CN114754694A - 一种基于多光谱的材料形变检测设备 - Google Patents

一种基于多光谱的材料形变检测设备 Download PDF

Info

Publication number
CN114754694A
CN114754694A CN202210661927.4A CN202210661927A CN114754694A CN 114754694 A CN114754694 A CN 114754694A CN 202210661927 A CN202210661927 A CN 202210661927A CN 114754694 A CN114754694 A CN 114754694A
Authority
CN
China
Prior art keywords
light
light beam
sample
multispectral
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210661927.4A
Other languages
English (en)
Other versions
CN114754694B (zh
Inventor
王磊
魏海云
高恩娟
郭宗辉
申向丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Vocational and Technical College
Original Assignee
Xinxiang Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Vocational and Technical College filed Critical Xinxiang Vocational and Technical College
Priority to CN202210661927.4A priority Critical patent/CN114754694B/zh
Publication of CN114754694A publication Critical patent/CN114754694A/zh
Application granted granted Critical
Publication of CN114754694B publication Critical patent/CN114754694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提出一种基于多光谱的材料形变检测设备,包括光源系统、投射系统、样品承载系统、相机和处理器。通过不同波长光束与待形变位置的配合,实现了多种扫描模式的检测,能够实现快速、准确、全面的液晶弹性材料的形变检测。

Description

一种基于多光谱的材料形变检测设备
技术领域
本发明涉及材料形变检测领域,特别涉及一种基于多光谱的材料形变检测设备。
背景技术
液晶弹性体是一种新型材料,它同时具备液晶材料独特的位置序和取向序,又具备一般聚合物的弹性性能,因此具有一些独特的物理应变特性,如软弹性、形状记忆特性、热致应变特性、光致应变特性等。如同液晶对外部刺激敏感一样,液晶弹性体对热、光、电等外部作用场极敏感,可以在外场作用下快速变形,而且在外场刺激撤销后能够恢复到原始状态。并且根据研究液晶弹性体材料对于不同波长的光照形变具有一定差异。因此其对于光照的响应以及对于无光照的恢复是液晶弹性体材料的重要性能之一。
现有技术中通常采用人工目视方法判断液晶弹体材料的形变,但其准确度不够,且某些波长的光长期注视对人眼具有损伤。现有技术中也有使用机器视觉的方式进行材料形变的检测,但图像算法复杂,准确度较低。并且,由于液晶弹体材料的特殊光学特性,一般材料形变图像算法无法准确实现检测,目前还未有也没有专门针对液晶弹体材料的图像处理算法。而且,目前的检测均集中在被光照后是否形变合格,其采用的结构大多数为光源、相机,而从未有考虑不同波长光线条件下液晶弹性体材料形变的性能,更没有适合的解决方案。即使在其他领域,对于不同波长光线条件的满足也是通过多个波长光源来实现,这样对光源一致性要求较高。
发明内容
一种基于多光谱的材料形变检测设备,包括光源系统、投射系统、样品承载系统、相机和处理器;
其中光源系统包括多光谱光源、准直透镜;多光谱光源为线光源,向透镜发射线状光束,准直透镜用于将光源发出的线状光束准直扩束,成为投影面为矩形的光束;
投射系统包括反射棱镜、左反射镜、右反射镜;其中反射棱镜为直角棱镜,矩形光束能够均匀地照射在反射棱镜两个反射斜面上,并被均匀分隔为两部分,分别由两个反射斜面反射,形成两个波长不同的水平方向光束分别射向左反射镜和右反射镜;反射棱镜两个反射斜面上分别设置有能够反射不同波长的反射膜;左反射镜、右反射镜分别与左驱动器、右驱动器连接,通过左反射镜、右反射镜转动分别向样品承载系统投射第一光束和第二光束;
样品承载系统包括承载板、第一波长光传感器、第二波长光传感器;其中第一波长光传感器为多个,依次阵列排布,位于承载板长度方向一侧边缘;第二波长光传感器为多个,依次阵列排布,位于承载板长度方向另一侧边缘;承载板用于承载液晶弹性材料样品;样品阵列排布,宽度方向上每排样品与一个第一波长光传感器和一个第二波长光传感器位置相对应;第一波长光传感器和一个第二波长光传感器用于分别感知投射系统投射的第一光束和第二光束,并将感知信号发送给处理器;
处理器,用于执行如下方法:开启光源的脉冲照射模式,使得光源按照预设脉冲频率周期性地发光,光束经过反射棱镜分光,并经过左、右反射镜反射后,分别形成截面为矩形的第一光束和第二光束,照射在承载板上;第一光束和第二光束的光斑均覆盖承载板边缘的第一波长光传感器和第二波长光传感器;接收到第一光束照射的第一波长光传感器向处理器发送第一传感信号,接收到第二光束照射的第二波长光传感器向处理器发送第二传感信号,处理器根据第一传感信号和第二传感信号判断此时第一光束和第二光束位于预定位置,则控制光源开启固定照射模式,向样品发出恒定功率的连续照射光,从而使得液晶弹性材料样品发生形变,处理器根据采集的形变图像对样品形变进行判断。
相机位于样品承载系统正上方、反射棱镜下,用于拍摄样品图像,并将图像传输至处理器。
多光谱光源包括紫外光、可见光、红外光中任意两个波段。
在使用设备时,选择反射棱镜型号,使得其两个斜面能够反射不同波长的光束。
所述脉冲照射模式为光源按照预设脉冲频率周期性地发光。
所述固定照射为光源向样品发出恒定功率的连续照射光,使得材料发生形变。
处理器还用于执行双光谱独立扫描模式:第一光束和第二光束每次分别投射至样品不同列。
处理器还用于执行双光谱重合扫描模式:第一光束和第二光束每次均投射至样品相同列。
处理器用于通过对采集的形变图像和标准形变图像进行处理得到特征分布图,并由此计算单元响应距离,进而判断形变图像特征分布图和标准形变图像特征分布图的空间相似性和内容相似性。
处理器用于根据空间相似性和内容相似性判断样品是否符合形变要求。
本发明的发明点及技术效果:
1、本发明通过可更换的波长规格的分光棱镜,实现了在单一光源情况下完成双光谱的材料性能检测。更换方便,且可以适用于多种光谱,避免了多光源带来的光源一致性差、成本高的问题,从而提高了检测准确度。
2、通过在承载板上设置不同波长的传感器,并结合反射镜旋转的方式方便快捷地实现了对于不同波长光束的引导,保证了液晶弹性体材料能够快速切换不同光谱条件,实现快速、准确地形变的检测。
3、创造性地提出了多种光照扫描检测模式,从而能够对液晶弹性体材料的性能实现更为全面、准确的检测,避免单一检测带来的误判。
4、提出了专门适用于液晶弹性体材料形变性能检测的图像处理方法,能够结合多光谱设备使用,更加准确、快速、全面实现检测。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1是检测设备结构示意图;
图2是样品承载系统结构示意图。
具体实施方式
基于多光谱的液晶弹性材料检测设备,包括光源系统、投射系统、样品承载系统6、相机7和处理器。
其中光源系统包括多光谱光源1、准直透镜2。多光谱光源为线光源,向透镜发射线状光束,该光束包括多波段光谱,例如至少可以包括紫外光、可见光、红外光中任意两个波段。准直透镜用于将光源发出的线状光束准直扩束,成为投影面为矩形的光束。
投射系统包括反射棱镜3、左侧转动的左反射镜4、右侧转动的右反射镜5。其中反射棱镜为直角棱镜,直角向上,从而使得矩形光束均匀地照射在反射棱镜两个反射斜面上。由此,矩形光束被均匀分隔为两部分,分别由两个反射斜面反射,形成水平方向光束。反射棱镜两个反射斜面上分别设置有不同波长的高反射膜,从而使得被反射棱镜分割反射的两部分水平方向光束的波长不同。作为一种举例,水平向左反射的光为可见光波段,水平向右反射的光为紫外光波段。水平向左的光被左反射镜反射后形成第一投射光投射到样品承载系统上,水平向由的光被右反射镜反射后形成第二投射光投射到样品承载系统上。左反射镜、右反射镜分别与左驱动器、右驱动器连接。两个驱动器分别与处理器连接,根据处理器信号驱动反射镜转动。
样品承载系统6包括承载板6-1、第一波长光传感器6-2、第二波长光传感器6-3。其中第一波长光传感器为多个,依次阵列排布,位于承载板长度方向一侧边缘;第二波长光传感器为多个,依次阵列排布,位于承载板长度方向另一侧边缘。承载板用于承载液晶材料样品8,样品阵列排布,宽度方向上每排样品与一个第一波长光传感器和一个第二波长光传感器位置相对应,即一个第一波长光传感器和一个第二波长光传感器分别位于该排样品的两端。第一波长光传感器和一个第二波长光传感器用于分别感知投射系统投射的第一光束和第二光束,并将感知信号发送给处理器。
处理器,用于根据第一波长光传感器和一个第二波长光传感器发送的信号,判断第一光束和第二光束是否已投射至预设位置,即投射光是否照射了固定的样品排。同时,处理器还用于根据光传感器信号,计算左、右反射镜应当转动的角度,并驱动左、右驱动装置进行动作。处理器还能够控制光源的发光模式,进行脉冲照射和固定照射的模式切换。处理器还用于接收相机拍摄的图像,从而对样品形变进行判断。
相机7位于样品承载系统正上方,通常设置于反射棱镜下,用于拍摄样品图像,并将图像传输至处理器。
该设备的工作流程为:
(1)将液晶材料样品按矩形行列排布,放置在承载板上,每一列样品与位于承载板边缘的一个第一波长光传感器和一个第二波长光传感器相对应。
(2)选择反射棱镜型号,使得其两个斜面可以反射不同波长的光束。
(3)开启光源的脉冲模式,使得光源按照预设脉冲频率周期性地发光,光束经过反射棱镜分光,并经过左、由反射镜反射后,分别形成截面为矩形的第一光束和第二光束,照射在承载板上。第一光束和第二光束的光斑均覆盖承载边缘的第一波长光传感器和第二波长光传感器。如此可以避免一直使用大功率照射带来的功耗增加,和样品损坏。
(4)接收到第一光束照射的第一波长光传感器向处理器发送第一传感信号,处理器根据第一传感信号判断此时第一光束照射在承载板上的第一位置;接收到第二光束照射的第二波长光传感器向处理器发送第二传感信号,处理器根据第二传感信号判断此时第二光束照射在承载板上的第二位置。
(5)当第一位置和第二位置均符合预定位置时,则光源开启固定照射模式,向样品发出恒定大功率的连续照射光,从而使得液晶弹性材料发生形变,此时相机采集液晶材料样品的形变图像,并发送给处理器。
(6)处理器根据接收到的形变图像,判断液晶弹性材料是否发生预期形变。
为了准确检测液晶弹性材料的形变性能,需要进行如下多种照射模式的检测。
(1)双光谱独立扫描
第一光束投射至第一位置,第二光束投射至第二位置,且第一位置与第二位置不重合,即第一光束照射液晶弹性材料样品的某一列,第二光束照射液晶弹性材料的另一列。形变完毕并采集形变图像后,第一光束投射至与第一位置相邻的位置,第二光束投射至与第二位置相邻的位置,进行材料形变及图像采集,以此类推。第一光束依次照射射液晶弹性材料样品排布的矩阵的每一列,使得每一列液晶弹性材料样品发生光致形变,同时采集相应形变图像;第二光束依次照射射液晶弹性材料样品排布的矩阵的每一列,使得每一列液晶弹性材料样品发生光致形变,同时采集相应形变图像。第一光束和第二光束每次投射的位置均不重合。作为一种优选,任何一列液晶弹性材料样品发生光致形变后恢复一段时间,材料恢复到未形变状态,再进行第二次投射。以阵列数量为8列的样品阵列为例。第一光束依次投射第1、2、3、4、5、6、7、8列样品,同时第二光束依次投射第5、6、7、8、1、2、3、4列样品。如此,样品能够获得较长的恢复时间。
(2)双光谱重合扫描
第一光束投射至第一位置,第二光束投射至第二位置,且第一位置与第二位置重合,即第一光束照射液晶弹性材料样品的某一列,第二光束同样照射液晶弹性材料的该列,从而使得该列液晶弹性材料受到两个光谱的光照射,发生形变。形变完毕并采集形变图像后,第一光束投射至与第一位置相邻的位置,第二光束同样投射至该位置,进行材料形变及图像采集,以此类推。第一、二光束同时依次照射射液晶弹性材料样品排布的矩阵的每一列,使得每一列液晶弹性材料样品在同时受到两个光谱的光束照射发生光致形变,同时采集相应形变图像。以8列样品阵列为例。第一光束依次投射第1、2、3、4、5、6、7、8列样品,同时第二光束依次投射第1、2、3、4、5、6、7、8列样品。
其中,处理器执行的方法如下所述:
按照上面所述的照射模式,分别采集液晶弹性体阵列在不同光谱照射下产生形变的图案,图案包括多种。例如,以8列样品阵列为例,在双光谱独立扫描模式下,第一光束依次投射第1、2、3、4、5、6、7、8列样品,同时第二光束依次投射第5、6、7、8、1、2、3、4列样品,如此可产生8个形变图像;在双光谱重合扫描模式下,第一光束依次投射第1、2、3、4、5、6、7、8列样品,同时第二光束依次投射第1、2、3、4、5、6、7、8列样品,如此又可以产生8个形变图像。也就是说,经过上述两种模式的操作,一共采集了16个待检测形变图像。为了检测这些形变图像是否符合要求,则事先应当按上述方法采集标准8列样品阵列的16个标准形变图像。从而一方面可以按如下方式通过学习确定算法参数,另一方面可以作为后续待检测图像的参考。下面以其中一个待检测形变图像和其对应的标准形变图像为例,进行算法介绍。可以理解,每个待检测形变图像和其对应的标准图像都需要完成整个算法(即需要对液晶弹性体阵列的每个形变状态进行采集和处理),这样才能检测每种形变状态下阵列是否发生形变异常。通过上述两种模式,能够对材料形变更加全面检测,避免了单一光谱检测带来的性能考察不完整的问题。防止某些异常单元在一些波长条件下形变正常带来的误判。
(1)液晶弹性体阵列模块图像的预处理
利用光学相机采集液晶弹性体阵列模块图像,将采集的图像表示成数字二维矩阵形式;图像内容是液晶弹性体阵列模块,包括若干按行、列分布排列的液晶弹性体单元;每个单元受到独立控制的激发光源影响,当受到光照时,单元逐渐产生形变,当光照解除后,单元逐渐恢复原有形态。形变发生后,所有液晶弹性体单元在图像中反映出的分布特征发生改变,故可通过识别图像分布特征来区分某些单元是否发生形变。
采集一张液晶弹性体阵列模块图像,包括若干按行、列分布排列的液晶弹性体单元,其具有一定的颜色特征,与陈列模块的基板相区分。在图像中,通过预处理方法对图像中的每一个像素作标记,判断其属于液晶弹性体可形变部分的概率,并形成液晶弹性体阵列模块图像的概率图,并对概率图进行滤波优化,获得液晶弹性体阵列模块图像的特征分布图。
设液晶弹性体单元、模块基板的颜色特征分布分别记为
Figure DEST_PATH_IMAGE001
Figure 442242DEST_PATH_IMAGE002
,该分布可根据模 块制造材料进行事先测量统计,获得相应的分布函数
Figure 359382DEST_PATH_IMAGE001
Figure 76803DEST_PATH_IMAGE002
,或根据现实条件合理预估一 种分布函数,用于构建上述颜色特征分布。
例如,设液晶弹性体单元、模块基板的颜色特征均服从高斯分布,液晶弹性体单元 的颜色服从分布
Figure 472012DEST_PATH_IMAGE001
,模块基板的颜色服从分布
Figure 286384DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
Figure 46530DEST_PATH_IMAGE004
(1)、(2)中,x表示颜色值,
Figure 313563DEST_PATH_IMAGE005
Figure 951611DEST_PATH_IMAGE006
分别表示分布
Figure DEST_PATH_IMAGE007
Figure 558173DEST_PATH_IMAGE008
的均值,
Figure DEST_PATH_IMAGE009
Figure 551537DEST_PATH_IMAGE010
分别表示分 布
Figure 305866DEST_PATH_IMAGE007
Figure 980561DEST_PATH_IMAGE008
的方差。
Figure 503946DEST_PATH_IMAGE011
表示自然指数。
设图像的一个像素表示为
Figure 933791DEST_PATH_IMAGE012
Figure 113099DEST_PATH_IMAGE013
为像素的颜色值,
Figure 388223DEST_PATH_IMAGE014
表示像素在图像中的 空间位置。记图像的概率图
Figure DEST_PATH_IMAGE015
表示如下:
Figure 31694DEST_PATH_IMAGE016
其中,
Figure DEST_PATH_IMAGE017
表示在空间位置
Figure 803078DEST_PATH_IMAGE018
处像素的颜色值,
Figure 532000DEST_PATH_IMAGE015
为概率图在相 应的空间位置
Figure DEST_PATH_IMAGE019
处的像素值。概率图描述了图像中的一个像素属于液晶弹性体单元的 可能性。由于单一像素值容易受到噪声干扰,故进一步的,对概率图作进行如下处理:
Figure 548497DEST_PATH_IMAGE020
(4)中,
Figure DEST_PATH_IMAGE021
Figure 46475DEST_PATH_IMAGE022
为两个方阵,
Figure DEST_PATH_IMAGE023
Figure 755805DEST_PATH_IMAGE024
为方阵元素的空 间坐标,
Figure 706443DEST_PATH_IMAGE021
Figure 526632DEST_PATH_IMAGE022
定义如下:
Figure 879116DEST_PATH_IMAGE025
Figure 821664DEST_PATH_IMAGE026
通过大量实验分析图像特点优化方阵结构和去噪算法,对概率图
Figure 259599DEST_PATH_IMAGE027
作去噪处理, 全面、准确地去除了源图像中存在的像素级噪声,获得源图像的特征分布图
Figure 119364DEST_PATH_IMAGE029
,反映了源图 像中包含液晶弹性体单元的分布特征,当液晶弹性体单元发生形变时,特征分布图亦随之 发生变化,故可通过该特征分布图实施检测。
可以理解,上述预处理方法是基础方法,在学习过程中,需要对采集的标准液晶弹性体阵列在多光谱的各种照射模式下的标准形变图像进行上述预处理。
(2)基于图像特征的液晶弹性体阵列模块形变状态的检测
拍摄液晶弹性体阵列模块的图像,并将拍摄的源图像利用步骤1所述方法获得对应的特征分布图,根据特征分布图检测其形变状态,并与预期的形变状态相比对。
所述液晶弹性体阵列模块形变状态,是指液晶弹性体阵列模块若干单元发生形变,并通过发生形变的单元与未发生形变单元的排列组合,形成具有一定信息含义的物理形态。
对不同光照模式下获得的每一个标准形变图案分别进行如下操作分别确定算法 参数:
当需要检测某一的形变状态时,例如前文中任何一种情况的图案,先准备一幅模 块处于相应形变状态所采集的标准图像
Figure 591933DEST_PATH_IMAGE030
,并根据步骤1所述方法计算对应的特征分布图
Figure 705383DEST_PATH_IMAGE031
对特征分布图
Figure 568296DEST_PATH_IMAGE031
中的每个像素
Figure 792604DEST_PATH_IMAGE032
,计算其单元响应距离
Figure 854101DEST_PATH_IMAGE033
,定义如下:
Figure 138452DEST_PATH_IMAGE034
Figure 488662DEST_PATH_IMAGE035
时,
Figure 516661DEST_PATH_IMAGE036
Figure 635927DEST_PATH_IMAGE037
(5)中,median表示取一个集合中所有元素的中间值。
Figure 825600DEST_PATH_IMAGE038
为如(6)定义的集合, 集合中包括8个元素,每一个元素
Figure 725422DEST_PATH_IMAGE039
表示当
Figure 291533DEST_PATH_IMAGE040
依次取式(7)的八组值时,使 (6)中条件
Figure 29420DEST_PATH_IMAGE035
成立的
Figure 389994DEST_PATH_IMAGE041
的最大值。T为一经验阈值,经 过实验优选T=0.35。
Figure 777113DEST_PATH_IMAGE042
表示
Figure 84597DEST_PATH_IMAGE043
取八个方向时的最大步长,取经验值
Figure 975193DEST_PATH_IMAGE044
单元响应距离
Figure 772248DEST_PATH_IMAGE045
描述了特征分布图中液晶弹性体单元的一部分与其边界 的距离,单元响应距离越大,表示该部分像素越靠近液晶弹性体单元的中央。假设液晶弹性 体阵列共有N个单元,取
Figure 381084DEST_PATH_IMAGE033
中最大的前N个像素的位置,作为对液晶弹性体单元的定 位,记为
Figure 492259DEST_PATH_IMAGE046
Figure 502940DEST_PATH_IMAGE047
…、
Figure 470896DEST_PATH_IMAGE048
上述计算标准图像参数的过程,称为学习过程。利用特征分布图与单元响应距离提供的信息,首先对标准图像根据式(5)-(7)进行学习,获得相应的标准图像单元响应距离参数,与定位参数,从而获得检测液晶弹性体阵列在该状态下的算法。进一步根据前述参数继续评估一张待检测图像与标准图像的相似性,就可以判断待检测图像中的液晶弹性体阵列是否发生了如预期的形变,具体如下。
采集待检测液晶弹性体阵列的多种形变状态下的形变图像,并分别与对应的标准 图像进行比对处理:
给定一张待检测图像
Figure 504711DEST_PATH_IMAGE049
,根据步骤1所述方法计算其特征分布图
Figure 216316DEST_PATH_IMAGE029
;并根据 式(5)、(6)、(7)计算其每个像素的单元响应距离
Figure 81503DEST_PATH_IMAGE050
Figure 220361DEST_PATH_IMAGE050
中最大的前N个像素的位置,记为
Figure 242937DEST_PATH_IMAGE051
Figure 492652DEST_PATH_IMAGE052
…、
Figure 477926DEST_PATH_IMAGE053
定义特征分布图
Figure 725368DEST_PATH_IMAGE029
Figure 796092DEST_PATH_IMAGE031
的空间相似性如下:
Figure 849499DEST_PATH_IMAGE054
Figure 689279DEST_PATH_IMAGE055
中,
Figure 107622DEST_PATH_IMAGE056
表示两个位置
Figure 400063DEST_PATH_IMAGE057
Figure 257160DEST_PATH_IMAGE058
的相对距离。式(8)表示待检测图像 特征分布图与标准图像特征分布图之间最小单元响应距离的均值,用于度量特征分布图的 空间相似性。
定义特征分布图
Figure 889130DEST_PATH_IMAGE029
Figure 540691DEST_PATH_IMAGE031
的内容相似性如下:
Figure 586007DEST_PATH_IMAGE059
Figure 417435DEST_PATH_IMAGE060
中,
Figure DEST_PATH_IMAGE061
Figure 966228DEST_PATH_IMAGE062
分别表示
Figure 54270DEST_PATH_IMAGE029
Figure 258986DEST_PATH_IMAGE031
像素值的数学期望,即平均值;
Figure DEST_PATH_IMAGE063
表示图中像 素的个数,对于本发明中所有图像是一致的。式(9)描述了特征分布图对应位置像素取值的 相似性。
将特征分布图的空间相似性、内容相似性联合,既可以衡量特征图之间像素纹理和内容的相似性,从而检测出特征图所对应的形变是否一致;又可以排除局部像素异常(如光照不均、阴影等)带来的干扰,增强检测的鲁棒性。
通过比较标准图像与待检测图像特征分布图的相似性度量,判定待检测图像的形变状态是否与标准图像在一定期望下相符,从而推论待检测图像中液晶弹性体阵列的形变状态是否正确发生形变。
Figure 457886DEST_PATH_IMAGE064
对液晶弹性体阵列的多种状态分别进行上述检测步骤,若在多次检测中图像均通过检测,则认为该液晶弹性体材料符合要求。
为了验证该方法的准确性和全面性,本发明进行了比较实验,实验数据如下:
实验例 检测正确率 100样品实验耗时
本发明算法 98.3% 127秒
现有图像算法 83.5% 304秒
人工方法 96.7% 2小时
测试结果表明,本发明方法可以自动检测较大规模液晶弹性体材料阵列的形变响应性能,快速、准确、全面,能够取得良好的检测结果。
本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

1.一种基于多光谱的材料形变检测设备,其特征在于:包括光源系统、投射系统、样品承载系统、相机和处理器;
其中光源系统包括多光谱光源、准直透镜;多光谱光源为线光源,向透镜发射线状光束,准直透镜用于将光源发出的线状光束准直扩束,成为投影面为矩形的光束;
投射系统包括反射棱镜、左反射镜、右反射镜;其中反射棱镜为直角棱镜,矩形光束能够均匀地照射在反射棱镜两个反射斜面上,并被均匀分隔为两部分,分别由两个反射斜面反射,形成两个波长不同的水平方向光束分别射向左反射镜和右反射镜;反射棱镜两个反射斜面上分别设置有能够反射不同波长的反射膜;左反射镜、右反射镜分别与左驱动器、右驱动器连接,通过左反射镜、右反射镜转动分别向样品承载系统投射第一光束和第二光束;
样品承载系统包括承载板、第一波长光传感器、第二波长光传感器;其中第一波长光传感器为多个,依次阵列排布,位于承载板长度方向一侧边缘;第二波长光传感器为多个,依次阵列排布,位于承载板长度方向另一侧边缘;承载板用于承载液晶弹性材料样品;样品阵列排布,宽度方向上每排样品与一个第一波长光传感器和一个第二波长光传感器位置相对应;第一波长光传感器和一个第二波长光传感器用于分别感知投射系统投射的第一光束和第二光束,并将感知信号发送给处理器;
处理器,用于执行如下方法:开启光源的脉冲照射模式,使得光源按照预设脉冲频率周期性地发光,光束经过反射棱镜分光,并经过左、右反射镜反射后,分别形成截面为矩形的第一光束和第二光束,照射在承载板上;第一光束和第二光束的光斑均覆盖承载板边缘的第一波长光传感器和第二波长光传感器;接收到第一光束照射的第一波长光传感器向处理器发送第一传感信号,接收到第二光束照射的第二波长光传感器向处理器发送第二传感信号,处理器根据第一传感信号和第二传感信号判断此时第一光束和第二光束位于预定位置,则控制光源开启固定照射模式,向样品发出恒定功率的连续照射光,从而使得液晶弹性材料样品发生形变,处理器根据采集的形变图像对样品形变进行判断。
2.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:相机位于样品承载系统正上方、反射棱镜下,用于拍摄样品图像,并将图像传输至处理器。
3.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:多光谱光源包括紫外光、可见光、红外光中任意两个波段。
4.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:在使用设备时,选择反射棱镜型号,使得其两个斜面能够反射不同波长的光束。
5.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:所述脉冲照射模式为光源按照预设脉冲频率周期性地发光。
6.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:所述固定照射为光源向样品发出恒定功率的连续照射光,使得材料发生形变。
7.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:处理器还用于执行双光谱独立扫描模式:第一光束和第二光束每次分别投射至样品不同列。
8.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:处理器还用于执行双光谱重合扫描模式:第一光束和第二光束每次均投射至样品相同列。
9.如权利要求1所述的一种基于多光谱的材料形变检测设备,其特征在于:处理器用于通过对采集的形变图像和标准形变图像进行处理得到特征分布图,并由此计算单元响应距离,进而判断形变图像特征分布图和标准形变图像特征分布图的空间相似性和内容相似性。
10.如权利要求9所述的一种基于多光谱的材料形变检测设备,其特征在于:处理器用于根据空间相似性和内容相似性判断样品是否符合形变要求。
CN202210661927.4A 2022-06-13 2022-06-13 一种基于多光谱的材料形变检测设备 Active CN114754694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210661927.4A CN114754694B (zh) 2022-06-13 2022-06-13 一种基于多光谱的材料形变检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210661927.4A CN114754694B (zh) 2022-06-13 2022-06-13 一种基于多光谱的材料形变检测设备

Publications (2)

Publication Number Publication Date
CN114754694A true CN114754694A (zh) 2022-07-15
CN114754694B CN114754694B (zh) 2022-09-02

Family

ID=82337250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210661927.4A Active CN114754694B (zh) 2022-06-13 2022-06-13 一种基于多光谱的材料形变检测设备

Country Status (1)

Country Link
CN (1) CN114754694B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071045A2 (en) * 2001-01-22 2002-09-12 General Electric Company Method for determination of structural defects of coatings
US20050264813A1 (en) * 2003-06-25 2005-12-01 George Giakos Multi-wavelength imaging system
CN101041779A (zh) * 2007-03-15 2007-09-26 复旦大学 一种光致形变液晶高分子材料及其制备方法
CN201233362Y (zh) * 2008-06-04 2009-05-06 江西农业大学 一种用于检测水果品质的多光谱成像装置
CN101718683A (zh) * 2009-11-10 2010-06-02 中国农业大学 快速检测叶片叶绿素含量的装置、建模方法及检测方法
CN102854148A (zh) * 2012-08-30 2013-01-02 中国农业大学 基于多光谱图像技术的生鲜牛肉嫩度检测分级系统
CN103575232A (zh) * 2013-11-13 2014-02-12 长春理工大学 光致变形薄膜反射镜的面形控制及测量装置
CN103698009A (zh) * 2013-12-25 2014-04-02 北京农业智能装备技术研究中心 一种基于线扫描高光谱成像的多光谱图像获取方法和系统
US20140132946A1 (en) * 2012-11-09 2014-05-15 Ge Aviation Systems Llc Mixed-material multispectral staring array sensor
US20170059408A1 (en) * 2014-02-21 2017-03-02 Universität Stuttgart Method and Device for Generating Multispectral or Hyperspectral Light, for Hyperspectral Imaging and/or for Distance Measurement and/or 2D or 3D Profile Measurement of an Object by Means of Spectrometry
TWM567355U (zh) * 2018-06-16 2018-09-21 台灣海博特股份有限公司 Multispectral image analysis system architecture
CN108844901A (zh) * 2018-06-25 2018-11-20 南京工程学院 多光谱图像采集装置
US20190271537A1 (en) * 2018-03-02 2019-09-05 Drexel University Multiscale Deformation Measurements Leveraging Tailorable and Multispectral Speckle Patterns
CN113155023A (zh) * 2021-04-02 2021-07-23 甘肃旭盛显示科技有限公司 液晶基板玻璃翘曲度测量方法及系统
CN113252169A (zh) * 2021-04-30 2021-08-13 深圳世纪微创医疗科技有限公司 多光谱成像系统
CN113324491A (zh) * 2021-03-22 2021-08-31 中国地质大学(北京) 一种基于多光谱相机的变形场测量方法及装置
CN114216867A (zh) * 2021-12-15 2022-03-22 潍坊医学院 高光谱图像采集识别装置及方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071045A2 (en) * 2001-01-22 2002-09-12 General Electric Company Method for determination of structural defects of coatings
US20050264813A1 (en) * 2003-06-25 2005-12-01 George Giakos Multi-wavelength imaging system
CN101041779A (zh) * 2007-03-15 2007-09-26 复旦大学 一种光致形变液晶高分子材料及其制备方法
CN201233362Y (zh) * 2008-06-04 2009-05-06 江西农业大学 一种用于检测水果品质的多光谱成像装置
CN101718683A (zh) * 2009-11-10 2010-06-02 中国农业大学 快速检测叶片叶绿素含量的装置、建模方法及检测方法
CN102854148A (zh) * 2012-08-30 2013-01-02 中国农业大学 基于多光谱图像技术的生鲜牛肉嫩度检测分级系统
US20140132946A1 (en) * 2012-11-09 2014-05-15 Ge Aviation Systems Llc Mixed-material multispectral staring array sensor
CN103575232A (zh) * 2013-11-13 2014-02-12 长春理工大学 光致变形薄膜反射镜的面形控制及测量装置
CN103698009A (zh) * 2013-12-25 2014-04-02 北京农业智能装备技术研究中心 一种基于线扫描高光谱成像的多光谱图像获取方法和系统
US20170059408A1 (en) * 2014-02-21 2017-03-02 Universität Stuttgart Method and Device for Generating Multispectral or Hyperspectral Light, for Hyperspectral Imaging and/or for Distance Measurement and/or 2D or 3D Profile Measurement of an Object by Means of Spectrometry
US20190271537A1 (en) * 2018-03-02 2019-09-05 Drexel University Multiscale Deformation Measurements Leveraging Tailorable and Multispectral Speckle Patterns
TWM567355U (zh) * 2018-06-16 2018-09-21 台灣海博特股份有限公司 Multispectral image analysis system architecture
CN108844901A (zh) * 2018-06-25 2018-11-20 南京工程学院 多光谱图像采集装置
CN113324491A (zh) * 2021-03-22 2021-08-31 中国地质大学(北京) 一种基于多光谱相机的变形场测量方法及装置
CN113155023A (zh) * 2021-04-02 2021-07-23 甘肃旭盛显示科技有限公司 液晶基板玻璃翘曲度测量方法及系统
CN113252169A (zh) * 2021-04-30 2021-08-13 深圳世纪微创医疗科技有限公司 多光谱成像系统
CN114216867A (zh) * 2021-12-15 2022-03-22 潍坊医学院 高光谱图像采集识别装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕世良等: "空间多光谱CCD相机调焦精度分析", 《红外与激光工程》 *

Also Published As

Publication number Publication date
CN114754694B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US9064139B2 (en) Low power fingerprint capture system, apparatus, and method
US20180164417A1 (en) Method of error correction for 3d imaging device
US20230105371A1 (en) System for detecting surface type of object and artificial neural network-based method for detecting surface type of object
US20170131200A1 (en) Method for huanglongbing (hlb) detection
US10690480B2 (en) Film thickness measuring method and film thickness measuring device
EP3223249B1 (en) Paper currency fold recognition apparatus and method
CN108204979B (zh) 用于试纸检测设备中光源校准的方法和装置
EP2043024A2 (en) Finger contact detecting apparatus, finger contact detecting method, fingerprint reading apparatus and fingerprint reading method
EP1450671A2 (en) Range extending system and spatial filter
CN114754694B (zh) 一种基于多光谱的材料形变检测设备
CN214097211U (zh) 一种透明平板玻璃的缺陷检测装置
US11168976B2 (en) Measuring device for examining a specimen and method for determining a topographic map of a specimen
CN111226110A (zh) 检测方法和系统
US6658138B1 (en) Produce texture data collecting apparatus and method
CN112289154A (zh) 一种用于牛顿环实验的机器视觉教学系统及方法
CN109643444B (zh) 打光校正方法及装置
JP2003501753A (ja) 指及び/又は掌の表面構造物を検知するための配列構造
CN113624458B (zh) 基于双路全投射光的薄膜均匀性检测系统
CN115355824A (zh) 一种透光管图像获取方法、管径测量方法及装置
CN111220087B (zh) 表面形貌检测方法
CN113624461B (zh) 基于线结构光的薄膜均匀性检测系统
US20220405949A1 (en) Method of digitally processing a plurality of pixels and temperature measurement apparatus
JP2003255217A (ja) フォーカス調整方法および装置
CN111572026B (zh) 一种3d打印的压力容器映射试验系统
CN114742835B (zh) 一种液晶弹性体材料阵列性能的测试设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant