CN114742747A - 基于深度学习的髋关节置换术后影像的评估方法及系统 - Google Patents

基于深度学习的髋关节置换术后影像的评估方法及系统 Download PDF

Info

Publication number
CN114742747A
CN114742747A CN202210173937.3A CN202210173937A CN114742747A CN 114742747 A CN114742747 A CN 114742747A CN 202210173937 A CN202210173937 A CN 202210173937A CN 114742747 A CN114742747 A CN 114742747A
Authority
CN
China
Prior art keywords
determining
shortest distance
point
patient
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210173937.3A
Other languages
English (en)
Other versions
CN114742747B (zh
Inventor
张逸凌
刘星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhang Yiling
Longwood Valley Medtech Co Ltd
Original Assignee
Longwood Valley Medtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longwood Valley Medtech Co Ltd filed Critical Longwood Valley Medtech Co Ltd
Priority to CN202210173937.3A priority Critical patent/CN114742747B/zh
Publication of CN114742747A publication Critical patent/CN114742747A/zh
Priority to PCT/CN2023/070790 priority patent/WO2023160272A1/zh
Application granted granted Critical
Publication of CN114742747B publication Critical patent/CN114742747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Image Analysis (AREA)
  • Prostheses (AREA)

Abstract

本发明提供一种基于深度学习的髋关节置换术后影像的评估方法及系统,涉及医学技术领域,能够实现对全髋关节置换手术的患者术后情况进行准确评估,方法包括:获取髋关节置换手术术后的患者的髋关节图像;基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估。所述系统执行所述方法。本发明基于髋关节置换手术术后的患者的髋关节图像,计算髋关节置换手术术后患者的双腿腿长差、偏心距和股骨假体指标,以实现对进行髋关节置换手术术后的患者的恢复情况的准确评估。

Description

基于深度学习的髋关节置换术后影像的评估方法及系统
技术领域
本发明涉及医学技术领域,尤其涉及一种基于深度学习的髋关节置换术后影像的评估方法及系统。
背景技术
在医学领域中髋关节置换手术的术后评估对于手术的成功率起着非常重要的作用,因此提供准确的术后评估是非常重要的。
目前主要的术前评估方式为人工通过各种工具进行测量,效率低而且准确性无法保证,因此亟需提供一种更便捷更准确的术后评估的方法。
发明内容
本发明提供的基于深度学习的髋关节置换术后影像的评估方法及系统,用于现有技术中存在的上述问题,基于髋关节置换手术术后的患者的髋关节图像,计算髋关节置换手术术后患者的双腿腿长差、偏心距和股骨假体指标,以实现对进行髋关节置换手术术后的患者的恢复情况的准确评估。
本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,包括:
获取髋关节置换手术术后的患者的髋关节图像;
基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域;
根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差、偏心距和股骨假体指标;
根据所述双腿腿长差、所述偏心距和所述股骨假体指标,对所述患者的股骨假体位置安装的准确性进行评估;
其中,所述股骨假体位置安装的准确性用于对所述患者的术后恢复情况进行评估。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述目标识别网络基于点识别神经网络以及分割神经网络训练得到;或者,
基于包括堆叠沙漏网络结构、分割Segment-Head网络以及关键点Keypoint-Head网络的预设神经网络模型训练得到。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述
基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域,包括:
将所述髋关节图像输入至目标识别网络,以确定所述髋关节图像中的双侧股骨小转子对应的第一下缘点位、第二下缘点位、坐骨区域双侧的第一泪滴点位、第二泪滴点位、耻骨联合点位、股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域;
分别将所述第一下缘点位和所述第二下缘点位确定为第一关键点位置、所述第一泪滴点位和所述第二泪滴点位确定为第二关键点位置以及所述耻骨联合点位确定为第三关键点位置;
将所述第一关键点位置、所述第二关键点位置和所述第三关键点位置,确定为所述关键点位置;
将所述股骨假体球头区域、所述健侧股骨头区域、所述双侧骨皮质区域和所述坐骨区域,确定为所述目标区域。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差,包括:
根据所述第一关键点位置和坐骨结节线,确定所述双腿腿长差;或
根据所述第一关键点位置和双侧泪滴点位连线,确定所述双腿腿长差;
其中,所述坐骨结节线是根据所述坐骨区域的双侧第一最低点和第二最低点确定的;
所述双侧泪滴点位连线是根据所述第二关键点位置确定的。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述第一关键点位置和坐骨结节线,确定所述双腿腿长差,包括:
确定所述第一下缘点位与所述坐骨结节线之间的第一最短距离;
确定所述第二下缘点位与所述坐骨结节线之间的第二最短距离;
根据所述第一最短距离和所述第二最短距离之间的差值,确定所述双腿腿长差。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述第一关键点位置和双侧泪滴点位连线,确定所述双腿腿长差,包括:
确定所述第一下缘点位与所述双侧泪滴点位连线之间的第三最短距离;
确定所述第二下缘点位与所述双侧泪滴点位连线之间的第四最短距离;
根据所述第三最短距离和所述第四最短距离之间的差值,确定所述双腿腿长差。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述关键点位置和所述目标区域,确定所述患者的偏心距,包括:
根据所述双侧骨皮质区域,确定与所述股骨假体球头区域同侧的第一股骨髓腔中心线和与所述健侧股骨头区域同侧的第二股骨髓腔中心线;
确定所述股骨假体球头区域的第一旋转中心点与所述第一股骨髓腔中心线之间的第五最短距离;
确定所述健侧股骨头区域的第二旋转中心与所述第二股骨髓腔中心线之间的第六最短距离;
根据所述第五最短距离和所述第六最短距离之间的差值,确定股骨偏心距;
其中,所述偏心距包括所述股骨偏心距。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述关键点位置和所述目标区域,确定所述患者的偏心距,还包括:
根据所述股骨假体球头区域的第一旋转中心点、所述健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距;或
根据所述第一旋转中心点、所述第二旋转中心点、双侧泪滴点位连线和所述骨盆中轴线,确定所述髋臼杯偏心距;
其中,所述骨盆中轴线是根据所述第三关键点位置和所述坐骨结节线确定的;
所述偏心距包括所述髋臼杯偏心距。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述股骨假体球头区域的第一旋转中心点、所述健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距,包括:
确定所述第一旋转中心点与所述坐骨结节线之间的第七最短距离;
确定所述第二旋转中心点与所述坐骨结节线之间的第八最短距离;
确定所述第一旋转中心点与所述骨盆中轴线之间的第九最短距离;
确定所述第二旋转中心点与所述骨盆中轴线之间的第十最短距离;
根据所述第七最短距离和所述第八最短距离之间的差值以及所述第九最短距离和所述第十最短距离之间的差值,确定所述髋臼杯偏心距。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述第一旋转中心点、所述第二旋转中心点、双侧泪滴点位连线和所述骨盆中轴线,确定所述髋臼杯偏心距,包括:
确定所述第一旋转中心点与所述双侧泪滴点位连线之间的第十一最短距离;
确定所述第二旋转中心点与所述双侧泪滴点位连线之间的第十二最短距离;
确定所述第一旋转中心点与所述骨盆中轴线之间的第十三最短距离;
确定所述第二旋转中心点与所述骨盆中轴线之间的第十四最短距离;
根据所述第十一最短距离与所述第十二最短距离之间的差值以及所述第十三最短距离与所述第十四最短距离之间的差值,确定所述髋臼杯偏心距。
根据本发明提供的一种基于深度学习的髋关节置换术后影像的评估方法,所述根据所述关键点位置和所述目标区域,确定所述患者的股骨假体指标,包括:
根据所述股骨假体球头区域中股骨假体的两个外径顶点、所述股骨假体与所述股骨假体球头区域的两个交界点和坐骨结节线,确定所述股骨假体的前倾角和外展角;
根据所述前倾角和所述外展角,确定所述患者的股骨假体指标。
本发明还提供一种基于深度学习的髋关节置换术后影像的评估系统,包括:获取模块、识别模块、确定模块以及评估模块;
所述获取模块,用于获取髋关节置换手术术后的患者的髋关节图像;
所述识别模块,用于基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域;
所述确定模块,用于根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差、偏心距和股骨假体指标;
所述评估模块,用于根据所述双腿腿长差、所述偏心距和所述股骨假体指标,对所述患者的股骨假体位置安装的准确性进行评估;
其中,所述股骨假体位置安装的准确性用于对所述患者的术后恢复情况进行评估。
本发明还提供一种电子设备,包括处理器和存储有计算机程序的存储器,所述处理器执行所述程序时实现如上述任一种所述基于深度学习的髋关节置换术后影像的评估方法。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述基于深度学习的髋关节置换术后影像的评估方法。
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述基于深度学习的髋关节置换术后影像的评估方法。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法及系统,基于髋关节置换手术术后的患者的髋关节图像,计算髋关节置换手术术后患者的双腿腿长差、偏心距和股骨假体指标,以实现对进行髋关节置换手术术后的患者的恢复情况的准确评估。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于深度学习的髋关节置换术后影像的评估方法的流程示意图;
图2是本发明提供的识别出的髋关节图像中的双侧股骨小转子下缘点位的示意图;
图3是本发明提供的髋关节图像中的坐骨区域的示意图;
图4是本发明提供的识别出的髋关节图像中的双侧泪滴点位的示意图;
图5是本发明提供的识别出的髋关节图像中的耻骨联合点位的示意图;
图6是本发明提供的预设神经网络模型的结构示意图;
图7是本发明提供的目标识别网络的结构示意图;
图8是本发明提供的髋关节图像中的坐骨区域的双侧第一最低点的位置示意图;
图9是本发明提供的髋关节图像中的坐骨结节线的示意图;
图10是本发明提供的髋关节图像中的双侧泪滴点位连线的示意图;
图11是本发明提供的确定腿长差的示意图之一;
图12是本发明提供的确定腿长差的示意图之二;
图13是本发明提供的髋关节图像中双侧股骨髓腔中心线的示意图;
图14是本发明提供的股骨假体球头区域的第一旋转中心的示意图;
图15是本发明提供的确定股骨偏心距的示意图之一;
图16是本发明提供的确定股骨偏心距的示意图之二;
图17是本发明提供的髋关节图像中的骨盆中轴线的示意图;
图18是本发明提供的确定髋臼杯偏心距的示意图之一;
图19是本发明提供的确定髋臼杯偏心距的示意图之二;
图20是本发明提供的髋关节图像中的外径顶点和交界点的示意图;
图21是本发明提供的拟合椭圆示意图;
图22是本发明提供的股骨假体的外展角的示意图;
图23是本发明提供的基于深度学习的髋关节置换术后影像的评估系统的结构示意图;
图24是本发明提供的电子设备的实体结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明提供的基于深度学习的髋关节置换术后影像的评估方法的流程示意图,如图1所示,方法包括:
S1、获取髋关节置换手术术后的患者的髋关节图像;
S2、基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;
S3、根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;
S4、根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估;
其中,股骨假体位置安装的准确性用于对患者的术后恢复情况进行评估。
需要说明的是,上述方法的执行主体可以是计算机设备。
可选地,在髋关节置换手术完毕后医生会基于髋关节置换手术术后患者的髋关节图像来对患者做术后评估,通过对髋关节置换手术术后患者的髋关节图像中的关键点位置及目标区域进行识别,实现对髋关节置换手术术后患者的恢复情况进行评估。
首先,获取髋关节置换手术术后患者的髋关节图像,具体地,可以通过对进行髋关节置换手术术后患者的髋关节进行X光片拍摄、电子计算机断层扫描(ComputedTomography,CT)或磁共振(Magnetic Resonance Imaging,MRI)获取该患者髋关节的髋关节图像。
其次,对得到的髋关节置换手术术后患者的髋关节图像进行关键点及目标区域识别,找到该髋关节图像中用于术后评估的关键点位置和目标区域,例如,可以通过将该髋关节图像输入到预先训练完成的目标识别网络来识别关键点位置和目标区域。
再次,根据上述识别出来的关键点位置和目标区域,确定该患者术后的双腿腿长差、患者的偏心距和以及患者的股骨假体指标。
最后,利用得到的进行髋关节置换手术术后患者的双腿腿长差、患者的股骨偏心距和以及患者的股骨假体指标,对患者的股骨假体位置安装的准确性进行评估,以实现对进行髋关节置换手术术后的患者的恢复情况进行准确评估。本发明提供的基于深度学习的髋关节置换术后影像的评估方法,基于髋关节置换手术术后的患者的髋关节图像,计算髋关节置换手术术后患者的双腿腿长差、偏心距和股骨假体指标,以实现对进行髋关节置换手术术后的患者的恢复情况的准确评估。
进一步地,在一个实施例中,目标识别网络基于点识别神经网络以及分割神经网络训练得到;或者,
基于包括堆叠沙漏网络结构、分割Segment-Head网络以及关键点Keypoint-Head网络的预设神经网络模型训练得到。
进一步地,在一个实施例中,步骤S2可以具体包括:
S21、将髋关节图像输入至目标识别网络,以确定髋关节图像中的双侧股骨小转子对应的第一下缘点位、第二下缘点位、坐骨区域双侧的第一泪滴点位、第二泪滴点位、耻骨联合点位、股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域;
S22、分别将第一下缘点位和第二下缘点位确定为第一关键点位置、第一泪滴点位和第二泪滴点位确定为第二关键点位置以及耻骨联合点位确定为第三关键点位置;
S23、根据第一关键点位置、第二关键点位置和第三关键点位置,确定关键点位置;
S24、将股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域,确定为目标区域。
可选地,如图2-图5所示,将髋关节图像输入预先训练好的目标识别网络中以识别进行髋关节置换手术术后患者的髋关节图像中的双侧股骨小转子分别对应的第一下缘点、第二下缘点的位置(即双侧股骨小转子下缘点位,如图2中第一下缘点位A1点和第二下缘点位A2点),双侧的第一泪滴点位、第二泪滴点位(即双侧泪滴点位,如图4中第一泪滴点位D1和第二泪滴点位D2)、耻骨联合点位(如图5所示的G点)以及目标区域(包括如图3所示的坐骨区域、股骨假体球头区域、健侧股骨头区域以及双侧骨皮质区域),其中目标识别网络可以具体由点识别神经网络以及分割神经网络训练而成,也可以是由预设神经网络模型(包括堆叠沙漏网络结构(Stacked Hourglass Networks,SHM)、分割Segment-Head网络和关键点Keypoint-Head网络)训练而成。
具体地,可以利用目标识别网络中点识别神经网络,对提前标注好的该患者髋关节图像中的双侧股骨小转子下缘点位以及双侧泪滴点位进行识别,以获取该患者术后髋关节图像中的双侧股骨小转子分别对应的第一下缘点位、第二下缘点位、第一泪滴点位和第二泪滴点位;并利用目标识别网络中的分割神经网络将髋关节置换手术术后患者的髋关节图像转化为0-255灰度图,对图像的每个像素点进行类别分类,例如可以将图像的每个像素点,按照坐骨区域和背景区域进行类别分类,以确定髋关节置换手术术后患者髋关节图像中的坐骨区域,需要说明的是,股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域的识别方法与坐骨区域的识别方法相同,本发明对此不作具体限定。
其中,点识别神经网络可以具体为目标定位网络LocNet、图像分割网络SegNet、区域卷积神经网络R-CNN、快速区域卷积神经网络Fast R-CNN、区域全卷积神经网络R-FCN以及目标检测网络SSD。
其中,分割神经网络可以具体为全卷积神经网络FCN、SegNet、空洞卷积神经网络、高效神经网络ENet、实例分割网络DeepMask等。
训练预设神经网络模型得到目标识别网络,具体步骤如下:
首先,获取髋关节置换手术术后患者的髋关节图像数据集;
其次,将髋关节图像数据集输入至预设神经网络模型进行训练,确定模型输出结果;
最后,基于输出结果和损失函数调整预设神经网络模型的参数,直至确定训练完成的深度学习模型;
其中,损失函数是基于分割Segment-Head网络对应的损失函数和第一权重,以及关键点Keypoint-Head网络对应的损失函数和第二权重确定的。
可以理解的是,在获取髋关节图像数据集之前,可以对收集的髋关节置换手术术后患者的髋关节图像进行预处理。图像格式可以为医学数字图像与通讯(Digital Imagingand Communications in Medicine,DICOM)格式文件。
在实际执行中,先将髋关节置换手术术后患者的髋关节图像的图像格式转换为JPG格式,转换后的图像会存在尺寸大小不一、对比度多样化的问题。
针对尺寸不一的问题,将图像直接缩放至目标像素会出现图像变形,并且导致后续测量不准确,所以可以采用如下方式进行处理:以图像较长的一边缩放至目标像素的比例为准对图片进行等比例缩放,然后对缩放后的图像进行补零操作,以避免转换后的图像存在变形的问题。其中,目标像素可以设置为512×512像素。
针对对比度多样化的问题,可以采用如下方式进行处理:
一、根据每张图像像素值的分布情况,做均值处理。然后对所有图像进行阈值筛选,将筛选得到的对比度异常的图像做对比度增强的操作,使得所有图像处于同一对比度范围。
二、通过gamma变换将图像对比度多样化,增加数据的多种场景,以适应未知对比度的场景。
上述图像处理方式均可以增加图像清晰度,减少噪点。当然,在其他实施例中,图像处理方式也可以表现为其他形式,包括但不限于利用拉普拉斯算子进行图像增强或基于对象Log变换的图像增强等,具体可根据实际需要决定,本发明对此不作具体限定。
对于非DICOM格式图片,利用深度学习根据髋关节图像上的参照标尺校准整个髋关节图像的比例尺,保证后续测量数据的准确性。,对于带标尺的髋关节图像,可以直接参照已知尺寸的标尺,矫正髋关节图像。对于不带标尺的髋关节图像,可以参照已知尺寸的髋臼杯外径,矫正髋关节图像。
可选地,预处理操作完成后,可以获取髋关节置换手术术后患者的髋关节图像数据集。数据集包含关键点位置和区域分割两个部分组成。关键点位置包含每个髋关节图像中的五个关键点,即双侧股骨小转子对应的第一下缘点位、第二下缘点位、双侧的第一泪滴点位、第二泪滴点位以及耻骨联合点位;区域分割指的是目标分割区域为股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域。由于在训练预设神经网络模型时,需要将训练结果与真实值不断迭代来减小误差,提高预测准确性。所以在模型训练之前,可以将髋关节图像数据集按照目标比例划分为训练集、验证集和测试集。例如,训练集、验证集和测试集的目标比例可以设置为6:2:2。
具体地,根据不同的神经网络结构搭建深度学习模型,并将训练集输入至预设神经网络模型进行训练,直至各神经网络收敛,得到初始神经网络模型。根据测试集对初始神经网络模型进行优化,得到训练完成的最优神经网络模型,并确定最优神经网络模型的权重参数。再将验证集输入至训练完成的最优神经网络模型中进行验证,验证最优神经网络模型的输出结果。在训练过程中使用多权重损失函数进行误差计算,并使用反向传播算法,不断更新模型的权重参数,直至预设神经网络模型达到预期目标,最终完成训练。
可选地,本发明中的损失函数包括两部分,分别对应关键点位置和区域分割结果对应的误差。为提高预设神经网络模型的预测准确性,在训练过程中通过观察关键点位置对应的误差函数和区域分割对应的误差函数的权重变化,直至可以平衡二者误差。
其中,损失函数对应了两个不同的神经网络结构和不同的权重。
在实际执行中,如图6所示,预设神经网络模型的网络结构可以包括SHM网络、Segment-Head网络和Keypoint-Head网络。预设神经网络模型采用Adam优化器,Adam结合自适应学习率的梯度下降算法(Adagrad)和动量梯度下降算法的优点,既能适应稀疏梯度(即自然语言和计算机视觉问题),又能缓解梯度震荡的问题。
预设神经网络模型的损失函数与两个head对应,Keypoint-Head的损失函数为平均绝对值误差(MAE),即所有网络预测点与金标准中对应点的差值绝对值的平均。Segment-Head的损失函数为Dice系数+BCEloss损失函数。总的损失函数为aMAE+b(Dice+BCEloss),a为第一权重,b为第二权重,可以平衡关键点和区域分割之间的误差。
预设神经网络模型通过如下指标进行评估:Keypoints的评估指标引用人体关键点评估指标oks,Segment的评估指标为Dice系数。
在得到目标神经网络模型之后,基于目标神经网络模型的SHM网络和Segment-Head网络识别髋关节置换手术术后的患者的髋关节图像中的目标区域,以目标区域为坐骨区域为例进行详细说明,具体地:
如图7所示,Hourglass结构是经典编码Encoder-解码Decoder结构,Encoder结构由卷积和池化组成,Decoder由反卷积和卷积组成,通过SHM网络提取到第一特征后,Keypoint-Head和Segment-Head共享特征提取层,并在此基础上分别先通过两次卷积进一步提取第二特征,最后通过1×1卷积改变通道数,输出为logits层,Segment-Head通过对logits层做softmax归一化,提取最大概率值对应的区域为最后的分割结果,即坐骨区域。
将识别出的股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域确定为目标区域。
基于SHM网络和Keypoint-Head网络识别髋关节置换手术术后的患者的髋关节图像中的关键点位置,具体地:
如图7所示,通过SHM网络提取到第一特征后,Keypoint-Head和Segment-Head共享特征提取层,并在此基础上分别先通过两次卷积进一步提取第三特征,最后通过1×1卷积改变通道数,输出为logits层。Keypoint-Head通过生成热力heatmap图,将热力图中最大概率值点为特征点,即关键点,具体包括由第一下缘点位和第二下缘点位确定的第一关键点位置、由第一泪滴点位和第二泪滴点位确定的第二关键点位置以及由耻骨联合点位确定的第三关键点位置。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,结合深度学习方法对进行髋关节置换手术术后的患者的股骨假体安装位置的准确性进行评估,以实现对进行髋关节置换手术的患者术后恢复情况的快速、准确评估。
进一步地,在一个实施例中,步骤S3可以具体包括:
S30、根据第一关键点位置和坐骨结节线,确定双腿腿长差;或
S31、根据第一关键点位置和双侧泪滴点位连线,确定双腿腿长差;
其中,坐骨结节线是根据坐骨区域的双侧第一最低点和第二最低点确定的;
双侧泪滴点位连线是根据第二关键点位置确定的。
可选地,在识别出髋关节置换手术术后的患者的髋关节图像的坐骨区域之后,通过确定坐骨区域的双侧第一最低点和第二最低点,以获取坐骨结节线,具体地:
利用图像处理技术从分割出来的坐骨区域提取出双侧最低点,即取双侧坐骨区域的最低点,假设为第一最低点,并沿第一最低点画一条水平的直线,具体如图8所示。
而后再将上述得到的水平直线绕第一最低点进行旋转(最低点在左侧时逆时针旋转,在右侧时顺时针),直到与坐骨区域产生第二个相交点为止,该第二个相交点即为第二最低点,具体如图9所示,将第一最低点和该相交点进行连接得到坐骨结节线CD。
或者,在获取坐骨区域之后,确定坐骨区域的坐骨边缘点集。并对坐骨区域的每一行像素点进行自动扫描。扫描方式如下:
步骤1、通过水平扫描线从坐骨区域底部开始往上扫描,每上升一行像素点就判断扫描线是否经过坐骨边缘的像素点。在确定扫描线第一次经过坐骨边缘对应的第一像素点的情况下,扫描线停止上移。或者在判断扫描线上的点存在于坐骨边缘点集中的情况下,扫描线停止上移,并确定第一像素点,该第一像素点假设为第一最低点。
步骤2、以第一像素点为旋转中心,每旋转一度就判断扫描线是否经过坐骨边缘的像素点。在确定扫描线第一次经过坐骨边缘对应的第二像素点的情况下,扫描线停止旋转。或者在判断扫描线上的点存在于坐骨边缘点集中的情况下,扫描线停止上移,并确定第二像素点,该第二像素点即为第二最低点。
步骤3、将第一像素点与第二像素点的连线确定为坐骨结节线CD。
根据上述识别出来的髋关节置换手术术后患者的髋关节图像中的双侧股骨小转子对应的第一关键点位置和坐骨结节线CD,确定该患者双腿腿长差。
或者,根据上述识别出来的髋关节置换手术术后患者的髋关节图像中的双侧股骨小转子对应的第一关键点位置和双侧泪滴点位连线ab,确定该患者的双腿腿长差,其中,双侧泪滴点位连线ab是通过连接第一泪滴点位和第二泪滴点位之后得到的,参见图10。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,利用深度学习方法对髋关节置换手术术后患者的髋关节图像中的相应关键点以及目标区域进行识别并计算腿长差,为后续基于该腿长差实现对进行髋关节置换手术的患者术后恢复情况的快速评估奠定了基础。
进一步地,在一个实施例中,步骤S30可以具体包括:
S301、确定第一下缘点位与坐骨结节线之间的第一最短距离;
S302、确定第二下缘点位与坐骨结节线之间的第二最短距离;
S303、根据第一最短距离和第二最短距离之间的差值,确定双腿腿长差。
可选地,如图11所示,假设,上述识别出来的进行髋关节置换手术术后患者的髋关节图像中的双侧股骨小转子下缘点位分别为A1,A2和坐骨结节线为CD。
而后从双侧小转子下缘点位A1,A2分别到坐骨结节线CD做垂线,得到第一线段A1a1以及第二线段A2a2,第一线段之间的距离也即是第一下缘点位A1与坐骨结节线之间的第一最短距离,第二线段之间的距离即是第二下缘点位A2与坐骨结节线之间的第二最短距离。
根据第一线段A1a1的距离和第二线段A2a2的距离,计算第一线段A1a1和第二线段A2a2之间的差值,将该差值的绝对值作为患者下肢实际长度差,也即是双腿腿长差,该腿长差可以用来判断患者在关节置换手术术后下肢腿长恢复情况,其中,A1a1、A2a2的长度值位于坐骨结节线CD以下为正值,以上为负值。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,利用深度学习方法对髋关节置换手术术后患者髋关节的髋关节图像中的相应关键点(第一下缘点位和第二下缘点位)以及目标区域进行识别并计算腿长差,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,步骤S31可以具体包括:
S311、确定第一下缘点位与双侧泪滴点位连线之间的第三最短距离;
S312、确定第二下缘点位与双侧泪滴点位连线之间的第四最短距离;
S313、根据第三最短距离和第四最短距离之间的差值,确定双腿腿长差。
可选地,如图12所示,假设,上述识别出来的进行髋关节置换手术术后患者的髋关节图像中的双侧股骨小转子下缘点位分别为A1,A2,将第一泪滴点位D1和第二泪滴点位D2连接后得到双侧泪滴点位连线ab。
而后从双侧小转子下缘点位A1,A2分别到双侧泪滴点位连线ab做垂线,得到第三线段A1b1以及第四线段A2b2,第三线段之间的距离也即是第一下缘点位A1与双侧泪滴点位连线ab之间的第三最短距离,第四线段之间的距离即是第二下缘点位A2与双侧泪滴点位连线ab之间的第四最短距离。
根据第三线段A1b1的距离和第四线段A2b2的距离,计算第三线段A1b1和第四线段A2b2之间的差值,将该差值的绝对值作为患者下肢实际长度差,也即是双腿腿长差,该腿长差可以用来判断患者在关节置换手术术后下肢腿长恢复情况。
根据上述得到的髋关节置换手术术后患者的双腿腿长差,对进行髋关节置换手术患者的术后恢复情况进行评估,若腿长差在预设范围内(例如小于3mm),则确定进行全髋关节置换手术的患者术后恢复良好。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,利用深度学习方法对髋关节置换手术术后患者髋关节的髋关节图像中的相应关键点(第一下缘点位、第二下缘点位、第一泪滴点位和第二泪滴点位)进行识别并计算腿长差,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,步骤S3还可以具体包括:
S32、根据双侧骨皮质区域,确定与股骨假体球头区域同侧的第一股骨髓腔中心线和与健侧股骨头区域同侧的第二股骨髓腔中心线;
S33、确定股骨假体球头区域的第一旋转中心点与第一股骨髓腔中心线之间的第五最短距离;
S34、确定健侧股骨头区域的第二旋转中心与第二股骨髓腔中心线之间的第六最短距离;
S35、根据第五最短距离和第六最短距离之间的差值,确定股骨偏心距;
其中,偏心距包括股骨偏心距。
可选地,在识别出髋关节置换手术术后的患者的髋关节图像的双侧骨皮质区域之后,并计算出与股骨假体球头区域同侧的第一股骨髓腔中心线e1和健侧股骨头区域同侧的第二股骨髓腔中心线e2,具体如图13所示。
需要说明的是,股骨髓腔中心线是基于分割出骨皮质区域的基础上辅助于数学手段拟合出来的,首先是将图片切割为左右两部分,然后对分割的骨皮质区域以一定比例保留并取点,取点方式是以保留区域的纵坐标为组,保留以该纵坐标为轴与保留区域的交点,并选取距离最大的相邻两点的中点保存,遍历保留区域所有的纵坐标,得到一系列点,通过最小二乘法拟合得到直线,即为所需要的股骨髓腔中心线。
根据识别出的髋关节置换手术术后的患者的髋关节图像的股骨假体球头区域和健侧股骨头区域,分别计算出股骨假体球头区域的第一旋转中心点F1(参见图14)和健侧股骨头区域的第二旋转中心F2。
股骨假体球头区域的第一旋转中心F1是通过提取出的股骨假体球头区域,通过传统图像处理基础提取边缘轮廓,通过在轮廓上取三点,两两连接得到两条直线,两条直线垂线的交点即为假体球头的中心。股骨头中心则可以通过感兴趣区域的质心公式得到。质心公式为:
Figure BDA0003519679890000131
其中,图像中每一像素在x方向上坐标为:xi,对应的像素值为:Pi,质心在x方向上坐标为:x0,图像中每一像素在y方向上坐标为:yj,对应的像素值为:Pi,质心在x方向上坐标为:y0,n表示图像像素点个数。
如图15所示,假设,股骨假体球头区域的第一旋转中心点F1、健侧股骨头区域的第二旋转中心F2、第一股骨髓腔中心线e1以及第二股骨髓腔中心线e2。
从第一旋转中心点F1到第一股骨髓腔中心线e1做垂线,得到线段F1d1,从第二旋转中心点F2到第一股骨髓腔中心线e2做垂线,得到线段F2d2,线段F1d1也即是第一旋转中心点F1与第一股骨髓腔中心线e1之间的第五最短距离,线段F2d2即是第二旋转中心点F2与第二股骨髓腔中心线e2之间的第六最短距离。
根据线段F1d1的距离和线段F2d2的距离,计算线段F1d1和线段F2d2之间的差值,该差值即为患者的股骨偏心距,该股骨偏心距可以用来判断患者在关节置换手术术后下肢腿长恢复情况。
需要说明的是,该股骨偏心距还可以通过如下方法计算得到,具体地:从双侧小转子下缘点位A1,A2分别到坐骨结节线CD做垂线,得到第一下缘点位A1与坐骨结节线CD之间的最短距离(第一线段A1a1)以及第二下缘点位A2与坐骨结节线CD之间的最短距离(第二线段A2a2),基于此可以得到第一线段A1a1以及第二线段A2a2分别与坐骨结节线CD的第一交点a1和第二交点a2。
通过延长第一线段A1a1得到第一直线,延长第二线段A2a2得到第二直线,然后计算耻骨联合点位G与第一直线之间的最短距离以及耻骨联合点位G与第二直线之间的最短距离,例如,沿着耻骨联合点位G做垂直于坐骨结节线CD的纵轴线,并分别沿着耻骨联合点位G作垂直于第一直线和第二直线之间的垂线,根据耻骨联合点位G与第一直线之间的垂线距离确定纵轴线到第一直线之间的最短距离以及根据耻骨联合点位G与第二直线之间的垂线距离确定纵轴线到第二直线之间的最短距离,并计算耻骨联合点位G与第一直线之间的最短距离以及耻骨联合点位G与第二直线之间的最短距离的差值,即为股骨偏心距(参见图16)。
根据上述得到的股骨偏心距,对进行髋关节置换手术患者的术后恢复情况进行评估,若股骨偏心距预设范围内(例如31mm~45mm),则确定进行髋关节置换手术的患者术后恢复良好。
股骨的这种偏心结构影响了髋关节外展肌的力量和运动的效能,适宜的股骨偏心距可使髋关节外展肌肌力平衡,获得最大的外展力量和最小的关节界面应力,即使用最小的外展肌力也可达到骨盆平衡,偏心距增加,相应外展肌力臂增加,相应减少外展肌力,关节接触应力减少,减少假体磨损,同时假体颈部应力减小,相应部位的股骨应力下降。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算股骨偏心距,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,步骤S3,还可以具体包括:
S36、根据股骨假体球头区域的第一旋转中心点、健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距;或
S37、根据第一旋转中心点、第二旋转中心点、双侧泪滴点位连线和骨盆中轴线,确定髋臼杯偏心距;
其中,骨盆中轴线是根据第三关键点位置和坐骨结节线确定的;
偏心距包括髋臼杯偏心距。
可选地,根据股骨假体球头区域的第一旋转中心点F1、健侧股骨头区域的第二旋转中心点F2、坐骨结节线CD和骨盆中轴线EF,确定髋臼杯偏心距;或者根据第一旋转中心点F1、第二旋转中心点F2、双侧泪滴点位连线ab和骨盆中轴线EF,确定髋臼杯偏心距,该髋臼杯偏心距可以用于确定患者的偏心距。其中,双侧泪滴点位连线ab是通过连接第一泪滴点位和第二泪滴点位之后得到的。
本发明提供的基于深度学习的全髋关节术后偏心距的计算方法,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算髋臼杯偏心距,为后续基于髋臼杯偏心距评估股骨假体安装位置的准确性,进而实现对患者术后恢复情况快速、准确评估奠定了基础。
进一步地,在一个实施例中,步骤S36可以具体包括:
S361、确定第一旋转中心点与坐骨结节线之间的第七最短距离;
S362、确定第二旋转中心点与坐骨结节线之间的第八最短距离;
S363、确定第一旋转中心点与骨盆中轴线之间的第九最短距离;
S364、确定第二旋转中心点与骨盆中轴线之间的第十最短距离;
S365、根据第七最短距离和第八最短距离之间的差值以及第九最短距离和第十最短距离之间的差值,确定髋臼杯偏心距。
进一步地,在一个实施例中,步骤S37可以具体包括:
S371、确定第一旋转中心点与双侧泪滴点位连线之间的第十一最短距离;
S372、确定第二旋转中心点与双侧泪滴点位连线之间的第十二最短距离;
S373、确定第一旋转中心点与骨盆中轴线之间的第十三最短距离;
S374、确定第二旋转中心点与骨盆中轴线之间的第十四最短距离;
S375、根据第十一最短距离与第十二最短距离之间的差值以及第十三最短距离与第十四最短距离之间的差值,确定髋臼杯偏心距。
可选地,如图18所示,根据第一旋转中心点F1、第二旋转中心点F2、坐骨结节线CD和骨盆中轴线EF,确定髋臼杯偏心距,具体地:
从第一旋转中心点F1和第二旋转中心点F2分别到坐骨结节线CD做垂线,得到线段F1L1以及线段F2L2,线段F1L1之间的距离也即是第一旋转中心点F1与坐骨结节线CD之间的第七最短距离,线段F2L2之间的距离即是第二旋转中心点F2与坐骨结节线CD之间的第八最短距离。
并从第一旋转中心点F1和第二旋转中心点F2分别到骨盆中轴线EF做垂线,得到线段F1N1以及线段F2N2,线段F1N1之间的距离也即是第一旋转中心点F1与骨盆中轴线EF之间的第九最短距离,线段F2N2之间的距离即是第二旋转中心点F2与骨盆中轴线EF之间的十最短距离。
通过计算第七最短距离和第八最短距离之间的差值以及第九最短距离和第十最短距离之间的差值,并根据第七最短距离和第八最短距离之间的差值的绝对值以及第九最短距离和第十最短距离之间的差值的绝对值,确定髋臼杯偏心距,例如若第七最短距离和第八最短距离之间的差值的绝对值以及第九最短距离和第十最短距离之间的差值的绝对值之间的差值在预设阈值范围内,则确定股骨假体安装位置的准确性较高。
需要说明的是,骨盆中轴线EF是通过沿着耻骨联合点位G做垂直于坐骨结节线CD的垂线确定的(参见图17)。
如图19所示,根据第一旋转中心点F1、第二旋转中心点F2、双侧泪滴点位连线和骨盆中轴线EF,确定髋臼杯偏心距,具体地:
从第一旋转中心点F1和第二旋转中心点F2分别到双侧泪滴点位连线做垂线,得到线段F1P1以及线段F2P2,线段F1P1之间的距离也即是第一旋转中心点F1与双侧泪滴点位连线之间的第十一最短距离,线段F2P2之间的距离即是第二旋转中心点F2与双侧泪滴点位连线之间的第十二最短距离。
并从第一旋转中心点F1和第二旋转中心点F2分别到骨盆中轴线EF做垂线,得到线段F1Q1以及线段F2Q2,线段F1Q1之间的距离也即是第一旋转中心点F1与骨盆中轴线EF之间的第十三最短距离,线段F2Q2之间的距离即是第二旋转中心点F2与骨盆中轴线EF之间的第十四最短距离。
通过计算第十一最短距离和第十二最短距离之间的差值以及第十三最短距离和第十四最短距离之间的差值,并根据第十一最短距离和第十二最短距离之间的差值的绝对值以及第十三最短距离和第十四最短距离之间的差值的绝对值,确定髋臼杯偏心距,例如若第十一最短距离和第十二最短距离之间的差值的绝对值以及第十三最短距离和第十四最短距离之间的差值的绝对值之间的差值在预设阈值范围内,则确定股骨假体安装位置的准确性较高。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算髋臼杯偏心距,以评估股骨假体安装位置的准确性,为实现对患者术后恢复情况快速、准确评估奠定了基础。
进一步地,在一个实施例中,步骤S3,还可以具体包括:
S38、根据股骨假体球头区域中股骨假体的两个外径顶点、股骨假体与股骨假体球头区域的两个交界点和坐骨结节线,确定股骨假体的前倾角和外展角;
S39、根据前倾角和外展角,确定患者的股骨假体指标。
可选地,对识别出来的髋关节置换手术术后患者的髋关节图像中的股骨假体球头区域中股骨假体的两个外径顶点以及股骨假体与股骨假体球头区域的两个交界点(具体如图20所示)进行椭圆拟合,具体地:
如图21所示,髋臼杯假体(即股骨假体)的开口是圆形,在医学图像上的投影为椭圆(以下简称“髋臼椭圆”),根据前倾角定义,髋臼椭圆短半轴与长半轴的比值的反正弦函数即为该股骨假体的影像前倾角。髋臼椭圆的长轴通常是在医学图像上直接手动测量,然而髋臼椭圆的短轴顶点常常被股骨假体遮挡重合,因而无法在医学图像上直接测量半短轴长度。目前在医学图像上测量髋臼前倾角均是基于人工测量数据进行计算,且被遮挡的曲线是通过估计补充的,精确度很低。
而在本发明实施例中,根据深度学习模型确定的四个目标关键点可以确定两条相交的弧线,并利用最小二乘法进行椭圆拟合,拟合后得到椭圆方程的五个参数。通过这些参数可以得到该椭圆的长半轴和短半轴,然后根据前倾角公式可以求得前倾角大小。其中,椭圆方程为mx2+nxy+oy2+px+qy+1=0,m、n、o、p、q为五个椭圆方程参数。假设椭圆短半轴为K1,椭圆长半轴为K2,则根据K1和K2可以确定股骨假体的有前倾角为arcsin(K1/K2)。
将坐骨结节线CD与髋臼杯外径顶点连线的夹角作为外展角,具体如图22所示。
然后,根据第一旋转中心点F1、第二旋转中心点F2、坐骨结节线CD和骨盆中轴线EF,确定髋臼杯偏心距;或者根据第一旋转中心点F1、第二旋转中心点F2、双侧泪滴点位连线和骨盆中轴线EF,确定髋臼杯偏心距。
本发明提供的基于深度学习的髋关节置换术后影像的评估方法,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算股骨假体指标,以评估股骨假体安装位置的准确性,为后续实现对患者术后恢复情况快速、准确评估奠定了基础。
下面对本发明提供的基于深度学习的髋关节置换术后影像的评估系统进行描述,下文描述的基于深度学习的髋关节置换术后影像的评估系统与上文描述的基于深度学习的髋关节置换术后影像的评估方法可相互对应参照。
图23是本发明提供的基于深度学习的髋关节置换术后影像的评估系统的结构示意图,如图23所示,包括:
获取模块2310、识别模块2311、确定模块2312以及评估模块2313;
获取模块2310,用于获取髋关节置换手术术后的患者的髋关节图像;
识别模块2311,用于基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;
确定模块2312,用于根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;
评估模块2313,用于根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估;
其中,股骨假体位置安装的准确性用于对患者的术后恢复情况进行评估。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,基于髋关节置换手术术后的患者的髋关节图像,计算髋关节置换手术术后患者的双腿腿长差、偏心距和股骨假体指标,以实现对进行髋关节置换手术术后的患者的恢复情况的准确评估。
进一步地,在一个实施例中,识别模块2311,还可以具体用于:
将髋关节图像输入至目标识别网络,以确定髋关节图像中的双侧股骨小转子对应的第一下缘点位、第二下缘点位、坐骨区域双侧的第一泪滴点位、第二泪滴点位、耻骨联合点位、股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域;
分别将第一下缘点位和第二下缘点位确定为第一关键点位置、第一泪滴点位和所述第二泪滴点位确定为第二关键点位置以及耻骨联合点位确定为第三关键点位置;
根据第一关键点位置、第二关键点位置和第三关键点位置,确定关键点位置;
将股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域,确定为目标区域;
其中,目标识别网络基于点识别神经网络以及分割神经网络训练得到;或者,
基于包括堆叠沙漏网络结构、分割Segment-Head网络以及关键点Keypoint-Head网络的预设神经网络模型训练得到。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,结合深度学习方法对进行髋关节置换手术术后的患者的股骨假体安装位置的准确性进行评估,以实现对进行髋关节置换手术的患者术后恢复情况的快速、准确评估。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
根据第一关键点位置和坐骨结节线,确定双腿腿长差;或
根据第一关键点位置和双侧泪滴点位连线,确定双腿腿长差;
其中,坐骨结节线是根据坐骨区域的双侧第一最低点和第二最低点确定的;
双侧泪滴点位连线是根据第二关键点位置确定的。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,利用深度学习方法对髋关节置换手术术后患者的髋关节图像中的相应关键点以及目标区域进行识别并计算腿长差,为后续基于该腿长差实现对进行髋关节置换手术的患者术后恢复情况的快速评估奠定了基础。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
确定第一下缘点位与坐骨结节线之间的第一最短距离;
确定第二下缘点位与坐骨结节线之间的第二最短距离;
根据第一最短距离和第二最短距离之间的差值,确定双腿腿长差。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,利用深度学习方法对髋关节置换手术术后患者髋关节的髋关节图像中的相应关键点(第一下缘点位和第二下缘点位)以及目标区域进行识别并计算腿长差,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
确定第一下缘点位与所述双侧泪滴点位连线之间的第三最短距离;
确定第二下缘点位与双侧泪滴点位连线之间的第四最短距离;
根据第三最短距离和第四最短距离之间的差值,确定双腿腿长差。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,利用深度学习方法对髋关节置换手术术后患者髋关节的髋关节图像中的相应关键点(第一下缘点位、第二下缘点位、第一泪滴点位和第二泪滴点位)进行识别并计算腿长差,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
根据双侧骨皮质区域,确定与股骨假体球头区域同侧的第一股骨髓腔中心线和与健侧股骨头区域同侧的第二股骨髓腔中心线;
确定股骨假体球头区域的第一旋转中心点与第一股骨髓腔中心线之间的第五最短距离;
确定健侧股骨头区域的第二旋转中心与第二股骨髓腔中心线之间的第六最短距离;
根据第五最短距离和第六最短距离之间的差值,确定股骨偏心距;
其中,偏心距包括股骨偏心距。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算股骨偏心距,以实现对进行全髋关节置换手术的患者术后恢复情况的快速评估。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
根据股骨假体球头区域的第一旋转中心点、健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距;或
根据第一旋转中心点、第二旋转中心点、双侧泪滴点位连线和骨盆中轴线,确定髋臼杯偏心距;
其中,骨盆中轴线是根据第三关键点位置和坐骨结节线确定的;
偏心距包括髋臼杯偏心距。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算髋臼杯偏心距,为后续基于髋臼杯偏心距评估股骨假体安装位置的准确性,进而实现对患者术后恢复情况快速、准确评估奠定了基础。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
确定第一旋转中心点与坐骨结节线之间的第七最短距离;
确定第二旋转中心点与坐骨结节线之间的第八最短距离;
确定第一旋转中心点与骨盆中轴线之间的第九最短距离;
确定第二旋转中心点与骨盆中轴线之间的第十最短距离;
根据第七最短距离和第八最短距离之间的差值以及第九最短距离和第十最短距离之间的差值,确定髋臼杯偏心距。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
确定第一旋转中心点与双侧泪滴点位连线之间的第十一最短距离;
确定第二旋转中心点与双侧泪滴点位连线之间的第十二最短距离;
确定第一旋转中心点与骨盆中轴线之间的第十三最短距离;
确定第二旋转中心点与骨盆中轴线之间的第十四最短距离;
根据第十一最短距离与第十二最短距离之间的差值以及第十三最短距离与第十四最短距离之间的差值,确定髋臼杯偏心距。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算髋臼杯偏心距,以评估股骨假体安装位置的准确性,为实现对患者术后恢复情况快速、准确评估奠定了基础。
进一步地,在一个实施例中,确定模块2312,还可以具体用于:
根据股骨假体球头区域中股骨假体的两个外径顶点、股骨假体与股骨假体球头区域的两个交界点和坐骨结节线,确定股骨假体的前倾角和外展角;
根据前倾角和外展角,确定患者的股骨假体指标。
本发明提供的基于深度学习的髋关节置换术后影像的评估系统,对髋关节置换手术术后患者的髋关节图像中的相应关键点进行识别并计算股骨假体指标,以评估股骨假体安装位置的准确性,为后续实现对患者术后恢复情况快速、准确评估奠定了基础。
图24是本发明提供的一种电子设备的实体结构示意图,如图24所示,该电子设备可以包括:处理器(processor)2410、通信接口(communication interface)2411、存储器(memory)2412和总线(bus)2413,其中,处理器2410,通信接口2411,存储器2412通过总线2413完成相互间的通信。处理器2410可以调用存储器2412中的逻辑指令,以执行如下方法:
获取髋关节置换手术术后的患者的髋关节图像;
基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;
根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;
根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估;
其中,股骨假体位置安装的准确性用于对患者的术后恢复情况进行评估。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机电源屏(可以是个人计算机,服务器,或者网络电源屏等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
进一步地,本发明公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的基于深度学习的髋关节置换术后影像的评估方法,例如包括:
获取髋关节置换手术术后的患者的髋关节图像;
基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;
根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;
根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估;
其中,股骨假体位置安装的准确性用于对患者的术后恢复情况进行评估。
另一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的基于深度学习的髋关节置换术后影像的评估方法,例如包括:
获取髋关节置换手术术后的患者的髋关节图像;
基于深度学习的目标识别网络,识别髋关节图像中的关键点位置和目标区域;
根据关键点位置和目标区域,确定患者的双腿腿长差、偏心距和股骨假体指标;
根据双腿腿长差、偏心距和股骨假体指标,对患者的股骨假体位置安装的准确性进行评估;
其中,股骨假体位置安装的准确性用于对患者的术后恢复情况进行评估。
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机电源屏(可以是个人计算机,服务器,或者网络电源屏等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (15)

1.一种基于深度学习的髋关节置换术后影像的评估方法,其特征在于,包括:
获取髋关节置换手术术后的患者的髋关节图像;
基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域;
根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差、偏心距和股骨假体指标;
根据所述双腿腿长差、所述偏心距和所述股骨假体指标,对所述患者的股骨假体位置安装的准确性进行评估;
其中,所述股骨假体位置安装的准确性用于对所述患者的术后恢复情况进行评估。
2.根据权利要求1所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述目标识别网络基于点识别神经网络以及分割神经网络训练得到;或者,
基于包括堆叠沙漏网络结构、分割Segment-Head网络以及关键点Keypoint-Head网络的预设神经网络模型训练得到。
3.根据权利要求1所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域,包括:
将所述髋关节图像输入至目标识别网络,以确定所述髋关节图像中的双侧股骨小转子对应的第一下缘点位、第二下缘点位、坐骨区域双侧的第一泪滴点位、第二泪滴点位、耻骨联合点位、股骨假体球头区域、健侧股骨头区域、双侧骨皮质区域和坐骨区域;
分别将所述第一下缘点位和所述第二下缘点位确定为第一关键点位置、所述第一泪滴点位和所述第二泪滴点位确定为第二关键点位置以及所述耻骨联合点位确定为第三关键点位置;
将所述第一关键点位置、所述第二关键点位置和所述第三关键点位置,确定为所述关键点位置;
将所述股骨假体球头区域、所述健侧股骨头区域、所述双侧骨皮质区域和所述坐骨区域,确定为所述目标区域。
4.根据权利要求3所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差,包括:
根据所述第一关键点位置和坐骨结节线,确定所述双腿腿长差;或,
根据所述第一关键点位置和双侧泪滴点位连线,确定所述双腿腿长差;
其中,所述坐骨结节线是根据所述坐骨区域的双侧第一最低点和第二最低点确定的;
所述双侧泪滴点位连线是根据所述第二关键点位置确定的。
5.根据权利要求4所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述第一关键点位置和坐骨结节线,确定所述双腿腿长差,包括:
确定所述第一下缘点位与所述坐骨结节线之间的第一最短距离;
确定所述第二下缘点位与所述坐骨结节线之间的第二最短距离;
根据所述第一最短距离和所述第二最短距离之间的差值,确定所述双腿腿长差。
6.根据权利要求4所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述第一关键点位置和双侧泪滴点位连线,确定所述双腿腿长差,包括:
确定所述第一下缘点位与所述双侧泪滴点位连线之间的第三最短距离;
确定所述第二下缘点位与所述双侧泪滴点位连线之间的第四最短距离;
根据所述第三最短距离和所述第四最短距离之间的差值,确定所述双腿腿长差。
7.根据权利要求3所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述关键点位置和所述目标区域,确定所述患者的股骨偏心距,包括:
根据所述双侧骨皮质区域,确定与所述股骨假体球头区域同侧的第一股骨髓腔中心线和与所述健侧股骨头区域同侧的第二股骨髓腔中心线;
确定所述股骨假体球头区域的第一旋转中心点与所述第一股骨髓腔中心线之间的第五最短距离;
确定所述健侧股骨头区域的第二旋转中心与所述第二股骨髓腔中心线之间的第六最短距离;
根据所述第五最短距离和所述第六最短距离之间的差值,确定股骨偏心距;
其中,所述偏心距包括所述股骨偏心距。
8.根据权利要求3所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述关键点位置和所述目标区域,确定所述患者的偏心距,还包括:
根据所述股骨假体球头区域的第一旋转中心点、所述健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距;或,
根据所述第一旋转中心点、所述第二旋转中心点、双侧泪滴点位连线和所述骨盆中轴线,确定所述髋臼杯偏心距;
其中,所述骨盆中轴线是根据所述第三关键点位置和所述坐骨结节线确定的;
所述偏心距包括所述髋臼杯偏心距。
9.根据权利要求8所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述股骨假体球头区域的第一旋转中心点、所述健侧股骨头区域的第二旋转中心点、坐骨结节线和骨盆中轴线,确定髋臼杯偏心距,包括:
确定所述第一旋转中心点与所述坐骨结节线之间的第七最短距离;
确定所述第二旋转中心点与所述坐骨结节线之间的第八最短距离;
确定所述第一旋转中心点与所述骨盆中轴线之间的第九最短距离;
确定所述第二旋转中心点与所述骨盆中轴线之间的第十最短距离;
根据所述第七最短距离和所述第八最短距离之间的差值以及所述第九最短距离和所述第十最短距离之间的差值,确定所述髋臼杯偏心距。
10.根据权利要求8所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述第一旋转中心点、所述第二旋转中心点、双侧泪滴点位连线和所述骨盆中轴线,确定所述髋臼杯偏心距,包括:
确定所述第一旋转中心点与所述双侧泪滴点位连线之间的第十一最短距离;
确定所述第二旋转中心点与所述双侧泪滴点位连线之间的第十二最短距离;
确定所述第一旋转中心点与所述骨盆中轴线之间的第十三最短距离;
确定所述第二旋转中心点与所述骨盆中轴线之间的第十四最短距离;
根据所述第十一最短距离与所述第十二最短距离之间的差值以及所述第十三最短距离与所述第十四最短距离之间的差值,确定所述髋臼杯偏心距。
11.根据权利要求3所述的基于深度学习的髋关节置换术后影像的评估方法,其特征在于,所述根据所述关键点位置和所述目标区域,确定所述患者的股骨假体指标,包括:
根据所述股骨假体球头区域中股骨假体的两个外径顶点、所述股骨假体与所述股骨假体球头区域的两个交界点和坐骨结节线,确定所述股骨假体的前倾角和外展角;
根据所述前倾角和所述外展角,确定所述患者的股骨假体指标。
12.一种基于深度学习的髋关节置换术后影像的评估系统,其特征在于,包括:获取模块、识别模块、确定模块以及评估模块;
所述获取模块,用于获取髋关节置换手术术后的患者的髋关节图像;
所述识别模块,用于基于深度学习的目标识别网络,识别所述髋关节图像中的关键点位置和目标区域;
所述确定模块,用于根据所述关键点位置和所述目标区域,确定所述患者的双腿腿长差、偏心距和股骨假体指标;
所述评估模块,用于根据所述双腿腿长差、所述偏心距和所述股骨假体指标,对所述患者的股骨假体位置安装的准确性进行评估;
其中,所述股骨假体位置安装的准确性用于对所述患者的术后恢复情况进行评估。
13.一种电子设备,包括处理器和存储有计算机程序的存储器,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11任一项所述基于深度学习的髋关节置换术后影像的评估方法。
14.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述基于深度学习的髋关节置换术后影像的评估方法。
15.一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述基于深度学习的髋关节置换术后影像的评估方法。
CN202210173937.3A 2022-02-24 2022-02-24 基于深度学习的髋关节置换术后影像的评估方法及系统 Active CN114742747B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210173937.3A CN114742747B (zh) 2022-02-24 2022-02-24 基于深度学习的髋关节置换术后影像的评估方法及系统
PCT/CN2023/070790 WO2023160272A1 (zh) 2022-02-24 2023-01-05 基于深度学习的髋关节置换术后影像的评估方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210173937.3A CN114742747B (zh) 2022-02-24 2022-02-24 基于深度学习的髋关节置换术后影像的评估方法及系统

Publications (2)

Publication Number Publication Date
CN114742747A true CN114742747A (zh) 2022-07-12
CN114742747B CN114742747B (zh) 2023-04-18

Family

ID=82276141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210173937.3A Active CN114742747B (zh) 2022-02-24 2022-02-24 基于深度学习的髋关节置换术后影像的评估方法及系统

Country Status (2)

Country Link
CN (1) CN114742747B (zh)
WO (1) WO2023160272A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115844531A (zh) * 2023-02-22 2023-03-28 北京壹点灵动科技有限公司 髋关节置换手术导航系统
WO2023160272A1 (zh) * 2022-02-24 2023-08-31 北京长木谷医疗科技有限公司 基于深度学习的髋关节置换术后影像的评估方法及系统
CN116687434A (zh) * 2023-08-03 2023-09-05 北京壹点灵动科技有限公司 对象的术后角度的确定方法、装置、存储介质和处理器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117876368A (zh) * 2024-03-11 2024-04-12 成都唐源电气股份有限公司 一种接触轨集电靴碳滑板磨耗和裂纹的检测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111888059A (zh) * 2020-07-06 2020-11-06 北京长木谷医疗科技有限公司 基于深度学习与x线的全髋关节置换术前规划方法及装置
RU2742074C1 (ru) * 2020-03-04 2021-02-02 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ оценки относительной неравномерности длин нижних конечностей

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466928B2 (ja) * 2018-09-12 2024-04-15 オルソグリッド システムズ ホールディング,エルエルシー 人工知能の術中外科的ガイダンスシステムと使用方法
CN114742747B (zh) * 2022-02-24 2023-04-18 北京长木谷医疗科技有限公司 基于深度学习的髋关节置换术后影像的评估方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742074C1 (ru) * 2020-03-04 2021-02-02 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ оценки относительной неравномерности длин нижних конечностей
CN111888059A (zh) * 2020-07-06 2020-11-06 北京长木谷医疗科技有限公司 基于深度学习与x线的全髋关节置换术前规划方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴东等: "《人工智能辅助全髋关节置换术三维规划》", 《中国修复重建外科杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160272A1 (zh) * 2022-02-24 2023-08-31 北京长木谷医疗科技有限公司 基于深度学习的髋关节置换术后影像的评估方法及系统
CN115844531A (zh) * 2023-02-22 2023-03-28 北京壹点灵动科技有限公司 髋关节置换手术导航系统
CN115844531B (zh) * 2023-02-22 2023-09-12 北京壹点灵动科技有限公司 髋关节置换手术导航系统
CN116687434A (zh) * 2023-08-03 2023-09-05 北京壹点灵动科技有限公司 对象的术后角度的确定方法、装置、存储介质和处理器
CN116687434B (zh) * 2023-08-03 2023-11-24 北京壹点灵动科技有限公司 对象的术后角度的确定方法、装置、存储介质和处理器

Also Published As

Publication number Publication date
WO2023160272A1 (zh) 2023-08-31
CN114742747B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN114742747B (zh) 基于深度学习的髋关节置换术后影像的评估方法及系统
US11951009B2 (en) Methods and devices for bone surgeries
CN100421128C (zh) 用于对断层图像数据分段的方法和图像处理系统
CN114419618B (zh) 基于深度学习的全髋关节置换术前规划系统
US20090136103A1 (en) System and methods for image segmentation in N-dimensional space
CN113870229B (zh) 股骨近端髓腔图像数据处理方法、装置、设备和存储介质
CN114648492A (zh) 基于深度学习的全髋关节术后偏心距的计算方法及系统
TWI709147B (zh) 基於全身骨掃描影像之深度學習攝護腺癌骨轉移辨識系統
CN113962927B (zh) 基于强化学习的髋臼杯位置调整方法、装置及存储介质
KR20150047885A (ko) 3차원 무릎 관절 영상 생성 방법 및 장치
US11540794B2 (en) Artificial intelligence intra-operative surgical guidance system and method of use
CN113077498A (zh) 骨盆配准方法、骨盆配准装置和骨盆配准系统
CN114711794A (zh) 基于深度学习的膝关节胫骨置换术后评估系统
CN114612391A (zh) 基于深度学习的全髋关节术后腿长差的计算方法及系统
CN115252233B (zh) 基于深度学习的全髋关节置换术中髋臼杯的自动化规划方法
CN114663363B (zh) 一种基于深度学习的髋关节医学图像处理方法和装置
CN114886624A (zh) 一种基于x光图像自动匹配髋关节假体方法及装置
Fischer et al. Automated morphometric analysis of the hip joint on MRI from the German National Cohort Study
KR102570004B1 (ko) 인공신경망 기반의 척추 진단 시스템 및 그 정보 제공 방법
Song et al. Computer-aided modeling and morphological analysis of hip joint
Farzi Bone Ageing and Osteoporosis: Automated DXA Image Analysis for Population Imaging
CN117422721A (zh) 一种基于下肢ct影像的智能标注方法
JP2021080606A (ja) 採寸装置、採寸システム、採寸情報生成方法およびプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100176 2201, 22 / F, building 1, yard 2, Ronghua South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing

Patentee after: Beijing Changmugu Medical Technology Co.,Ltd.

Patentee after: Zhang Yiling

Address before: 100176 2201, 22 / F, building 1, yard 2, Ronghua South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing

Patentee before: BEIJING CHANGMUGU MEDICAL TECHNOLOGY Co.,Ltd.

Patentee before: Zhang Yiling

CP01 Change in the name or title of a patent holder