CN114742937B - Three-dimensional geological analysis method and device - Google Patents
Three-dimensional geological analysis method and device Download PDFInfo
- Publication number
- CN114742937B CN114742937B CN202210219136.6A CN202210219136A CN114742937B CN 114742937 B CN114742937 B CN 114742937B CN 202210219136 A CN202210219136 A CN 202210219136A CN 114742937 B CN114742937 B CN 114742937B
- Authority
- CN
- China
- Prior art keywords
- soil layer
- geological
- model
- dimensional
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 30
- 239000002689 soil Substances 0.000 claims abstract description 131
- 238000009826 distribution Methods 0.000 claims abstract description 49
- 238000005553 drilling Methods 0.000 claims abstract description 38
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 27
- 238000010276 construction Methods 0.000 claims abstract description 22
- 238000013461 design Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000012549 training Methods 0.000 claims abstract description 8
- 238000007476 Maximum Likelihood Methods 0.000 claims description 12
- 238000009877 rendering Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 238000012800 visualization Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- 238000004040 coloring Methods 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 239000011435 rock Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 238000009412 basement excavation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000009430 construction management Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000002948 stochastic simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/04—Architectural design, interior design
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Computational Mathematics (AREA)
- Civil Engineering (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种三维地质解析方法和装置,属于地下空间盾构隧道的设计施工领域,所述方法包括:S1:获取细分后的地勘钻孔数据对应的数据框D;D[:,1]、D[:,2]和D[:,3]为地勘钻孔的三维坐标数据;D[:,4]为土层数据;S2:利用三维坐标数据进行钻孔点云建模、绘制地质盾构断面模型、网格划分得到网格模型Mdm’;计算Mdm’中不重复网格节点的坐标与钻孔点云模型的最小距离,分析土层种类并计算每种土层厚度,以获得断面土层分布;S3:分析土层数据D[:,4]得到土层种类并赋值得到D[:,5];将三维坐标数据和D[:,5]作为训练样本对插值算法模型进行训练;利用训练后的模型预测各个网格节点的土层参数分布。本发明提供的方法能够提高地质解析的全面性和准确性。
The invention discloses a three-dimensional geological analysis method and device, belonging to the field of design and construction of underground space shield tunnels, the method comprising: S1: obtaining a data frame D corresponding to the subdivided geological exploration drilling data; D[:, 1], D[:, 2] and D[:, 3] are three-dimensional coordinate data of the geological exploration drilling; D[:, 4] is soil layer data; S2: using the three-dimensional coordinate data to perform drilling point cloud modeling, draw a geological shield section model, and mesh to obtain a mesh model M dm '; calculating the minimum distance between the coordinates of non-repeated grid nodes in M dm ' and the drilling point cloud model, analyzing the soil layer type and calculating the thickness of each soil layer to obtain the cross-section soil layer distribution; S3: analyzing the soil layer data D[:, 4] to obtain the soil layer type and assigning D[:, 5]; using the three-dimensional coordinate data and D[:, 5] as training samples to train the interpolation algorithm model; using the trained model to predict the soil layer parameter distribution of each grid node. The method provided by the invention can improve the comprehensiveness and accuracy of geological analysis.
Description
技术领域Technical Field
本发明属于地下空间盾构隧道的设计施工领域,更具体地,涉及一种三维地质解析方法和装置。The present invention belongs to the field of design and construction of underground space shield tunnels, and more specifically, relates to a three-dimensional geological analysis method and device.
背景技术Background technique
地下空间的盾构隧道是长距离分布的,通常穿越超长软硬复合地层,包括:黏土、砂土、强风泥岩、砾层以及不良岩爆、节理密集带、蚀变岩破碎带等等,所以隧道在建设中容易产生诸多不利因素。例如:针对高强度(>100Mpa)岩石与淤泥组合地层,盾构机出现掘不进、易失稳、掘进参数控制难等问题;当遇到未预料的硬岩时,盾构机出现破岩困难、掘进效率低、主轴承寿命短、刀具磨损严重等系列问题;当穿梭于活动强烈的板块区域或有高地应力软岩大变形和硬岩强烈岩爆区域时,隧道软岩变形控制和硬岩岩爆防治需要格外加强。所以,盾构隧道在设计和施工时通常需要提前充分了解区域内复合地层的构造并及时采取应对措施。Shield tunnels in underground spaces are distributed over long distances, usually passing through ultra-long soft and hard composite strata, including clay, sand, strong wind mudstone, gravel layers, unfavorable rock bursts, joint-dense zones, altered rock fracture zones, etc., so tunnel construction is prone to many unfavorable factors. For example, for high-strength (>100Mpa) rock and silt combined strata, shield machines have problems such as failure to dig, easy instability, and difficulty in controlling excavation parameters; when encountering unexpected hard rock, shield machines have difficulty breaking rocks, low excavation efficiency, short main bearing life, and severe tool wear. When shuttling through active plate areas or areas with high ground stress, large deformation of soft rocks, and strong rock bursts of hard rocks, tunnel soft rock deformation control and hard rock rock burst prevention need to be particularly strengthened. Therefore, when designing and constructing shield tunnels, it is usually necessary to fully understand the structure of the composite strata in the area in advance and take timely countermeasures.
地质勘察通常都是按照钻探、采样等确定性的方法来认识地质环境的,并将钻孔样本和勘测数据作为唯一的准确依据。但是由于钻孔密度有限再加上岩土体在建造过程中的变异性,地质工作者对地质的解析往往会不够准确,造成设计和施工上的重大失误甚至是安全事故。事实上,现阶段国内外许多学者已经采用DSI、随机模拟、地质统计等预测方法来进行地层边界与高程的计算,并提出了泛克里金(Universal Kriging)方法进行岩土物理性质指标的不确定性推断。尽管预测结果对地质评估的精度有提高的改善,但相关勘察员依然是将地质体的三维空间抽象投射成二维平面。参与盾构设计和施工的人员只能基于抽象化的二维平面图理解地质环境。Geological surveys usually use deterministic methods such as drilling and sampling to understand the geological environment, and use borehole samples and survey data as the only accurate basis. However, due to the limited density of boreholes and the variability of rock and soil during the construction process, geologists' analysis of geology is often not accurate enough, resulting in major mistakes in design and construction and even safety accidents. In fact, at this stage, many scholars at home and abroad have adopted prediction methods such as DSI, stochastic simulation, and geological statistics to calculate stratum boundaries and elevations, and proposed the Universal Kriging method to infer the uncertainty of geotechnical physical property indicators. Although the prediction results have improved the accuracy of geological assessment, the relevant surveyors still abstractly project the three-dimensional space of the geological body into a two-dimensional plane. People involved in shield design and construction can only understand the geological environment based on abstract two-dimensional plane maps.
因此,有必要提升对地质解析的全面性和准确性,并解析出对盾构工程不良或不利的地质分布。Therefore, it is necessary to improve the comprehensiveness and accuracy of geological analysis and analyze the geological distribution that is unfavorable or unfavorable to shield engineering.
发明内容Summary of the invention
针对现有技术的以上缺陷或改进需求,本发明提供了一种三维地质解析方法和装置,其目的在于,基于地勘钻孔数据对三维地质进行解析,从而进行盾构隧道设计和施工,由此解决现有盾构隧道设计和施工过程中地质解析数据单一及准确率低的技术问题。In view of the above defects or improvement needs of the prior art, the present invention provides a three-dimensional geological analysis method and device, the purpose of which is to analyze the three-dimensional geology based on geological exploration drilling data, so as to carry out shield tunnel design and construction, thereby solving the technical problems of single geological analysis data and low accuracy in the existing shield tunnel design and construction process.
为实现上述目的,按照本发明的一个方面,提供了一种三维地质解析方法,用于盾构隧道设计和施工,包括:To achieve the above object, according to one aspect of the present invention, a three-dimensional geological analysis method is provided for shield tunnel design and construction, comprising:
S1:获取细分后的地勘钻孔数据对应的数据框D;D的第一列D[:,0]为地勘钻孔的序号;D的第二列D[:,1]、三列D[:,2]和四列D[:,3]为所述地勘钻孔的三维坐标数据;D的第五列D[:,4]为所述地勘钻孔的土层数据,用于分析土层的种类,为每种土层的岩土参数赋值得到D的第六列D[:,5];S1: Obtain the data frame D corresponding to the subdivided geological exploration drilling data; the first column D[:,0] of D is the sequence number of the geological exploration drilling hole; the second column D[:,1], the third column D[:,2] and the fourth column D[:,3] of D are the three-dimensional coordinate data of the geological exploration drilling hole; the fifth column D[:,4] of D is the soil layer data of the geological exploration drilling hole, which is used to analyze the type of soil layer and assign geotechnical parameters to each soil layer to obtain the sixth column D[:,5] of D;
S2:利用所述地勘钻孔的三维坐标数据{D[:,1]、D[:,2]、D[:,3]}进行钻孔点云建模得到钻孔点云模型P;基于所述钻孔点云模型P绘制地质和盾构断面模型Mdm,对Mdm进行网格划分得到新的网格模型Mdm’;提取Mdm’中所有不重复的网格节点的坐标数据框V,V的第i行为第i个网格节点的顶点坐标(xi yi zi),计算各个网格节点的坐标与所述钻孔点云模型P的最小距离;以最小距离为指标分析出各个网格节点所属的最大似然土层种类SoilType以生成土层种类信息数据框V'=(V SoilType);利用所述土层种类信息数据框V'计算所述地质和盾构断面模型Mdm所包含的每种土层的平均厚度以获得断面土层分布;S2: Use the three-dimensional coordinate data {D[:,1], D[:,2], D[:,3]} of the geological exploration borehole to perform borehole point cloud modeling to obtain a borehole point cloud model P; draw a geological and shield section model Mdm based on the borehole point cloud model P, and mesh Mdm to obtain a new mesh model Mdm '; extract the coordinate data frame V of all non-repeated mesh nodes in Mdm ', the i-th row of V is the vertex coordinate (x i y i z i ) of the i-th mesh node, and calculate the minimum distance between the coordinates of each mesh node and the borehole point cloud model P; use the minimum distance as an indicator to analyze the maximum likelihood soil layer type SoilType to which each mesh node belongs to generate a soil layer type information data frame V'=(V SoilType); use the soil layer type information data frame V' to calculate the average thickness of each soil layer included in the geological and shield section model Mdm to obtain the cross-sectional soil layer distribution;
S3:将所述地勘钻孔的三维坐标数据{D[:,1]、D[:,2]、D[:,3]}和每种土层的岩土参数D[:,5]作为训练样本对插值算法模型进行训练得到目标模型;利用所述目标模型预测各个网格节点的土层参数分布。S3: The three-dimensional coordinate data of the geological exploration borehole {D[:,1], D[:,2], D[:,3]} and the geotechnical parameters D[:,5] of each soil layer are used as training samples to train the interpolation algorithm model to obtain a target model; the target model is used to predict the soil layer parameter distribution of each grid node.
在其中一个实施例中,所述S1中分析所述地勘钻孔的土层数据D[:,4]得到土层的种类,包括:In one embodiment, the soil layer data D[:,4] of the geological exploration borehole is analyzed in S1 to obtain the type of soil layer, including:
按照划分尺度对所述地勘钻孔的土层数据D[:,4]进行土层划分,获得土层种类;其中,所述划分尺度小于上土层和下土层之间界面的高程差;每种土层平均厚度为同一土层对应的三个以上厚度值的平均值。The soil layer data D[:,4] of the geological exploration borehole are divided into soil layers according to a division scale to obtain soil layer types; wherein the division scale is smaller than the elevation difference of the interface between the upper soil layer and the lower soil layer; and the average thickness of each soil layer is the average of three or more thickness values corresponding to the same soil layer.
在其中一个实施例中,所述S2中的断面土层分布用于进行盾构隧道的管片设计。In one of the embodiments, the cross-sectional soil layer distribution in S2 is used for segment design of a shield tunnel.
在其中一个实施例中,所述S2中的地质和盾构断面模型Mdm包括实体对象Solid与边界对象Brep。In one embodiment, the geological and shield section model Mdm in S2 includes a solid object Solid and a boundary object Brep.
在其中一个实施例中,所述S2中以最小距离为指标分析出各个网格节点所属的最大似然土层种类SoilType以生成土层种类信息数据框V'=(V SoilType),包括:In one embodiment, the S2 uses the minimum distance as an indicator to analyze the maximum likelihood soil type SoilType of each grid node to generate a soil type information data frame V'=(V SoilType), including:
以各个网格节点的最小距离为评价指标,利用KNN算法分析出各个网格节点所属的最大似然土层种类SoilType,生成土层种类信息数据框V'。Taking the minimum distance of each grid node as the evaluation index, the KNN algorithm is used to analyze the maximum likelihood soil type SoilType of each grid node, and generate the soil type information data frame V'.
在其中一个实施例中,所述S3中的土层参数分布用于进行盾构施工中掌子面的岩土参数分布预测。In one of the embodiments, the soil layer parameter distribution in S3 is used to predict the geotechnical parameter distribution of the tunnel face during shield construction.
在其中一个实施例中,所述S3中的插值算法模型为三维Universal Kriging插值算法模型。In one embodiment, the interpolation algorithm model in S3 is a three-dimensional Universal Kriging interpolation algorithm model.
在其中一个实施例中,所述方法还包括:In one embodiment, the method further comprises:
S4:对所述断面土层分布和所述土层参数分布进行可视化处理。S4: Visualizing the cross-section soil layer distribution and the soil layer parameter distribution.
在其中一个实施例中,所述S4包括:依次进行顶点着色和模糊渲染对所述断面土层分布和所述岩土参数分布进行三维可视化处理。In one of the embodiments, the S4 includes: performing vertex shading and fuzzy rendering in sequence to perform three-dimensional visualization processing on the cross-section soil layer distribution and the geotechnical parameter distribution.
按照本发明的另一方面,提供了一种三维地质解析装置,应用于盾构隧道设计和施工,所述三维地质解析装置用于执行所述的三维地质解析方法。According to another aspect of the present invention, a three-dimensional geological analysis device is provided, which is applied to shield tunnel design and construction, and the three-dimensional geological analysis device is used to execute the three-dimensional geological analysis method.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:1、基于里程参数,能够利用程序命令流程自动解析出隧道围岩的地层分布;2、基于里程参数,能够利用程序命令流程自动解析出开挖掌子面的土性参数分布;3、利用图形渲染方法能将上述结果可视化展现,并给设计和施工人员带来更直观的数据展示效果In general, the above technical scheme conceived by the present invention has the following beneficial effects compared with the prior art: 1. Based on the mileage parameters, the stratum distribution of the tunnel surrounding rock can be automatically analyzed by using the program command flow; 2. Based on the mileage parameters, the soil parameter distribution of the excavation face can be automatically analyzed by using the program command flow; 3. The above results can be visualized by using the graphic rendering method, and a more intuitive data display effect can be brought to the design and construction personnel.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明一实施例中三维地质解析方法的流程图;FIG1 is a flow chart of a three-dimensional geological analysis method according to an embodiment of the present invention;
图2为本发明一实施例中地勘钻孔的水平分布图;FIG2 is a horizontal distribution diagram of geological exploration boreholes according to an embodiment of the present invention;
图3为本发明一实施例中地勘钻孔点云模型的示意图;FIG3 is a schematic diagram of a geological exploration borehole point cloud model according to an embodiment of the present invention;
图4为本发明一实施例中经过网格划分后的盾构断面模型的示意图;FIG4 is a schematic diagram of a shield section model after meshing in one embodiment of the present invention;
图5为本发明一实施例中经过网格划分后的地质断面模型的示意图;FIG5 is a schematic diagram of a geological section model after meshing in one embodiment of the present invention;
图6为本发明一实施例中经过解析后的地质断面地层分布图;FIG6 is a geological cross-section stratum distribution diagram after analysis in one embodiment of the present invention;
图7为本发明一实施例中经过解析后的盾构断面的岩土参数空间分布图;FIG7 is a spatial distribution diagram of geotechnical parameters of a shield section after analysis in one embodiment of the present invention;
图8为本发明一实施例中经过解析后的盾构断面的岩土参数概率分布图。FIG8 is a probability distribution diagram of geotechnical parameters of a shield section after analysis in one embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
本发明提供了一种三维地质解析方法,用于盾构隧道设计和施工,包括:The present invention provides a three-dimensional geological analysis method for shield tunnel design and construction, comprising:
S1:获取细分后的地勘钻孔数据对应的数据框D;D的第一列D[:,0]为地勘钻孔的序号;D的第二列D[:,1]、三列D[:,2]和四列D[:,3]为地勘钻孔的三维坐标数据;D的第五列D[:,4]为地勘钻孔的土层数据,用于分析土层的种类,为每种土层的岩土参数赋值得到D的第六列D[:,5];S1: Get the data frame D corresponding to the subdivided geological exploration drilling data; the first column D[:,0] of D is the sequence number of the geological exploration drilling hole; the second column D[:,1], the third column D[:,2] and the fourth column D[:,3] of D are the three-dimensional coordinate data of the geological exploration drilling hole; the fifth column D[:,4] of D is the soil layer data of the geological exploration drilling hole, which is used to analyze the type of soil layer and assign geotechnical parameters to each soil layer to obtain the sixth column D[:,5] of D;
S2:利用地勘钻孔的三维坐标数据{D[:,1]、D[:,2]、D[:,3]}进行钻孔点云建模得到钻孔点云模型P;基于钻孔点云模型P绘制地质和盾构断面模型Mdm,对Mdm进行网格划分得到新的网格模型Mdm’;提取Mdm’中所有不重复的网格节点的坐标数据框V,V的第i行为第i个网格节点的顶点坐标(xi yi zi),计算各个网格节点的坐标与钻孔点云模型P的最小距离;以最小距离为指标分析出各个网格节点所属的最大似然土层种类SoilType以生成土层种类信息数据框V'=(V SoilType);利用土层种类信息数据框V'计算地质和盾构断面模型Mdm所包含的每种土层的平均厚度以获得断面土层分布;S2: Use the three-dimensional coordinate data {D[:,1], D[:,2], D[:,3]} of the geological exploration borehole to perform borehole point cloud modeling to obtain a borehole point cloud model P; draw the geological and shield section model Mdm based on the borehole point cloud model P, and mesh Mdm to obtain a new mesh model Mdm '; extract the coordinate data frame V of all non-repeated mesh nodes in Mdm ', the i-th row of V is the vertex coordinate (x i y i z i ) of the i-th mesh node, and calculate the minimum distance between the coordinates of each mesh node and the borehole point cloud model P; use the minimum distance as an indicator to analyze the maximum likelihood soil layer type SoilType to which each mesh node belongs to generate a soil layer type information data frame V'=(V SoilType); use the soil layer type information data frame V' to calculate the average thickness of each soil layer included in the geological and shield section model Mdm to obtain the cross-sectional soil layer distribution;
S3:将地勘钻孔的三维坐标数据{D[:,1]、D[:,2]、D[:,3]}和每种土层的岩土参数D[:,5]作为训练样本对插值算法模型进行训练得到目标模型;利用目标模型预测各个网格节点的土层参数分布。S3: The three-dimensional coordinate data of the geological exploration borehole {D[:,1], D[:,2], D[:,3]} and the geotechnical parameters D[:,5] of each soil layer are used as training samples to train the interpolation algorithm model to obtain the target model; the target model is used to predict the distribution of soil layer parameters of each grid node.
如图1所示,本发明三维地质解析方法具体如下:As shown in FIG1 , the three-dimensional geological analysis method of the present invention is specifically as follows:
1)根据高程等距离细分地勘钻孔数据并经过信息整理形成数据框D;1) Subdivide the geological exploration drilling data according to the elevation and equidistance and form a data frame D after information collation;
2)提取细分后的地勘钻孔三维坐标点(D[:,1]、D[:,2]、D[:,3])导入到三维建模软件中进行钻孔点云建模P;2) Extract the subdivided geological exploration borehole three-dimensional coordinate points (D[:,1], D[:,2], D[:,3]) and import them into the three-dimensional modeling software for drilling point cloud modeling P;
3)提取细分后的地勘钻孔土层数据D[:,4],分析出总共出现的土层种数,并对每种土层进行标签设定;3) Extract the subdivided geological survey borehole soil layer data D[:,4], analyze the total number of soil layer types, and set labels for each soil layer;
4)根据地勘报告中土层参数(例如:天然重度γ)的设计参考值对每种土层赋予相应参数作为D[:,5];4) According to the design reference value of soil layer parameters (e.g. natural gravity γ) in the geological survey report, each soil layer is assigned corresponding parameters as D[:,5];
5)在已有钻孔点云模型P上根据需求绘制相应的地质和盾构断面模型Mdm;5) Draw the corresponding geological and shield section model Mdm on the existing drilling point cloud model P according to the requirements;
6)将建立好的模型Mdm进行网格划分得到新的网格模型Mdm’;6) Meshing the established model M dm to obtain a new mesh model M dm ';
7)提取网格模型Mdm’的所有不重复的网格节点坐标V;7) extracting all non-repeated grid node coordinates V of the grid model M dm ';
8)依次对每一个网格节点V和钻孔点云模型P进行最小距离计算,通过KNN算法推断出每个网格节点的最大似然土层种类,并赋予相应的标签,生成带有土层信息标签的V’;8) Calculate the minimum distance between each grid node V and the borehole point cloud model P in turn, infer the maximum likelihood soil layer type of each grid node through the KNN algorithm, assign corresponding labels, and generate V' with soil layer information labels;
9)如果用于盾构隧道的管片设计则需要计算V’中每种土层下Z坐标V’[:,3]的高程范围,最终输出该断面下每种土层的平均厚度与排列顺序;9) If it is used for shield tunnel segment design, it is necessary to calculate the elevation range of the Z coordinate V’[:,3] under each soil layer in V’, and finally output the average thickness and arrangement order of each soil layer under the section;
10)如果用于盾构施工中掌子面的岩土参数分布预测则提取钻孔数据(D[:,1]、D[:,2]、D[:,3]、D[:,5])作为训练样本然后导入UniversalKriging插值算法模型,并将训练后的模型用于预测该断面的岩土力学参数分布;10) If it is used to predict the distribution of geotechnical parameters of the tunnel face in shield construction, the drilling data (D[:,1], D[:,2], D[:,3], D[:,5]) are extracted as training samples and then imported into the UniversalKriging interpolation algorithm model, and the trained model is used to predict the distribution of geotechnical mechanical parameters of the section;
11)将断面土层和物理性质参数分布利用可视化手段进行三维展示。11) The cross-section soil layers and physical property parameter distribution are displayed in three dimensions using visualization methods.
步骤1)中,原始地勘数据的采集格式如下:In step 1), the acquisition format of the original geological survey data is as follows:
表1地勘钻孔数据的格式Table 1 Format of geological exploration drilling data
其中,Dzk[:,0]代表Dzk中所有行第1列的数据,Dzk[:,n]代表Dzk中所有行第n-1列的数据,下同。对于Dzk,同一个地勘数据钻孔有不同的土层分布,从上到下依次填写每一钻孔下各土层的上界面和下界面的高程以及土层代码,表1的参数在细划分单元后最终形成n行5列数据框(DataFrame)D即:Among them, Dzk [:,0] represents the data of the first column of all rows in Dzk , and Dzk [:,n] represents the data of the n-1th column of all rows in Dzk , and the same applies below. For Dzk , the same geological survey data borehole has different soil layer distributions. The elevation of the upper and lower interfaces of each soil layer under each borehole and the soil layer code are filled in from top to bottom. After the parameters in Table 1 are finely divided into units, they finally form a data frame (DataFrame) D with n rows and 5 columns, namely:
其中,对原始地勘钻孔数据Dzk的细分是在钻孔中生成分布更规律更密集并带有土层代码的点最终形成新的地勘钻孔数据D。D与Dzk的区别主要在行数不同,k<<n。具体算法如表2:Among them, the subdivision of the original geological exploration borehole data D zk is to generate points with more regular and dense distribution and soil layer codes in the borehole to finally form new geological exploration borehole data D. The difference between D and D zk is mainly in the number of rows, k<<n. The specific algorithm is shown in Table 2:
表2Table 2
步骤2)中,D[:,1]、D[:,2]、D[:,3]为数据框D中所有行的第2、3、4列数据,即每组x,y,z坐标,三维建模软件为具有命令流绘图或编程绘图功能的任意三维建模软件。点云建模P是通过直接输入x,y,z坐标自动生成的点云模型,其中x,y,z以n行3列数据框的格式储存在模型中,即:In step 2), D[:,1], D[:,2], D[:,3] are the 2nd, 3rd, and 4th columns of all rows in the data frame D, that is, each set of x, y, and z coordinates. The 3D modeling software is any 3D modeling software with command flow drawing or programming drawing functions. The point cloud modeling P is a point cloud model automatically generated by directly inputting x, y, and z coordinates, where x, y, and z are stored in the model in the format of n rows and 3 columns of the data frame, that is:
步骤3)中,土层种数分析和土层类型标定算法如表3所示:In step 3), the soil layer number analysis and soil layer type calibration algorithm are shown in Table 3:
表3table 3
步骤4)中,对每种土层类型赋予对应土层参数设计参考值的算法如表4所示:In step 4), the algorithm for assigning the corresponding soil layer parameter design reference value to each soil layer type is shown in Table 4:
表4Table 4
步骤5)中,地质和盾构断面模型Mdm是以建模软件中Brep边界表示的三维数字模型对象。In step 5), the geological and shield section model Mdm is a three-dimensional digital model object represented by the Brep boundary in the modeling software.
步骤6)中,网格模型Mdm’是以建模软件中Mesh表示的网格模型对象。In step 6), the mesh model M dm ' is a mesh model object represented by Mesh in the modeling software.
步骤7)中,网格节点坐标V来自与Mesh对象中网格顶点Vertex的坐标, In step 7), the mesh node coordinates V come from the coordinates of the mesh vertex Vertex in the Mesh object.
步骤8)中,赋予标签的V’是基于网格节点V之后添加土层种类信息的n行4列数据框,即:In step 8), the label V' is an n-row 4-column data frame with soil layer type information added after the grid node V, that is:
步骤8)中,用于分析出每个网格节点所属的最大似然土层种类的KNN算法,具体描述如表5所示:In step 8), the KNN algorithm is used to analyze the maximum likelihood soil layer type to which each grid node belongs. The specific description is shown in Table 5:
表5table 5
步骤9)中,确定该断面土层厚度的算法如表6所示:In step 9), the algorithm for determining the thickness of the soil layer in the cross section is shown in Table 6:
表6Table 6
步骤10)中,训练三维Universal Kriging插值算法模型需要依次输入参数D[:,1]、D[:,2]、D[:,3]、D[:,5]、variogram_model="hole-effect"、drift_terms=["regional_linear"]。训练完上述的模型后,通过如表7所示的算法进行断面中岩土参数的分布预测:In step 10), the training of the three-dimensional Universal Kriging interpolation algorithm model requires the input of parameters D[:,1], D[:,2], D[:,3], D[:,5], variogram_model = "hole-effect", drift_terms = ["regional_linear"]. After training the above model, the distribution of geotechnical parameters in the section is predicted by the algorithm shown in Table 7:
表7Table 7
步骤11)中,可视化展示手段是用具有命令流操作的图形渲染软件进行可视化展示。In step 11), the visualization means is to use a graphics rendering software with command stream operation for visualization.
在其中一个实施例中,S2中的断面土层分布用于进行盾构隧道的管片设计。In one of the embodiments, the cross-sectional soil layer distribution in S2 is used for segment design of a shield tunnel.
在其中一个实施例中,S2中的地质和盾构断面模型Mdm包括实体对象Solid与边界对象Brep。In one embodiment, the geological and shield section model Mdm in S2 includes a solid object Solid and a boundary object Brep.
在其中一个实施例中,S2中以最小距离为指标分析出各个网格节点所属的最大似然土层种类SoilType以生成土层种类信息数据框V'=(V SoilType),包括:In one embodiment, in S2, the maximum likelihood soil type SoilType to which each grid node belongs is analyzed using the minimum distance as an indicator to generate a soil type information data frame V'=(V SoilType), including:
以各个网格节点的最小距离为指标,利用KNN算法分析出各个网格节点所属的最大似然土层种类SoilType,生成土层种类信息数据框V'。Taking the minimum distance of each grid node as an indicator, the KNN algorithm is used to analyze the maximum likelihood soil type SoilType of each grid node, and generate the soil type information data frame V'.
在其中一个实施例中,S3中的土层参数分布用于进行盾构施工中掌子面的岩土参数分布预测。In one of the embodiments, the soil layer parameter distribution in S3 is used to predict the geotechnical parameter distribution of the tunnel face during shield construction.
在其中一个实施例中,S1中分析地勘钻孔的土层数据D[:,4]得到土层的种类,包括:In one embodiment, the soil layer data D[:,4] of the geological exploration borehole is analyzed in S1 to obtain the types of soil layers, including:
按照划分尺度对地勘钻孔的土层数据D[:,4]进行土层划分,获得土层种类;其中,划分尺度小于上土层和下土层之间界面的高程差;每种土层平均厚度为同一土层对应的三个以上厚度值的平均值。The soil layer data D[:,4] of the geological exploration borehole are divided into soil layers according to the division scale to obtain the soil layer types; wherein the division scale is smaller than the elevation difference of the interface between the upper soil layer and the lower soil layer; the average thickness of each soil layer is the average value of more than three thickness values corresponding to the same soil layer.
在其中一个实施例中,S3中的插值算法模型为三维Universal Kriging插值算法模型。In one embodiment, the interpolation algorithm model in S3 is a three-dimensional Universal Kriging interpolation algorithm model.
在其中一个实施例中,方法还包括:In one embodiment, the method further comprises:
S4:对断面土层分布和土层参数分布进行可视化处理。S4: Visualize the cross-section soil layer distribution and soil layer parameter distribution.
在其中一个实施例中,S4包括:依次进行顶点着色和模糊渲染对断面土层分布和岩土参数分布进行三维可视化处理。In one embodiment, S4 includes: performing vertex shading and fuzzy rendering in sequence to perform three-dimensional visualization processing on the cross-section soil layer distribution and geotechnical parameter distribution.
举例来说,地勘数据来源于某城市地下空间盾构工程的地勘报告,选取了省博始发井到秦园东路接收井之间盾构段的62个钻孔数据如表8所示,钻孔水平排布如图2所示。For example, the geological survey data comes from the geological survey report of a city's underground space shield project. The data of 62 boreholes in the shield section between the Provincial Museum starting well and the Qinyuan East Road receiving well are selected as shown in Table 8, and the horizontal arrangement of the boreholes is shown in Figure 2.
表8原始地勘钻孔数据(单位:米)将原始地勘钻孔数据划分单元后:(假定划分单元的尺寸为0.5)Table 8 Original geological exploration drilling data (unit: meter) After the original geological exploration drilling data is divided into units: (assuming that the size of the division unit is 0.5)
表9:划分单元后的地勘钻孔数据(单位:米)以上表格内的参数最终形成n行5列阶数据框D,即:Table 9: Geological exploration drilling data after unit division (unit: meter) The parameters in the above table eventually form an n-row 5-column data frame D, namely:
步骤2:将数据框D的D[:,1]、D[:,2]、D[:,3]数据列导入建模软件并通过命令流自动建立钻孔点云模型P,如图3所示。Step 2: Import the data columns D[:,1], D[:,2], and D[:,3] of the data frame D into the modeling software and automatically create the drilling point cloud model P through the command stream, as shown in Figure 3.
步骤3:读取划分单元的62地勘钻孔数据后,并分析出了总共出现的地层种类,经过标定土层标签如下表所示:Step 3: After reading the 62 geological exploration drilling data of the divided units, the total types of strata that appear are analyzed and the soil layer labels are calibrated as shown in the following table:
表10:划分单元后的地勘钻孔数据(单位:米)Table 10: Geological exploration drilling data after unit division (unit: meter)
步骤4:根据地勘报告的信息,将上表的每种土层赋予岩土参数设计参考值。本实施例以天然重度γ(kN/m3)为例,具体赋值如下表所示:Step 4: According to the information in the geological survey report, assign geotechnical parameter design reference values to each soil layer in the above table. This embodiment takes natural gravity γ (kN/m 3 ) as an example, and the specific values are shown in the following table:
表11:每种土层的天然重度γ的设计参考值Table 11: Design reference values of natural gravity γ for each soil layer
步骤5~6:在钻孔点云模型的基础上根据具体位置需求绘制相应的地质和盾构断面模型并进行网格划分,本发明以盾构计划里程的100米为例,具体断面模型Mdm’如图4、图5所示。Steps 5-6: Based on the drilling point cloud model, draw the corresponding geological and shield section models according to the specific location requirements and perform grid division. The present invention takes 100 meters of the planned shield mileage as an example, and the specific section model M dm ' is shown in Figures 4 and 5.
步骤7~8:提取各个网格模型Mdm’中所有不重复的节点坐标并通过KNN算法分析出每个网格节点所属的最大似然土层种类,然后赋予相应的标签,生成赋予土层标签的V’。在该实施例中,经过反复测试和比较,KNN算法的参数k取7。其中盾构断面的V’如下所示:Steps 7-8: Extract all non-repeated node coordinates in each grid model M dm ' and analyze the maximum likelihood soil layer type to which each grid node belongs through the KNN algorithm, and then assign corresponding labels to generate V' with soil layer labels. In this embodiment, after repeated tests and comparisons, the parameter k of the KNN algorithm is 7. The V' of the shield section is as follows:
地质断面的数据框V’如下所示:The data frame V' of the geological section is as follows:
步骤9:根据地质断面的V’数据框计算每种土层标签下V’[:,2]的高程范围,并从高往底计算出该地质断面下每种土层的平均厚度与分布情况,结果如下表所示:Step 9: Calculate the elevation range of V’[:,2] under each soil layer label according to the V’ data frame of the geological section, and calculate the average thickness and distribution of each soil layer under the geological section from high to low. The results are shown in the following table:
表12盾构里程100m处地质断面土层分布Table 12 Distribution of soil layers in geological sections at 100m of shield mileage
步骤10:利用训练好的Universal Kriging插值算法模型用于预测盾构断面中每个节点的岩土参数(以天然重度γ为例),预测结果如下表所示:Step 10: Use the trained Universal Kriging interpolation algorithm model to predict the geotechnical parameters of each node in the shield section (taking natural gravity γ as an example). The prediction results are shown in the following table:
表13盾构断面中每个节点的土层参数(天然重度γ)Table 13 Soil parameters at each node in the shield section (natural gravity γ)
步骤11:通过顶点着色(VertexColor)对地质和盾构的网格断面模型进行数值可视化展示。由于地质断面需要对不同类型的土层进行区别,所以采用灰度渲染;对于用作施工的盾构段面,则需要展现出岩土参数的阈值,所以渲染时的灰度参数与岩土参数成线性关系。两者可视化效果具体如图6~8所示。Step 11: Use VertexColor to visualize the mesh section models of geology and shield. Since the geological section needs to distinguish different types of soil layers, grayscale rendering is used; for the shield section used for construction, the threshold of geotechnical parameters needs to be displayed, so the grayscale parameters during rendering are linearly related to the geotechnical parameters. The visualization effects of the two are shown in Figures 6 to 8.
由表12和图6可以清晰解析出盾构里程100m处的地质分布情况,图6中的1~5依次代表表五中1-1、1-2、10-1、10-4、20a-2五种土层。本结果能反馈该断面的土层埋深参数,可用于管片结构的设计和计算;由表13和图7、图8可以解析出盾构里程100m处作业面的岩土参数空间分布与概率分布,有助于在掘进施工时提前采取相应的施工管理决策。Table 12 and Figure 6 clearly show the geological distribution at 100m of the shield mileage. 1 to 5 in Figure 6 represent the five soil layers 1-1, 1-2, 10-1, 10-4, and 20a-2 in Table 5. This result can provide feedback on the soil depth parameters of the section, which can be used for the design and calculation of the segment structure; Table 13 and Figures 7 and 8 show the spatial distribution and probability distribution of geotechnical parameters at the working face at 100m of the shield mileage, which helps to take corresponding construction management decisions in advance during excavation construction.
本发明对地勘报告中的钻孔数据进行了细分,并基于空间数据进行了钻孔点云建模。然后通过建立断面的网格模型对网格各节点进行单元划分,本发明基于点云钻孔数据运用KNN算法预测断面网格的土层分布;基于点云钻孔数据运用Universal Kriging插值算法预测岩土参数的分布情况。本发明最终将结果通过颜色渲染的方式进行可视化。本发明由预编码的程序进行执行,克服了重复的手动操作和人工计算的低效率问题,全过程可自动化反复进行。本发明基于计算机自动执行脚本,其反馈数值结果更准确、速度更快,结果也能从三维视角更加直观展示。本发明帮助设计和施工人员更准确、更及时地掌握地质情况。The present invention subdivides the drilling data in the geological survey report and performs drilling point cloud modeling based on the spatial data. Then, the grid nodes are divided into units by establishing a grid model of the section. The present invention uses the KNN algorithm based on the point cloud drilling data to predict the soil layer distribution of the section grid; and uses the Universal Kriging interpolation algorithm based on the point cloud drilling data to predict the distribution of geotechnical parameters. The present invention finally visualizes the results by color rendering. The present invention is executed by a pre-coded program, which overcomes the low efficiency of repeated manual operations and manual calculations, and the whole process can be automatically repeated. The present invention is based on the computer to automatically execute the script, and the feedback numerical results are more accurate and faster, and the results can also be more intuitively displayed from a three-dimensional perspective. The present invention helps designers and construction personnel to grasp the geological conditions more accurately and timely.
按照本发明的另一方面,提供了一种三维地质解析装置,应用于盾构隧道设计和施工,所述三维地质解析装置用于执行三维地质解析方法。According to another aspect of the present invention, a three-dimensional geological analysis device is provided, which is applied to shield tunnel design and construction, and the three-dimensional geological analysis device is used to execute a three-dimensional geological analysis method.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It will be easily understood by those skilled in the art that the above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210219136.6A CN114742937B (en) | 2022-03-08 | 2022-03-08 | Three-dimensional geological analysis method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210219136.6A CN114742937B (en) | 2022-03-08 | 2022-03-08 | Three-dimensional geological analysis method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114742937A CN114742937A (en) | 2022-07-12 |
CN114742937B true CN114742937B (en) | 2024-07-16 |
Family
ID=82275111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210219136.6A Active CN114742937B (en) | 2022-03-08 | 2022-03-08 | Three-dimensional geological analysis method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114742937B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279986A (en) * | 2013-06-17 | 2013-09-04 | 陈超东 | Three-dimensional horizontal geological section map manufacturing method and applications thereof |
CN112395667A (en) * | 2020-11-10 | 2021-02-23 | 华中科技大学 | Random field parameter generation method and device for shield tunnel soil body |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101618713B1 (en) * | 2014-08-25 | 2016-05-10 | 서울대학교산학협력단 | 3-Dimensional Space Modeling Method based on the Geotechnical Information |
-
2022
- 2022-03-08 CN CN202210219136.6A patent/CN114742937B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279986A (en) * | 2013-06-17 | 2013-09-04 | 陈超东 | Three-dimensional horizontal geological section map manufacturing method and applications thereof |
CN112395667A (en) * | 2020-11-10 | 2021-02-23 | 华中科技大学 | Random field parameter generation method and device for shield tunnel soil body |
Also Published As
Publication number | Publication date |
---|---|
CN114742937A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103279986B (en) | Three-dimensional horizontal geologic profile figure preparation method and application thereof | |
Zhang et al. | Collaborative 3D geological modeling analysis based on multi-source data standard | |
CN100465998C (en) | Cube prediction model prospecting method based on 3D modeling | |
Xiong et al. | A 3D multi-scale geology modeling method for tunnel engineering risk assessment | |
CN101936008B (en) | Rock slope three-dimensional model and block slide analysis method | |
CN102609986B (en) | Ore body modeling system in digital mine and modeling and detecting method of ore body modeling system | |
CN101906965B (en) | Technology for identifying and analyzing stratums in VR (Virtual Reality) geological environment | |
CN111899341A (en) | Three-dimensional geological rapid modeling method for long and large banded linear engineering | |
CN107808413A (en) | A kind of three-dimensional geological modeling method based on GOCAD | |
CN1858803A (en) | Three dimension uniform model construction method of water conservancy hydropower engineering geological information | |
CN105469443A (en) | Method for generating three-dimensional geological map based on geological route (PRB) process double modeling | |
Zhang et al. | A case study on integrated modeling of spatial information of a complex geological body | |
CN111814298B (en) | Coal face coal seam iterative modeling method under constraint of near-horizontal drilling track | |
CN105701319A (en) | Sedimentary microfacies modeling method under horizontal well rule development well net | |
CN106709988A (en) | Construction method of engineering geological section map | |
CN106709987B (en) | Dynamic construction method of three-dimensional geological profile model | |
CN109725347A (en) | A method for constructing a three-dimensional geological body model of a sandstone-type uranium deposit in an interlayer oxidation zone | |
CN117197377A (en) | Three-dimensional dynamic visualization modeling method of mining area | |
Kessler et al. | Unlocking the potential of digital 3D geological subsurface models for geotechnical engineers | |
CN115205479A (en) | Method for predicting mining prospect area by combining multiple data | |
CN113808265B (en) | Construction method of modeling section of three-dimensional geological model of large-scale area | |
CN114332391A (en) | Three-dimensional geologic body probability model modeling method | |
CN108460838A (en) | The implementation method and system that three-dimensional visualization technique is merged with numerical simulation technology | |
CN114742937B (en) | Three-dimensional geological analysis method and device | |
CN112780252B (en) | Geosteering model and forward modeling method suitable for well logging while drilling forward modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |