related engineering issues. 4.如权利要求1、2或3所述的一种复合材料螺旋桨非定常空化流固耦合性能预测方法,其特征在于:所述有限元软件选用ANSYS Workbench中的ACP模块实现。4. The method for predicting the unsteady cavitation fluid-structure coupling performance of a composite propeller according to claim 1, 2 or 3, wherein the finite element software is implemented by selecting the ACP module in ANSYS Workbench.
CN202210373898.1A 2022-04-11 2022-04-11 Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method Active CN114757120B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210373898.1A CN114757120B (en) 2022-04-11 2022-04-11 Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210373898.1A CN114757120B (en) 2022-04-11 2022-04-11 Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method

Publications (2)

Publication Number Publication Date
CN114757120A true CN114757120A (en) 2022-07-15
CN114757120B CN114757120B (en) 2024-07-19

Family

ID=82330269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210373898.1A Active CN114757120B (en) 2022-04-11 2022-04-11 Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method

Country Status (1)

Country Link
CN (1) CN114757120B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115758930A (en) * 2022-11-09 2023-03-07 哈尔滨工程大学 A Bidirectional Fluid-Structure Interaction Numerical Simulation Method for Propeller-shaft Coupling System
CN116605400A (en) * 2023-06-16 2023-08-18 中国船舶科学研究中心 A control method for autonomous optimization of ship stern flow field
CN119005075A (en) * 2024-10-24 2024-11-22 中国科学技术大学 Multiphase flow numerical solving method for coupling phase change component transportation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065942A1 (en) * 2010-09-10 2012-03-15 Jeng-Lih Hwang Method of an all-speed propeler
KR101703105B1 (en) * 2016-10-07 2017-02-07 한국해양과학기술원 Air-hole simulation model propeller for good prediction of full-scale cavitation performance
CN107895069A (en) * 2017-10-30 2018-04-10 北京理工大学 A kind of fluid structurecoupling Numerical Predicting Method based on composite structure
CN108763800A (en) * 2018-06-04 2018-11-06 北京理工大学 A kind of cavitation compressible flows shock-wave dynamics method for numerical simulation
CN110516342A (en) * 2019-08-22 2019-11-29 北京理工大学 A Numerical Prediction Method of Compressible Cavitation Flow in Propeller Based on OpenFOAM Platform
CN111159950A (en) * 2019-12-30 2020-05-15 北京理工大学 Acoustic-solid coupling-based composite propeller prestress wet mode prediction method
CN111444643A (en) * 2020-03-02 2020-07-24 北京理工大学 A neural network-based optimization method for the layup angle of composite propellers
CN111444642A (en) * 2020-03-02 2020-07-24 北京理工大学 Composite propeller layering optimization method based on multi-objective genetic algorithm
CN113312858A (en) * 2021-06-07 2021-08-27 北京理工大学 Two-dimensional composite material hydrofoil fluid-solid coupling characteristic prediction method based on plate theory
CN113434961A (en) * 2021-06-29 2021-09-24 北京理工大学 One-dimensional composite material airfoil fluid-solid coupling characteristic prediction method based on beam theory
US20220075911A1 (en) * 2020-06-11 2022-03-10 Dalian University Of Technology Method for predicting structural failure by strength-criterion-driven peridynamic model

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065942A1 (en) * 2010-09-10 2012-03-15 Jeng-Lih Hwang Method of an all-speed propeler
KR101703105B1 (en) * 2016-10-07 2017-02-07 한국해양과학기술원 Air-hole simulation model propeller for good prediction of full-scale cavitation performance
CN107895069A (en) * 2017-10-30 2018-04-10 北京理工大学 A kind of fluid structurecoupling Numerical Predicting Method based on composite structure
CN108763800A (en) * 2018-06-04 2018-11-06 北京理工大学 A kind of cavitation compressible flows shock-wave dynamics method for numerical simulation
CN110516342A (en) * 2019-08-22 2019-11-29 北京理工大学 A Numerical Prediction Method of Compressible Cavitation Flow in Propeller Based on OpenFOAM Platform
CN111159950A (en) * 2019-12-30 2020-05-15 北京理工大学 Acoustic-solid coupling-based composite propeller prestress wet mode prediction method
CN111444643A (en) * 2020-03-02 2020-07-24 北京理工大学 A neural network-based optimization method for the layup angle of composite propellers
CN111444642A (en) * 2020-03-02 2020-07-24 北京理工大学 Composite propeller layering optimization method based on multi-objective genetic algorithm
US20220075911A1 (en) * 2020-06-11 2022-03-10 Dalian University Of Technology Method for predicting structural failure by strength-criterion-driven peridynamic model
CN113312858A (en) * 2021-06-07 2021-08-27 北京理工大学 Two-dimensional composite material hydrofoil fluid-solid coupling characteristic prediction method based on plate theory
CN113434961A (en) * 2021-06-29 2021-09-24 北京理工大学 One-dimensional composite material airfoil fluid-solid coupling characteristic prediction method based on beam theory

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115758930A (en) * 2022-11-09 2023-03-07 哈尔滨工程大学 A Bidirectional Fluid-Structure Interaction Numerical Simulation Method for Propeller-shaft Coupling System
CN115758930B (en) * 2022-11-09 2025-06-03 哈尔滨工程大学 A bidirectional fluid-structure coupling numerical simulation method for propeller-shaft coupling system
CN116605400A (en) * 2023-06-16 2023-08-18 中国船舶科学研究中心 A control method for autonomous optimization of ship stern flow field
CN116605400B (en) * 2023-06-16 2024-11-15 中国船舶科学研究中心 Control method for autonomously optimizing stern flow field of ship
CN119005075A (en) * 2024-10-24 2024-11-22 中国科学技术大学 Multiphase flow numerical solving method for coupling phase change component transportation
CN119005075B (en) * 2024-10-24 2024-12-27 中国科学技术大学 A numerical solution method for multiphase flow with coupled phase change component transport

Also Published As

Publication number Publication date
CN114757120B (en) 2024-07-19

Similar Documents

Publication Publication Date Title
CN114757120B (en) Composite material propeller unsteady cavitation fluid-solid coupling performance prediction method
CN111444643B (en) A neural network-based optimization method for the layup angle of composite propellers
CN107895069B (en) Fluid-solid coupling numerical value prediction method based on composite material structure
Young Fluid–structure interaction analysis of flexible composite marine propellers
Liao et al. Viscous fluid–structure interaction response of composite hydrofoils
CN104298869B (en) A Numerical Prediction Method for Fluid-Structure Interaction Characteristics of Elastic Hydrofoils
CN101706832B (en) Optimization design method of fibre enhanced composite material marine propeller blade
CN105653781B (en) A kind of computational methods of composite propeller vacuole performance
Das et al. On the use of bend–twist coupling in full-scale composite marine propellers for improving hydrodynamic performance
Han et al. Structural design of the composite blades for a marine ducted propeller based on a two-way fluid-structure interaction method
CN101706833A (en) Design method for marine propeller made of carbon fiber composite material
Hong et al. Numerical analysis and performance comparison of the same series of composite propellers
CN109117504B (en) Bidirectional functional gradient curved shell vibration analysis method
Zhang et al. Numerical investigation of the deformation characteristics of a composite hydrofoil with different ply angles
CN114896722B (en) Method for accurately predicting multi-scale cavitation flow around hydrofoils
An et al. Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller
CN109711093A (en) A pre-deformation optimization method for marine composite propellers
Liang et al. Hydrodynamic performance optimization of marine propellers based on fluid-structure coupling
Young Hydroelastic behavior of flexible composite propellers in wake inflow
Zhang et al. Global cavitation and hydrodynamic characteristics of a composite propeller in non-uniform wake
Zhang et al. Numerical analysis on propulsive efficiency and pre-deformated optimization of a composite marine propeller
Shayanpoor et al. Hydroelastic analysis of composite marine propeller basis fluid-structure interaction (FSI)
An et al. Tip clearance influence on hydrodynamic performance and pressure fluctuation of a composite ducted propeller using a two-way FSI method
Sun et al. Fluid-structure interaction analysis of flexible marine propellers
Liao et al. Hydrostructural optimization of single-layer and multi-layer composite lifting surfaces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant