CN114740557A - Design method of stripe density for aberration variable grating-pitch raster scanning lithography - Google Patents
Design method of stripe density for aberration variable grating-pitch raster scanning lithography Download PDFInfo
- Publication number
- CN114740557A CN114740557A CN202210041105.6A CN202210041105A CN114740557A CN 114740557 A CN114740557 A CN 114740557A CN 202210041105 A CN202210041105 A CN 202210041105A CN 114740557 A CN114740557 A CN 114740557A
- Authority
- CN
- China
- Prior art keywords
- variable
- grating
- optimal
- exposure
- linear density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 238000013461 design Methods 0.000 title claims abstract description 62
- 230000004075 alteration Effects 0.000 title claims abstract description 19
- 238000001459 lithography Methods 0.000 title claims description 48
- 230000008859 change Effects 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000001259 photo etching Methods 0.000 claims abstract 29
- 238000005457 optimization Methods 0.000 claims description 48
- 238000004364 calculation method Methods 0.000 claims description 34
- 238000009826 distribution Methods 0.000 claims description 28
- 238000012804 iterative process Methods 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 3
- 235000003143 Panax notoginseng Nutrition 0.000 claims 1
- 241000180649 Panax notoginseng Species 0.000 claims 1
- 235000003181 Panax pseudoginseng Nutrition 0.000 claims 1
- 244000131316 Panax pseudoginseng Species 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000000025 interference lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1847—Manufacturing methods
- G02B5/1857—Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及全息光栅制作的技术领域,具体涉及一种消像差变栅距光栅扫 描光刻的干涉条纹线密度的设计方法。The invention relates to the technical field of holographic grating fabrication, in particular to a method for designing the line density of interference fringes in aberration variable grating-pitch grating scanning lithography.
背景技术Background technique
消像差变栅距光栅是指光栅刻槽密度按照一定规律变化的平面光栅,通过 光栅刻槽密度的变化校正离焦、球差等光学像差。与曲面光栅相比,光栅基底 为平面,降低了基底的加工难度。入射到变栅距光栅的子午光线可以自形成谱 线,光谱仪器中无需额外的准直及聚焦光学元件,减小了仪器的体积重量,提 高了光能利用率,具有较高激光损伤阈值,在同步辐射光源装置、高能激光装 置等领域具有重要应用。Aberration-variable grating is a plane grating whose groove density changes according to a certain law, and optical aberrations such as defocus and spherical aberration are corrected by the change of grating groove density. Compared with the curved grating, the grating substrate is flat, which reduces the processing difficulty of the substrate. The meridional light incident on the variable pitch grating can form a spectral line by itself, and no additional collimating and focusing optical elements are required in the spectrometer, which reduces the volume and weight of the instrument, improves the utilization rate of light energy, and has a high laser damage threshold. It has important applications in the fields of synchrotron radiation light source devices and high-energy laser devices.
变栅距光栅的制作方式通常采用机械刻划、电子束直写、激光直写、全息 曝光等方式制作。机械刻划、电子束及激光直写等制作方式属于超精密加工, 逐线完成光栅刻槽的加工,制作效率低,且由于变栅距光栅相邻栅距的变化一 般不超过纳米量级,对相应的超精密加工设备及加工条件要求很高,制作难度 和成本高。传统全息曝光方式制作变栅距光栅,可采用球面波或非球面波曝光 系统,但球面波曝光系统可调整的自由度较少,且存在刻槽弯曲的问题,会导 致光栅的分辨能力下降。非球面波曝光系统设计、加工及调试难度大,工艺上 不易实现,往往导致实际的光栅刻槽密度与期望值存在较大误差。The production methods of variable pitch gratings are usually made by mechanical scribing, electron beam direct writing, laser direct writing, and holographic exposure. The production methods such as mechanical scribing, electron beam and laser direct writing belong to ultra-precision processing. The processing of grating grooves is completed line by line, and the production efficiency is low. Since the change of adjacent grating pitch of variable pitch grating generally does not exceed the nanometer level, The requirements for the corresponding ultra-precision processing equipment and processing conditions are very high, and the manufacturing difficulty and cost are high. The traditional holographic exposure method is used to make a variable pitch grating, and a spherical wave or aspheric wave exposure system can be used. However, the spherical wave exposure system has fewer degrees of freedom to adjust, and there is the problem of groove bending, which will reduce the resolution of the grating. The aspheric wave exposure system is difficult to design, process and debug, and it is not easy to realize in the process, which often leads to a large error between the actual grating groove density and the expected value.
变周期扫描光刻是制作变栅距光栅的另一种重要方法,干涉光学系统形成 小口径(微米~毫米量级)的干涉图样,由二维工作台承载光栅基底进行步进扫描 运动,使干涉图样与光栅基底之间产生相对运动,将干涉条纹记录在光栅基底 涂覆的光刻胶中,直至完成整块光栅基底有效面积的曝光。为实现变栅距光栅 的制作,在曝光过程中,需要根据用于光刻的干涉条纹线密度变化函数,通过 精密光电控制改变相干光束的干涉夹角,不断精密调整干涉条纹线密度,使制 作的光栅刻槽密度满足设计指标要求。这种制作方式所制作的变栅距光栅不存 在刻槽弯曲的问题,干涉图样中存在数百条干涉条纹,大大提高了制作效率, 在进行大面积光栅制作时,无需大口径的光学系统。Variable period scanning lithography is another important method for making variable grating pitch gratings. The interference optical system forms an interference pattern with a small diameter (micrometers to millimeters), and the two-dimensional worktable supports the grating substrate to perform step-by-step scanning motion, so that the Relative motion is generated between the interference pattern and the grating substrate, and the interference fringes are recorded in the photoresist coated on the grating substrate until the exposure of the effective area of the entire grating substrate is completed. In order to realize the production of variable grating pitch grating, in the exposure process, it is necessary to change the interference angle of the coherent beam through precise photoelectric control according to the linear density change function of the interference fringe used for lithography, and continuously and precisely adjust the linear density of the interference fringe, so that the production The grating groove density meets the design requirements. The variable grating pitch grating produced by this production method does not have the problem of curved grooves, and there are hundreds of interference fringes in the interference pattern, which greatly improves the production efficiency. When producing large-area gratings, a large-diameter optical system is not required.
但若令干涉条纹线密度变化函数等于变栅距光栅的目标刻槽密度函数,进 行干涉条纹线密度的调整,制作得到的变栅距光栅刻槽密度与设计值存在较大 偏差。这主要是由于以下两点原因,变周期扫描光刻系统在改变干涉条纹的线 密度时,干涉图样中全部干涉条纹的线密度发生相同的变化,无法实现干涉条 纹逐条线距的精密调整。且干涉图样的强度分布为高斯分布,为了保证曝光量 的均匀性,相邻扫描段的干涉图样之间存在一定的重叠,对制作出的光栅的刻 槽分布具有均化效应。However, if the linear density variation function of the interference fringes is equal to the target groove density function of the variable pitch grating, and the linear density of the interference fringes is adjusted, there is a large deviation between the groove density and the design value of the obtained variable pitch grating. This is mainly due to the following two reasons: when the variable period scanning lithography system changes the line density of the interference fringes, the line density of all the interference fringes in the interference pattern changes the same, and the precise adjustment of the line spacing of the interference fringes cannot be realized. In addition, the intensity distribution of the interference pattern is a Gaussian distribution. In order to ensure the uniformity of the exposure amount, there is a certain overlap between the interference patterns of adjacent scanning segments, which has a homogenizing effect on the groove distribution of the fabricated grating.
建立干涉条纹线密度的设计方法,是变周期扫描光刻技术应用的关键问题。 本发明提出一种用于消像差变栅距光栅扫描光刻的干涉条纹线密度设计方法, 按照此方法设计的干涉条纹线密度变化函数,改变光刻过程中干涉条纹的线密 度,可使最终得到变栅距光栅刻槽密度满足设计指标要求。Establishing a design method for the line density of interference fringes is a key issue in the application of variable period scanning lithography. The present invention proposes a method for designing interference fringe line density for aberration variable grating-pitch grating scanning lithography. According to the interference fringe line density variation function designed by this method, the line density of interference fringes in the lithography process is changed, so that the Finally, the groove density of the variable pitch grating can meet the design requirements.
发明内容SUMMARY OF THE INVENTION
本发明提出消像差变栅距光栅扫描光刻的干涉条纹线密度设计方法,利用 该方法可根据变栅距光栅刻槽密度目标函数,完成扫描光刻过程中干涉条纹线 密度函数的设计,按此干涉条纹线密度设计函数,变化干涉条纹的线密度,最 终得到的变周期光栅刻槽密度满足光栅刻槽密度目标函数的要求。The invention proposes an interference fringe line density design method for aberration variable grating pitch grating scanning lithography. By using the method, the design of the interference fringe line density function in the scanning lithography process can be completed according to the variable grating pitch grating groove density objective function. The function is designed according to the linear density of the interference fringes, and the linear density of the interference fringes is changed, and the finally obtained groove density of the variable period grating meets the requirements of the objective function of the groove density of the grating.
消像差变栅距光栅扫描光刻条纹线密度设计方法,该方法由以下步骤实现:An aberration variable grating pitch raster scanning lithography fringe density design method, which is realized by the following steps:
步骤一、确定变栅距光栅的刻线密度函数及通用光刻过程制作参数;
步骤一一、根据变栅距光栅的消像差特性及其在仪器中的应用需求,设计 变栅距光栅刻槽密度目标函数g(x)为:
g(x)=ng0+ng1(x-Wg/2)+ng2(x-Wg/2)2+ng3(x-Wg/2)3 g(x)=n g0 +n g1 (xW g /2)+n g2 (xW g /2) 2 +n g3 (xW g /2) 3
光栅的理想相位分布Φg(x)表示为:The ideal phase distribution of the grating Φ g (x) is expressed as:
Φg(x)=2πg(x)·xΦ g (x)=2πg(x) x
式中,x为光栅矢量方向的坐标,x=0位于光栅边界处,Wg为光栅矢量方 向的总宽度,ng0为光栅中心处的刻槽密度,ng1为光栅刻槽密度的一次项系数, ng2为光栅刻槽密度的二次项系数,ng3为光栅刻槽密度的三次项系数;所述ng0、 ng1、ng2和ng3根据变栅距光栅像差校正原理及光谱仪器或激光装置的使用参数 确定;In the formula, x is the coordinate of the grating vector direction, x=0 is located at the grating boundary, W g is the total width of the grating vector direction, n g0 is the groove density at the center of the grating, and n g1 is the first-order term of the grating groove density coefficient, n g2 is the quadratic term coefficient of the grating groove density, and n g3 is the cubic term coefficient of the grating groove density; the n g0 , n g1 , n g2 and n g3 are based on the principle of variable grating pitch grating aberration correction and Determination of operating parameters of spectroscopic instruments or laser devices;
步骤一二、根据变周期扫描光刻系统的设计、装调参数及步骤一一获得的 变栅距光栅刻槽密度目标函数,确定在进行该变周期光栅制作时的以下制作参 数:Step 12, according to the design of the variable period scanning lithography system, the adjustment parameters and the variable grating pitch grating groove density objective function obtained in
设定干涉图样高斯束腰半径为Rho,相邻扫描段的干涉图样重叠宽度占所述 束腰半径Rho的比例StepRatio,则干涉图样重叠宽度为StepRatio×Rho;Set the Gaussian beam waist radius of the interference pattern to be R ho , and the overlapping width of the interference pattern of adjacent scanning segments accounts for the ratio StepRatio of the beam waist radius R ho , then the overlapping width of the interference pattern is StepRatio×R ho ;
设定步进扫描的总步数为N,所述N≥Wg/(Rho·StepRatio)+1,使曝光区域的宽 度大于光栅的有效宽度;The total number of steps of the step-by-step scanning is set as N, the N≥W g /(R ho ·StepRatio)+1, so that the width of the exposure area is greater than the effective width of the grating;
所述步进扫描每一步的步数为Nsteps,Nsteps=round(Rho·StepRatio·ng0);round() 为四舍五入取整数函数;The number of steps in each step of the step scan is N steps , where N steps =round(R ho ·StepRatio ·n g0 ); round( ) is a rounding integer function;
步骤二、根据变周期扫描光刻总曝光量计算方法,计算干涉条纹线密度变 化函数f(x)等于变栅距光栅刻槽密度函数g(x)时的光栅相位分布误差Φe(x);Step 2: Calculate the grating phase distribution error Φ e (x) when the interference fringe line density change function f(x) is equal to the variable grating pitch grating groove density function g(x) according to the calculation method of the total exposure amount of variable-period scanning lithography ;
所述变周期扫描光刻总曝光量的计算方法为:The calculation method of the total exposure amount of the variable period scanning lithography is:
设定干涉条纹线密度变化函数f(x)与变栅距光栅刻槽密度目标函数g(x)具 有相同的形式,表示为:It is assumed that the variation function f(x) of the line density of the interference fringes has the same form as the objective function g(x) of the groove density of the variable pitch grating, which is expressed as:
f(x)=m0+m1(x-Wg/2)+m2(x-Wg/2)2+m3(x-Wg/2)3 f(x)=m 0 +m 1 (xW g /2)+m 2 (xW g /2) 2 +m 3 (xW g /2) 3
式中,m0为干涉条纹线密度变化函数的常数项系数,m1为干涉条纹线密度 变化函数的一次项系数,m2为干涉条纹线密度变化函数的二次项系数,m3为干 涉条纹线密度变化函数的三次项系数;扫描光刻起始扫描段从x=0时开始,x=0 时对应的步进个数k=0,起始扫描为第1次扫描,其对应的曝光量为D0(x),Sk为第k步的步进距离;In the formula, m 0 is the constant term coefficient of the interference fringe line density change function, m 1 is the first order coefficient of the interference fringe line density change function, m 2 is the quadratic term coefficient of the interference fringe line density change function, and m 3 is the interference fringe line density change function. The cubic term coefficient of the stripe line density variation function; the initial scan segment of scanning lithography starts from x=0, the corresponding step number k=0 when x=0, the initial scan is the first scan, and its corresponding The exposure amount is D 0 (x), and Sk is the stepping distance of the kth step;
S0=0,为从第0步至第k步的总距离,为k步步进后,第 k+1次扫描的干涉条纹线密度;Δk=fk-fk-1为k+1次扫描与k次扫描干涉条纹线 密度的差值,当k=0时,Δ0=0,当k>0时,S 0 =0, is the total distance from
第k步步进后,第k+1次扫描的曝光量Dk(x)及第k+1次扫描与初始扫描的 相位差为:After the kth step, the exposure amount D k (x) of the k+1th scan and the phase difference between the k+1th scan and the initial scan for:
式中,B(x)为单次扫描曝光量的背景分量,A(x)为单次扫描曝光量中高斯分 布的曝光量强度包络; In the formula, B(x) is the background component of the single-scan exposure, and A(x) is the exposure intensity envelope of the Gaussian distribution in the single-scan exposure;
光刻结束时,光栅上的总曝光量为步进扫描总步数N步后N+1次扫描曝光 量的叠加Dtot(x),即:At the end of lithography, the total exposure amount on the grating is the superposition D tot (x) of the exposure amount of N+1 scans after the total number of step scanning steps N steps, namely:
Dtot(x)=D0(x)+D1(x)+…DN(x)D tot (x)=D 0 (x)+D 1 (x)+…D N (x)
=Btot(x)+Atot(x)sin(Ψtot(x))=B tot (x)+A tot (x) sin(Ψ tot (x))
式中,Btot(x)为总曝光量的背景分量,Atot(x)为总曝光量交流分量幅值;In the formula, B tot (x) is the background component of the total exposure, and A tot (x) is the amplitude of the AC component of the total exposure;
Ψtot(x)=2πxf0+Ψ(x)Ψ tot (x)=2πxf 0 +Ψ(x)
Ψ(x)=arctan[F(x)/E(x)]Ψ(x)=arctan[F(x)/E(x)]
式中,Ψtot(x)为总曝光量的相位变化量,Ψ(x)为总曝光量与第1次扫描之间 的相位增量,Ψtot(x)等于所制作的变栅距光栅的实际相位分布; γ(x)=Atot(x)/Btot(x)为总曝光对比度;In the formula, Ψ tot (x) is the phase change of the total exposure amount, Ψ (x) is the phase increment between the total exposure amount and the first scan, and Ψ tot (x) is equal to the produced variable grating pitch grating The actual phase distribution of ; γ(x)=A tot (x)/B tot (x) is the total exposure contrast;
设定f(x)=g(x),即m0=ng0,m1=ng1,m2=ng2,m3=ng3,利用上述变周期扫描 光刻总曝光量计算方法,计算曝光量相位变化量Ψtot(x),所制作的变栅距光栅的 实际相位分布与光栅的理想相位分布之间的光栅相位分布误差为Φe(x)= Ψtot(x)-Φg(x);Set f(x)=g(x), that is, m 0 =n g0 , m 1 =n g1 , m 2 =n g2 , m 3 =n g3 , using the above-mentioned method for calculating the total exposure of variable period scanning lithography, Calculate the amount of exposure phase change Ψ tot (x), the grating phase distribution error between the actual phase distribution of the variable grating and the ideal phase distribution of the grating is Φ e (x) = Ψ tot (x)-Φ g (x);
步骤三、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的三 次项系数m3的优化设计值m3_optimal;
步骤四、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的二 次项系数m2的优化设计值m2_optimal;Step 4, designing the optimal design value m 2_optimal of the quadratic term coefficient m 2 of the interference fringe line density variation function through data fitting and iterative optimization method;
步骤五、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的一 次项系数m1的优化设计值m1_optimal;
步骤六、设计干涉条纹线密度变化函数的常数项系数m0的优化设计值 m0_optimal;
步骤七、根据步骤三至步骤六优化的m3_optimal、m2_optimal、m1_optimal和m0_optimal, 核对曝光对比度是否满足曝光工艺需求;Step 7: Check whether the exposure contrast meets the requirements of the exposure process according to m 3_optimal , m 2_optimal , m 1_optimal and m 0_optimal optimized in
优化设计后的干涉条纹线密度变化函数:The linear density change function of the interference fringes after the optimized design:
foptimal(x)=m0_optimal+m1_optimal(x-Wg/2)+m2_optimal(x-Wg/2)2+m3_optimal(x-Wg/2)3;f optimal (x)=m 0_optimal +m 1_optimal (xW g /2)+m 2_optimal (xW g /2) 2 +m 3_optimal (xW g /2) 3 ;
按照步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到曝光对比 度γ(x),判断在整个x范围内,曝光对比度γ(x)是否满足曝光对比度要求, 如果否,则减小步骤一二中的干涉图样重叠宽度占束腰半径的比例StepRatio, 重新执行步骤二至七,直至γ(x)满足曝光对比度要求;According to the calculation method of the total exposure amount of variable period scanning lithography given in
如果是,则整个优化过程结束,按照优化设计后的干涉条纹线密度变化函 数foptimal(x)改变光刻过程中干涉条纹的线密度,获得目标刻槽密度的变栅距光栅。If yes, the entire optimization process is over, and the linear density of the interference fringes in the lithography process is changed according to the optimally designed interference fringe linear density variation function f optimal (x) to obtain a variable pitch grating with the target groove density.
本发明的积极效果:本发明所述的消像差变栅距光栅扫描光刻的干涉条纹 线密度设计方法,用于变周期扫描干涉光刻系统进行变栅距光栅制作。根据已 知的变栅距光栅的刻槽密度,按照本方法可设计光刻干涉条纹的线密度变化规 律。提高变栅距光栅的刻槽密度的精度,保证曝光对比度工艺参数的可控性, 对提升变栅距光栅扫描光刻制作水平,提高光栅制作成功率具有重要意义。Positive effects of the present invention: the method for designing the line density of interference fringes for aberration variable grating-pitch grating scanning lithography according to the present invention is used for variable-period scanning interference lithography system to manufacture variable grating-pitch gratings. According to the known groove density of the variable pitch grating, the linear density variation rule of the lithographic interference fringes can be designed according to this method. Improving the precision of the groove density of the variable pitch grating and ensuring the controllability of the exposure contrast process parameters is of great significance for improving the production level of the variable pitch grating scanning lithography and improving the success rate of the grating production.
附图说明Description of drawings
图1为本发明所述的用于消像差变栅距光栅扫描光刻的干涉条纹线密度设 计方法所应用的变周期扫描光刻装置简化示意图。Fig. 1 is a simplified schematic diagram of a variable period scanning lithography device applied to the interference fringe line density design method for aberration variable grating-pitch grating scanning lithography according to the present invention.
图2为坐标系定义示意图。Figure 2 is a schematic diagram of the definition of the coordinate system.
图3为干涉图样束腰半径及重叠光刻示意图。FIG. 3 is a schematic diagram of the beam waist radius of the interference pattern and the overlapping lithography.
图4为变栅距光栅的相位分布Φg(x)和按照光栅刻槽密度函数进行干涉条纹 线密度变化,得到的光栅相位分布Ψtot(x)(ng0=1200gr/mm,ng1=-0.7783gr/mm2, ng2=1.865×10-4gr/mm3,ng3=-8.1336×10-8gr/mm4,Wg=30mm)的效果图。Figure 4 shows the phase distribution Φ g (x) of the variable grating pitch grating and the line density change of the interference fringes according to the grating groove density function, the obtained grating phase distribution Ψ tot (x) (n g0 =1200gr/mm, n g1 = -0.7783gr/mm 2 , n g2 =1.865×10 -4 gr/mm 3 , n g3 =-8.1336×10 -8 gr/mm 4 , W g =30mm).
图5为按照光栅刻槽密度函数进行干涉条纹线密度变化,得到的光栅相位 分布误差Φe(x)=Ψtot(x)-Φg(x),光栅参数效果图,同图4。Figure 5 is the grating phase distribution error Φ e (x) = Ψ tot (x)-Φ g (x) obtained by changing the line density of the interference fringes according to the grating groove density function, the same as Figure 4.
图6为干涉条纹线密度三次项系数m3_optimal的优化设计流程图。Fig. 6 is a flow chart of the optimal design of the cubic term coefficient m 3_optimal of the linear density of the interference fringes.
图7为变栅距光栅的相位分布Φg(x),及按照本设计方法得到的干涉条纹线 密度进行干涉条纹线密度变化,得到的光栅相位分布Ψtot(x)(ng0=1200gr/mm, ng1=-0.7783gr/mm2,ng2=1.865×10-4gr/mm3,ng3=-8.1336×10-8gr/mm4,Wg=30mm,Rho=0.1mm,ξ1order=ξ2order=ξ3order=ξ4order=1e-4rad)的效果图。Figure 7 shows the phase distribution Φ g (x) of the variable grating pitch grating, and the interference fringe line density obtained according to the design method. The interference fringe line density is changed, and the obtained grating phase distribution Ψ tot (x) (n g0 =1200gr/ mm, n g1 =-0.7783gr/mm 2 , n g2 =1.865×10 -4 gr/mm 3 , n g3 =-8.1336×10 -8 gr/mm 4 , W g =30mm, Rho=0.1mm,ξ 1order =ξ 2order =ξ 3order =ξ 4order =1e-4rad).
图8为按照设计值得到的光栅相位分布误差Φe(x)=Ψtot(x)-Φg(x)效果图;Fig. 8 is the effect diagram of the grating phase distribution error Φ e (x)=Ψ tot (x)-Φ g (x) obtained according to the design value;
图9为按照设计值得到的曝光对比度γ(x)的效果图。FIG. 9 is an effect diagram of the exposure contrast γ(x) obtained according to the design value.
具体实施方式Detailed ways
结合图1至图9说明本实施方式,用于消像差变栅距光栅扫描光刻的干涉 条纹线密度设计方法,该方法主要应用于变周期扫描光刻系统,其组成如图1 所示,去掉其中若干测控元件。图中1和2为两束相干光束,3和4为干涉光束 调整镜,5为半反半透镜,6和7为透镜,用于构成4f光学系统,实现1和2 的干涉形成干涉图样8,干涉图样8的强度为高斯分布。3和4位于6的前焦面 位置,11为干涉条纹线密度控制系统,根据干涉条纹线密度函数,通过3和4 调整相干光束1和2的干涉角度,可调整干涉图样中干涉条纹的线密度。9为涂 有光刻胶的光栅基底,10为二维运动工作台,用于承载9进行步进扫描运动。1 to 9 , the method for designing the line density of interference fringes for aberration variable grating-pitch raster scanning lithography is described in conjunction with FIGS. 1 to 9 . , remove some of the measurement and control components. In the figure, 1 and 2 are two coherent beams, 3 and 4 are interference beam adjustment mirrors, 5 is a half mirror, 6 and 7 are lenses, which are used to form a 4f optical system, and realize the interference of 1 and 2 to form an
可用于本实施方式提出的方法包括以下步骤:The proposed method that can be used in this embodiment includes the following steps:
步骤一、确定变栅距光栅的刻线密度函数及通用光刻过程制作参数。Step 1: Determine the line density function of the variable pitch grating and the general photolithography process manufacturing parameters.
根据变栅距光栅的消像差特性及其在仪器中的应用需求,设计变栅距光栅 刻槽密度目标函数为:According to the aberration characteristics of the variable pitch grating and its application requirements in the instrument, the objective function of the groove density of the variable pitch grating is designed as:
g(x)=ng0+ng1(x-Wg/2)+ng2(x-Wg/2)2+ng3(x-Wg/2)3 g(x)=n g0 +n g1 (xW g /2)+n g2 (xW g /2) 2 +n g3 (xW g /2) 3
光栅坐标系的定义如图2所示,光栅的理想相位分布Φg(x)可以表示为The definition of the grating coordinate system is shown in Figure 2, and the ideal phase distribution Φ g (x) of the grating can be expressed as
Φg(x)=2πg(x)·xΦ g (x)=2πg(x) x
其中,g(x)为变栅距光栅的目标刻槽密度,x为光栅矢量方向的坐标,x=0 位于光栅边界处,Wg为光栅矢量方向的总宽度,ng0为光栅中心处的刻槽密度, 单位为gr/mm(每mm内包含的刻槽数),ng1为光栅刻槽密度的一次项系数,单 位为gr/mm2,ng2为光栅刻槽密度的二次项系数,单位为gr/mm3,ng3为光栅刻 槽密度的三次项系数,单位为gr/mm4。ng0、ng1、ng2、ng3根据变栅距光栅像差 校正原理及光谱仪器或激光装置的使用参数确定。Among them, g(x) is the target groove density of the variable pitch grating, x is the coordinate of the grating vector direction, x=0 is located at the grating boundary, W g is the total width of the grating vector direction, n g0 is the grating center Groove density, the unit is gr/mm (the number of grooves contained in each mm), n g1 is the linear coefficient of the grating groove density, the unit is gr/mm 2 , n g2 is the quadratic term of the grating groove density coefficient, the unit is gr/mm 3 , n g3 is the cubic term coefficient of the grating groove density, and the unit is gr/mm 4 . n g0 , n g1 , n g2 , and n g3 are determined according to the principle of aberration correction of variable grating pitch gratings and the use parameters of spectroscopic instruments or laser devices.
根据变周期扫描光刻系统的基本组成与工作原理,如图1所示,为保证曝 光量的均匀性,相邻扫描段的干涉图样之间存在重叠。根据系统的设计、装调 参数及变栅距光栅的刻槽密度函数,确定在进行该变周期光栅制作时的以下制 作参数:According to the basic composition and working principle of the variable period scanning lithography system, as shown in Figure 1, in order to ensure the uniformity of exposure, there is overlap between the interference patterns of adjacent scanning segments. According to the design of the system, the adjustment parameters and the groove density function of the variable pitch grating, the following production parameters are determined in the production of the variable period grating:
干涉图样高斯束腰半径为Rho。The Gaussian beam waist radius of the interference pattern is R ho .
相邻扫描段的干涉图样重叠宽度占束腰半径的比例StepRatio,则干涉图样 重叠宽度为StepRatio×Rho,为保证曝光量的均匀性,要求StepRatio小于0.9, StepRatio越小,曝光量均匀性越高,但总的扫描步数越多,制作效率越低。如 图3所示。The ratio of the overlap width of the interference pattern of adjacent scanning segments to the beam waist radius StepRatio, then the overlap width of the interference pattern is StepRatio×R ho . In order to ensure the uniformity of exposure, StepRatio is required to be less than 0.9. The smaller the StepRatio, the better the uniformity of the exposure. High, but the more total scanning steps, the lower the production efficiency. As shown in Figure 3.
步进扫描的总步数N,N≥Wg/(Rho·StepRatio)+1,使曝光区域的宽度大于光 栅的有效宽度。The total number of steps N of the step-by-step scanning, N≥W g /(R ho ·StepRatio)+1, makes the width of the exposure area larger than the effective width of the grating.
步进扫描每一步的步数Nsteps,Nsteps=round(Rho·StepRatio·ng0)。The number of steps in each step of the step scan is N steps , N steps =round(R ho ·StepRatio· ng0 ).
步骤二、建立变周期扫描光刻总曝光量计算方法,计算光栅刻槽密度函数 作为干涉条纹线密度变化函数f(x)时的曝光量相位变化Ψ(x)及曝光对比度γ。Step 2: Establish a method for calculating the total exposure of variable period scanning lithography, and calculate the exposure phase change Ψ(x) and exposure contrast γ when the grating groove density function is used as the interference fringe linear density change function f(x).
变周期扫描光刻总曝光量的计算方法为:The calculation method of the total exposure of variable period scanning lithography is:
干涉条纹线密度变化函数与光栅刻槽密度函数具有相同的形式,可以表示 为:The linear density variation function of the interference fringes has the same form as the grating groove density function, and can be expressed as:
f(x)=m0+m1(x-Wg/2)+m2(x-Wg/2)2+m3(x-Wg/2)3 f(x)=m 0 +m 1 (xW g /2)+m 2 (xW g /2) 2 +m 3 (xW g /2) 3
式中,m0为干涉条纹线密度变化函数的常数项系数,m1为干涉条纹线密度 变化函数的一次项系数,m2为干涉条纹线密度变化函数的二次项系数,m3为干 涉条纹线密度变化函数的三次项系数;扫描光刻起始扫描段从x=0时开始,其 扫描步数序号k=0,Sk为第k步的步进距离,S0=0,从x=0至第k步的总距 离,为k步步进后,第k+1次扫描的干涉条纹线密度。Δk=fk-fk-1为 k+1次扫描与k次扫描干涉条纹线密度的差值,当k=0时,Δ0=0,当k>0时,In the formula, m 0 is the constant term coefficient of the interference fringe line density change function, m 1 is the first order coefficient of the interference fringe line density change function, m 2 is the quadratic term coefficient of the interference fringe line density change function, and m 3 is the interference fringe line density change function. The cubic term coefficient of the stripe line density variation function; the initial scanning segment of scanning lithography starts from x=0, the scanning step number k=0, Sk is the stepping distance of the kth step, S 0 =0, The total distance from x=0 to the kth step, After k steps, the interference fringe line density of the k+1th scan. Δ k =f k -f k-1 is the difference between the line density of interference fringes between k+1 scans and k scans, when k=0, Δ 0 =0, when k>0,
第k步步进后,第k+1次扫描的曝光量Dk(x)及第k+1次扫描与初始扫描的 相位差为:After the kth step, the exposure amount D k (x) of the k+1th scan and the phase difference between the k+1th scan and the initial scan for:
式中,B(x)为曝光量的背景光强,A(x)为高斯分布的干涉图样强度包络。In the formula, B(x) is the background light intensity of the exposure amount, and A(x) is the intensity envelope of the interference pattern of the Gaussian distribution.
光刻结束时,光栅上的总曝光量为步进扫描总步数N步后N+1次扫描曝光 量的叠加Dtot(x),即:At the end of lithography, the total exposure amount on the grating is the superposition D tot (x) of the exposure amount of N+1 scans after the total number of step scanning steps N steps, namely:
Dtot(x)=D0(x)+D1(x)+…DN(x)D tot (x)=D 0 (x)+D 1 (x)+…D N (x)
=Btot(x)+Atot(x)sin(2πxf0+Ψ)=Btot(x)+ Atot (x)sin( 2πxf 0 +Ψ)
Btot(x)为总曝光量的背景分量,Atot(x)为总曝光量交流分量幅值;B tot (x) is the background component of the total exposure, A tot (x) is the amplitude of the AC component of the total exposure;
Ψtot(x)=2πxf0+Ψ(x)Ψ tot (x)=2πxf 0 +Ψ(x)
Ψ(x)=arctan[F(x)/E(x)]Ψ(x)=arctan[F(x)/E(x)]
本实施方式中,利用步骤一中的通用光刻过程参数外,还包括设定以下设 计参数:In the present embodiment, in addition to the general photolithography process parameters in
(1)设定干涉条纹线密度函数与变栅距光栅的刻槽密度函数完全相等,即 m0=ng0,m1=ng1,m2=ng2,m3=ng3。(1) The line density function of the interference fringes is set to be exactly equal to the groove density function of the variable pitch grating, that is, m 0 =n g0 , m 1 =n g1 , m 2 =n g2 , and m 3 =n g3 .
(2)B(x)的变化不影响干涉条纹线密度的设计,设定B(x)=A(x),单次扫描 曝光的对比度为1。(2) The change of B(x) does not affect the design of the line density of the interference fringes, set B(x)=A(x), and the contrast of single scanning exposure is 1.
(3)第k步的步进距离Sk可以选用以下三种步进方式中的一种,按本实施 方式的方法均可得到不同的干涉条纹设计值,但均可满足变栅距光栅刻槽密度 的精度要求:(3) The stepping distance Sk of the kth step can be selected from one of the following three stepping methods. According to the method of this embodiment, different design values of interference fringes can be obtained, but all of them can meet the requirements of variable grating pitch grating. Accuracy requirements for groove density:
①Sk=Nsteps/fk-1。①S k =N steps /f k-1 .
②Sk=2Nsteps/(fk+fk-1), ②S k =2N steps /(f k +f k-1 ),
③Sk=Nsteps/fk, ③S k =N steps /f k ,
按照步骤一的参数和上述参数,通过数值计算的方法,采用变周期扫描光 刻总曝光量计算方法,可以得到Ψ(x)随x变化曲线,Ψ(x)与Φg(x)如图4所示。 二者之间的相位误差为Φe(x)=Ψ(x)-Φg(x),如图5所示,按照变栅距光栅刻槽密 度函数进行干涉条纹线密度调整,Φe(x)≠0,光刻得到的变栅距光栅与设计值的 刻槽密度存在较大差别。According to the parameters of
步骤三、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的三 次项系数m3的优化设计值m3_optimal。Step 3: Design the optimal design value m 3_optimal of the cubic term coefficient m 3 of the interference fringe line density change function through data fitting and iterative optimization method.
采用多项式曲线拟合算法,对步骤二得到的相位分布误差Φe(x)进行四次多 项式曲线拟合,Φe(x)的拟合多项式为Φep(x)=2π(a40x4+a30x3+a20x2+a10x+a00),a40、 a30、a20、a10和a00分别为四次拟合多项式Φep(x)的系数;The polynomial curve fitting algorithm is used to fit the phase distribution error Φ e (x) obtained in
设定干涉条纹线密度变化函数f(x)的系数m3优化设计的四次相位误差阈值ξ4order,通过一维搜索迭代寻优的方法,计算得到m3_optimal,迭代过程如下,流程 图见图6。Set the fourth-order phase error threshold ξ 4order for the optimal design of the coefficient m3 of the linear density variation function f(x) of the interference fringes, and obtain m 3_optimal by one-dimensional search iterative optimization method. The iterative process is as follows, and the flowchart is shown in Figure 6 .
(1)设定迭代寻优的搜索范围[am3 (0),bm3 (0)],am3 (0)=m3_nearby-Hm3,bm3 (0)= m3_nearby+Hm3,2Hm3为m3最优值初始搜索范围的宽度,迭代次数im3=0,m3_nearby为最优解m3_optimal的初始近似值,m3_nearby=ng3 2/(ng3+a40),初始四次项相位误差最大 值为Φe_4order_m3 (0)=abs(2πa40Wg 4);(1) Set the search range of iterative optimization [a m3 (0) , b m3 (0) ], a m3 (0) = m 3_nearby -H m3 , b m3 (0) = m 3_nearby +H m3 , 2H m3 is the width of the initial search range for the optimal value of m3 , the number of iterations i m3 =0, m3_nearby is the initial approximate value of the optimal solution m3_optimal , m3_nearby =n g3 2 /(n g3 +a 40 ), the initial four times The maximum value of the term phase error is Φ e_4order_m3 (0) =abs(2πa 40 W g 4 );
(2)若不满足阈值要求,执行步骤(3)至(7),否则,退出循环,执行 步骤(8);(2) If If the threshold requirement is not met, execute steps (3) to (7), otherwise, exit the loop and execute step (8);
(3)采用一维搜索方法(如黄金分割法、斐波那契法、等分法等方法), 在内确定寻优变量和 (3) Using a one-dimensional search method (such as the golden section method, the Fibonacci method, the equal division method, etc.), in Internally determined optimization variables and
(4)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应的相位误差对进行四次多项式拟合,的拟合多项式为记录四次项系数 (4) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(5)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应的相位误差对进行四次多项式拟合,的拟合多项式 为记录四次项系数 (5) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(6)若则 否则,则 (6) If but otherwise, but
(7)im3=im3+1,返回步骤(2);(7) i m3 =i m3 +1, return to step (2);
(8) (8)
步骤四、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的二 次项系数m2的优化设计值m2_optimal,迭代过程如下:Step 4: Design the optimal design value m 2_optimal of the quadratic term coefficient m 2 of the linear density variation function of the interference fringe by data fitting and iterative optimization method. The iterative process is as follows:
(1)根据步骤三得到的m3_optimal,设定干涉条纹的线密度变化函数f3optimal=ng0+ng1·(x-Wg/2)+ng2·(x-Wg/2)2+m3_optimal·(x-Wg/2)3,根据步骤二给出的 变周期扫描光刻总曝光量计算方法,计算得到Ψtot_3optimal,相位误差 Φe_3optimal=Ψtot_3optimal-Φg,对Φe_3optimal进行四次多项式拟合,Φe_3optimal的拟合多项式 为Φep_3optimal(x)=2π(a4_ 3optimalx4+a3_3optimalx3+a2_3optimalx2+a1_3optimalx+a0_3optimal),记录三次项 系数a3_3optimal;(1) According to m 3_optimal obtained in
设定干涉条纹线密度变化函数f(x)的系数m2优化设计的三次项相位误差阈 值ξ3order;Set the cubic phase error threshold ξ 3order of the optimal design of the coefficient m2 of the interference fringe line density variation function f(x);
(2)设定迭代寻优的搜索范围[am2 (0),bm2 (0)],am2 (0)=m2_nearby-Hm2,bm2 (0)= m2_nearby+Hm2,2Hm2为m2最优值初始搜索范围的宽度,迭代次数im2=0,m2_nearby为最优解m2_optimal的初始近似值,初始三次项相位误 差最大值为Φe_3order_m2 (0)=abs(2πa3_3optimalWg 3);(2) Set the search range of iterative optimization [a m2 (0) , b m2 (0) ], a m2 (0) = m 2_nearby -H m2 , b m2 (0) = m 2_nearby +H m2 , 2H m2 is the width of the initial search range for the optimal value of m2, the number of iterations i m2 = 0 , m2_nearby is the initial approximate value of the optimal solution m2_optimal , The maximum value of the initial cubic phase error is Φ e_3order_m2 (0) =abs(2πa 3_3optimal W g 3 );
(3)若不满足阈值要求,执行步骤(4)至(8),否则, 退出循环,执行步骤(9);(3) If If the threshold requirement is not met, execute steps (4) to (8), otherwise, exit the loop and execute step (9);
(4)采用一维搜索方法(如黄金分割法、斐波那契法、等分法等方法), 在内确定寻优变量和 (4) Using a one-dimensional search method (such as golden section method, Fibonacci method, equal division method, etc.), in Internally determined optimization variables and
(5)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应的相位误 差对进行四次多项式拟合,的拟合多项 式为记录三次 项系数 (5) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(6)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应的相位误 差对进行四次多项式拟合,的拟合多项 式为记录三次 项系数 (6) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(7)若则 否则,则 (7) If but otherwise, but
(8)im2=im2+1,返回步骤(3);(8) i m2 =i m2 +1, return to step (3);
(9) (9)
步骤五、通过数据拟合与迭代寻优方法设计干涉条纹线密度变化函数的一 次项系数m1的优化设计值m1_optimal,迭代过程如下:Step 5: Design the optimal design value m 1_optimal of the linear coefficient m1 of the linear density variation function of the interference fringe by data fitting and iterative optimization method. The iterative process is as follows:
(1)根据步骤四得到的m2_optimal,设定干涉条纹的线密度变化函数 f2optimal=ng0+ng1·(x-Wg/2)+m2_optimal·(x-Wg/2)2+m3_optimal·(x-Wg/2)3,根据步骤二给 出的变周期扫描光刻总曝光量计算方法,计算得到Ψtot_2optimal,相位误差 Φe_2optimal=Ψtot_2optimal-Φg,对Φe_2optimal进行四次多项式拟合,Φe_2optimal的拟合多项式 为Φep_2optimal(x)=2π(a4_ 2optimalx4+a3_2optimalx3+a2_2optimalx2+a1_2optimalx+a0_2optimal),记录二次项 系数a2_2optimal;(1) According to m 2_optimal obtained in step 4, set the linear density variation function f 2optimal of interference fringes f 2optimal =n g0 +n g1 ·(xW g /2)+m 2_optimal ·(xW g /2) 2 +m 3_optimal · (xW g /2) 3 , according to the calculation method of the total exposure amount of variable period scanning lithography given in
设定干涉条纹线密度变化函数f(x)的系数m1优化设计的二次项相位误差阈 值ξ2order;Set the quadratic term phase error threshold ξ 2order of the optimal design of the coefficient m1 of the interference fringe line density variation function f(x);
(2)设定迭代寻优的搜索范围[am1 (0),bm1 (0)],am1 (0)=m1_nearby-Hm1,bm1 (0)= m1_nearby+Hm1,2Hm1为m1最优值初始搜索范围的宽度,迭代次数im1=0,m1_nearby为最优解m1_optimal的初始近似值,初始二次项 相位误差最大值为Φe_2order_m1 (0)=abs(2πa2_2optimalWg 2);(2) Set the search range of iterative optimization [a m1 (0) , b m1 (0) ], a m1 (0) = m 1_nearby -H m1 , b m1 (0) = m 1_nearby +H m1 , 2H m1 is the width of the initial search range for the optimal value of m 1 , the number of iterations i m1 =0, m 1_nearby is the initial approximate value of the optimal solution m 1_optimal , The maximum value of the initial quadratic phase error is Φ e_2order_m1 (0) =abs(2πa 2_2optimal W g 2 );
(3)若不满足阈值要求,执行步骤(4)至(8),否则, 退出循环,执行步骤(9);(3) If If the threshold requirement is not met, execute steps (4) to (8), otherwise, exit the loop and execute step (9);
(4)采用一维搜索方法(如黄金分割法、斐波那契法、等分法等方法), 在[am1 (im1),bm1 (im1)]内确定寻优变量m1L (im1)和m1R (im1),am1 (im1)≤m1L (im1)<m1R (im1)≤ bm1 (im1);(4) Using a one-dimensional search method (such as the golden section method, the Fibonacci method, the equal division method, etc. ) , determine the optimization variable m 1L ( im1 ) and m 1R (im1) , a m1 (im1) ≤ m 1L (im1) <m 1R (im1) ≤ b m1 (im1) ;
(5)根据寻优变量m1L (im1)值设定干涉条纹的线密度变化函数根据步骤二给 出的变周期扫描光刻总曝光量计算方法,计算得到m1L (im1)对应的相位 误差对进行四次多项式拟合,的拟合多项 式为记录二次项 系数 (5) Set the linear density change function of the interference fringes according to the value of the optimization variable m 1L (im1) According to the calculation method of the total exposure amount of variable period scanning lithography given in
(6)根据寻优变量m1R (im1)值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到m1R (im1)对应的相 位误差对进行四次多项式拟合,的拟合多 项式为记录二次 项系数 (6) Set the linear density change function of the interference fringes according to the value of the optimization variable m 1R (im1) According to the calculation method of the total exposure amount of variable period scanning lithography given in
(7)若则am1 (im1+1)=m1L (im1),bm1 (im1+1)=bm1 (im1),否则,则am1 (im1+1)=am1 (im1),bm1 (im1+1)=m1R (im1), (7) If Then a m1 (im1+1) = m 1L (im1) , b m1 (im1+1) = b m1 (im1) , otherwise, Then a m1 (im1+1) = a m1 (im1) , b m1 (im1+1) = m 1R (im1) ,
(8)im1=im1+1,返回步骤五三;(8) i m1 =i m1 +1, return to step 53;
(9)m1_optimal=(m1L (im1)+m1R (im1))/2。(9) m 1_optimal =(m 1L (im1) +m 1R (im1) )/2.
步骤六、设计干涉条纹线密度变化函数的常数项系数m0的优化设计值m0_optimal,迭代过程如下:Step 6: Design the optimal design value m 0_optimal of the constant term coefficient m 0 of the linear density change function of the interference fringe, and the iterative process is as follows:
(1)根据步骤五得到的m1_optimal,设定干涉条纹的线密度变化函数 f1optimal=ng0+m1_optimal·(x-Wg/2)+m2_optimal·(x-Wg/2)2+m3_optimal·(x-Wg/2)3,根据步骤二 给出的变周期扫描光刻总曝光量计算方法,计算得到Ψtot_1optimal,相位误差 Φe_1optimal=Ψtot_1optimal-Φg,对Φe_1optimal进行四次多项式拟合,Φe_1optimal的拟合多项式 为Φep_1optimal(x)=2π(a4_1optimalx4+a3_1optimalx3+a2_1optimalx2+a1_1optimalx+a0_1optimal),记录一次项 系数a1_1optimal;(1) According to m 1_optimal obtained in
设定干涉条纹线密度变化函数f(x)的系数m0优化设计的一次项相位误差阈 值ξ1order;Set the first-order phase error threshold ξ 1order of the optimal design of the coefficient m0 of the interference fringe line density variation function f(x);
(2)设定迭代寻优的搜索范围[am0 (0),bm0 (0)],am0 (0)=m0_nearby-Hm0,bm0 (0)= m0_nearby+Hm0,2Hm0为m0最优值初始搜索范围的宽度,迭代次数im0=0,m0_nearby为最优解m0_optimal的初始近似值,m0_nearby=ng0-a1_1optimal,初始一次项相位误差最大 值为Φe_1order_m0 (0)=abs(2πa1_1optimalWg);(2) Set the search range of iterative optimization [a m0 (0) , b m0 (0) ], a m0 (0) = m 0_nearby -H m0 , b m0 (0) = m 0_nearby +H m0 , 2H m0 is the width of the initial search range for the optimal value of m 0 , the number of iterations i m0 =0, m 0_nearby is the initial approximate value of the optimal solution m 0_optimal , m 0_nearby =n g0 -a 1_1optimal , the maximum value of the initial first-order phase error is Φ e_1order_m0 (0) =abs(2πa 1_1optimal W g );
(3)若不满足阈值要求,执行步骤(4)至(8),否则,退出循环,执行 步骤(9);(3) If Do not meet the threshold requirements, execute steps (4) to (8), otherwise, exit the loop and execute step (9);
(4)采用一维搜索方法(如黄金分割法、斐波那契法、等分法等方法), 在内确定寻优变量和 (4) Using a one-dimensional search method (such as golden section method, Fibonacci method, equal division method, etc.), in Internally determined optimization variables and
(5)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤 二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应的 相位误差对进行四次多项式拟合,的拟合 多项式为记录 一次项系数 (5) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(6)根据寻优变量值设定干涉条纹的线密度变化函数根据步骤二给出的变周期扫描光刻总曝光量计算方法,计算得到 对应 的相位误差对进行四次多项式拟合,的 拟合多项式为记录一次项系数 (6) According to the optimization variables The value sets the linear density variation function of the interference fringes According to the calculation method of the total exposure amount of variable period scanning lithography given in
(7)若则 否则,则 (7) If but otherwise, but
(8)im0=im0+1,返回步骤(3);(8) i m0 =i m0 +1, return to step (3);
(9) (9)
步骤七、根据第三步至第七步优化的m3_optimal、m2_optimal、m1_optimal和m0_optimal, 核对曝光对比度是否满足曝光工艺需求。Step 7: Check whether the exposure contrast meets the requirements of the exposure process according to m 3_optimal , m 2_optimal , m 1_optimal and m 0_optimal optimized in the third step to the seventh step.
设定干涉条纹线密度为 foptimal(x)=m0_optimal+m1_optimal(x-Wg/2)+m2_optimal(x-Wg/2)2+m3_optimal(x-Wg/2)3,按照步 骤二给出的变周期扫描光刻总曝光量计算方法计算得到曝光对比度γ(x),判断 在整个x范围内,曝光对比度γ是否满足曝光对比度要求,曝光对比度要求由制 作工艺参数决定,如要求曝光对比度大于0.95。Set the line density of interference fringes as f optimal (x)=m 0_optimal +m 1_optimal (xW g /2)+m 2_optimal (xW g /2) 2 +m 3_optimal (xW g /2) 3 , which is given according to
若γ不满足曝光对比度要求,需要减小步骤一中的干涉图样重叠宽度占束腰 半径的比例StepRatio,重新进行步骤二、三、四、五、六及七,直至γ满足曝光 对比度要求。If γ does not meet the exposure contrast requirement, it is necessary to reduce the ratio of the overlap width of the interference pattern to the beam waist radius StepRatio in
若γ满足曝光对比度要求,则整个优化过程结束,按照foptimal改变光刻过程 中干涉条纹的线密度,可以得到目标刻槽密度的变栅距光栅,按此方法的优化 结果如图7-图9所示。If γ satisfies the exposure contrast requirement, the entire optimization process ends, and the linear density of the interference fringes in the lithography process is changed according to f optimal , and the variable pitch grating with the target groove density can be obtained. The optimization result according to this method is shown in Fig. 7-Fig. 9 shown.
具体实施方式二、本实施方式为具体实施方式一所述的用于消像差变栅距 光栅扫描光刻的干涉条纹线密度设计方法的实施例:
本实施例按实施方式一中设定的步骤一、步骤二、步骤三、步骤四、步骤 五、步骤六、步骤七的方法实施。其中光刻相干光束1和2为满足相干长度和 曝光波长要求的激光器分光得到发出,此处由Kr+激光器产生,波长为413.1nm。 光机元件3、4、5、6、7固定在静态的光学平台上垂直放置,保持静止,最终 产生小尺寸的圆形干涉图样。This embodiment is implemented according to the methods of
在步骤一中,干涉图样高斯束腰半径Rho=100μm,StepRatio=0.8,设计某变 栅距光栅参数为:ng0=1200gr/mm,ng1=-0.7783gr/mm2,ng2=1.865×10-4gr/mm3, ng3=-8.1336×10-8gr/mm4,Wg=30mm,扫描总步数为400,每一步的步数Nsteps=96。In
步骤二、步骤三及步骤四,可采用Matlab或Visual studio平台完成数值计 算的设计过程。步骤二种,设定m0=ng0=1200gr/mm,m1=ng1=-0.7783gr/mm2, m2=ng2=1.865×10-4gr/mm3,m3=ng3=-8.1336×10-8gr/mm4步进方式采用 Sk=Nsteps/fk-1。In
步骤三中,设定ξ4order=1e-4rad,采用黄金分割法迭代优化设计后,得到 m3_optimal=-3.2461×10-7gr/mm4。In
步骤四中,设定ξ3order=1e-4rad,采用黄金分割法迭代优化设计后,得到 m2_optimal=5.5583×10-4gr/mm3。In step 4, set ξ 3order = 1e-4rad, and after adopting the golden section method to iteratively optimize the design, m 2_optimal =5.5583×10 -4 gr/mm 3 is obtained.
步骤五中,设定ξ2order=1e-4rad,采用黄金分割法迭代优化设计后,得到 m1_optimal=-1.5510gr/mm2。In
步骤六中,设定ξ1order=1e-4rad,采用黄金分割法迭代优化设计后,得到 m0_optimal=1188.2629gr/mm,则干涉条纹线密度变化的规律为 foptimal(x)=m0_optimal+m1_optimal(x-Wg/2)+m2_optimal(x-Wg/2)2+m3_optimal(x-Wg/2)3。In
步骤七中,计算得到曝光对比度γ(x)在x在0-30mm的整个光栅范围内, 均优于0.99,满足曝光对比度0.95的工艺要求,自此完成了干涉条纹线密度的 设计。In
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的 普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改 进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权 利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can be made, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041105.6A CN114740557B (en) | 2022-01-14 | 2022-01-14 | Method for designing linear density of fringe by eliminating aberration and changing grating pitch in raster scanning photoetching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041105.6A CN114740557B (en) | 2022-01-14 | 2022-01-14 | Method for designing linear density of fringe by eliminating aberration and changing grating pitch in raster scanning photoetching |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114740557A true CN114740557A (en) | 2022-07-12 |
CN114740557B CN114740557B (en) | 2022-11-29 |
Family
ID=82275147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210041105.6A Active CN114740557B (en) | 2022-01-14 | 2022-01-14 | Method for designing linear density of fringe by eliminating aberration and changing grating pitch in raster scanning photoetching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114740557B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000039359A (en) * | 1998-07-23 | 2000-02-08 | Japan Atom Energy Res Inst | Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer |
US20030016355A1 (en) * | 2001-07-10 | 2003-01-23 | Japan Atomic Energy Research Insititute | Conical diffraction grazing incidence spectrometer and diffraction grating for use in the spectrometer |
CN1544994A (en) * | 2003-11-26 | 2004-11-10 | 中国科学院长春光学精密机械与物理研 | A Method of Accurately Controlling the Line Density in the Fabrication of Planar Holographic Gratings |
CN101793988A (en) * | 2009-12-31 | 2010-08-04 | 中国科学院长春光学精密机械与物理研究所 | Method for accurately adjusting groove density in light path for making holographic grating |
CN104297829A (en) * | 2014-09-30 | 2015-01-21 | 中国科学院长春光学精密机械与物理研究所 | Method for optimum design of planar variable-pitch grating |
CN105403941A (en) * | 2015-12-23 | 2016-03-16 | 中国科学技术大学 | Near-filed holographic-ion beam etching preparation method of variable-spacing raster |
CN111856636A (en) * | 2020-07-03 | 2020-10-30 | 中国科学技术大学 | A method for controllable fine-tuning of line density distribution of variable-pitch grating mask |
-
2022
- 2022-01-14 CN CN202210041105.6A patent/CN114740557B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000039359A (en) * | 1998-07-23 | 2000-02-08 | Japan Atom Energy Res Inst | Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer |
US20030016355A1 (en) * | 2001-07-10 | 2003-01-23 | Japan Atomic Energy Research Insititute | Conical diffraction grazing incidence spectrometer and diffraction grating for use in the spectrometer |
CN1544994A (en) * | 2003-11-26 | 2004-11-10 | 中国科学院长春光学精密机械与物理研 | A Method of Accurately Controlling the Line Density in the Fabrication of Planar Holographic Gratings |
CN101793988A (en) * | 2009-12-31 | 2010-08-04 | 中国科学院长春光学精密机械与物理研究所 | Method for accurately adjusting groove density in light path for making holographic grating |
CN104297829A (en) * | 2014-09-30 | 2015-01-21 | 中国科学院长春光学精密机械与物理研究所 | Method for optimum design of planar variable-pitch grating |
CN105403941A (en) * | 2015-12-23 | 2016-03-16 | 中国科学技术大学 | Near-filed holographic-ion beam etching preparation method of variable-spacing raster |
CN111856636A (en) * | 2020-07-03 | 2020-10-30 | 中国科学技术大学 | A method for controllable fine-tuning of line density distribution of variable-pitch grating mask |
Non-Patent Citations (2)
Title |
---|
姜珊,巴音贺希格,宋莹等: "扫描干涉场曝光系统中干涉条纹周期测量误差对光栅掩模槽形的影响", 《光学学报》 * |
姜珊,巴音贺希格等: "扫描干涉场曝光系统中干涉条纹周期精确测量方法", 《光学学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114740557B (en) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107816939B (en) | Diffractive optical element and interferometric method | |
JP5481192B2 (en) | Method and apparatus for measuring deviation of actual shape of optical surface from desired shape | |
Soifer et al. | Iteractive methods for diffractive optical elements computation | |
US7551359B2 (en) | Beam splitter apparatus and system | |
Cocco et al. | Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems | |
TWI613533B (en) | Method for operating illumination system in lithographic projection exposure apparatus | |
CN104570621B (en) | A kind of feedback regulation method of optical grating diffraction wave surface error in dual-beam exposure system | |
JP2008528955A (en) | Hologram and optical element manufacturing method using hologram | |
JPWO2012157697A1 (en) | Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method | |
JP5585761B2 (en) | Optical elements and illumination optics for microlithography | |
JP6502325B2 (en) | System for generating structures in a substrate | |
Poleshchuk et al. | Diffractive optical elements: fabrication and application | |
JP2018537718A (en) | Method and system for printing an array of geometric elements | |
JP2016524182A5 (en) | ||
CN110007385B (en) | Holographic exposure system and method for manufacturing grating | |
CN114740557B (en) | Method for designing linear density of fringe by eliminating aberration and changing grating pitch in raster scanning photoetching | |
CN104297829A (en) | Method for optimum design of planar variable-pitch grating | |
CN114415278B (en) | Design method for planar variable-pitch grating scanning photoetching interference fringe line density | |
CN114877995A (en) | Design method of free-form surface concave grating imaging spectrometer | |
US20150185697A1 (en) | Method of static scaling of image in holographic lithography | |
CN111936935A (en) | Method and system for printing large periodic patterns by overlapping exposure fields | |
RU2659875C1 (en) | Method for manufacturing the diffraction grating | |
Fuse | Flattop Beam Generation and Multibeam Processing Using Aspheric and Diffractive Optics. | |
Bizjak et al. | Novel refractive optics enable multipole off-axis illumination | |
Ugozhaev | Rotational Tuning of a Holographic Grating Period in a Mirrorless Interferometer with a Fixed Photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |