CN114736841A - Recombinant escherichia coli and preparation method and application thereof - Google Patents

Recombinant escherichia coli and preparation method and application thereof Download PDF

Info

Publication number
CN114736841A
CN114736841A CN202210342606.8A CN202210342606A CN114736841A CN 114736841 A CN114736841 A CN 114736841A CN 202210342606 A CN202210342606 A CN 202210342606A CN 114736841 A CN114736841 A CN 114736841A
Authority
CN
China
Prior art keywords
ala
leu
gly
glu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210342606.8A
Other languages
Chinese (zh)
Other versions
CN114736841B (en
Inventor
张雅萍
邓禹
赵运英
张光祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd, Wanhua Chemical Sichuan Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN202210342606.8A priority Critical patent/CN114736841B/en
Publication of CN114736841A publication Critical patent/CN114736841A/en
Application granted granted Critical
Publication of CN114736841B publication Critical patent/CN114736841B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01016Succinate-semialdehyde dehydrogenase [NAD(P)+] (1.2.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01024Succinate-semialdehyde dehydrogenase (NAD+) (1.2.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01076Succinate-semialdehyde dehydrogenase (acetylating) (1.2.1.76)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01079Succinate-semialdehyde dehydrogenase (NADP+) (1.2.1.79)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01001Aspartate transaminase (2.6.1.1), i.e. aspartate-aminotransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01018Beta-alanine-pyruvate transaminase (2.6.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01011Aspartate 1-decarboxylase (4.1.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01031Phosphoenolpyruvate carboxylase (4.1.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses recombinant escherichia coli and a preparation method and application thereof. The recombinant escherichia coli disclosed by the invention can use glucose as a raw material to synthesize malonate through an oxaloacetate-aspartate pathway, and is a modularized constitutive overexpression escherichia coli-derived phosphoenolpyruvate carboxylase, aspartate aminotransferase and aspartate-alpha-decarboxylase as well as pseudomonas aeruginosa-derived beta-alanine pyruvate transaminase, escherichia coli-derived succinic semialdehyde dehydrogenase and corynebacterium glutamicum-derived pyruvate carboxylase. The invention makes it possible to synthesize malonic acid by using Escherichia coli total biological method, and the method has simple operation and low cost, and can be used for industrial production.

Description

Recombinant escherichia coli and preparation method and application thereof
Technical Field
The invention belongs to the field of bioengineering, relates to recombinant escherichia coli, a preparation method and application thereof, and particularly relates to a method for synthesizing malonic acid by utilizing the escherichia coli in a full-biological manner.
Background
The malonic acid is mainly used for producing spices, adhesives, resin additives and the like, and can also be used as a surface treating agent for leather products or aluminum products, a foaming agent for foam plastics and a chemical cleaning agent for a nuclear reactor, for example, the malonic acid is a raw material for producing pesticide bactericide Fushiyi, herbicide Suzada and plant growth regulator indolizite; the pharmaceutical industry uses malonic acid to prepare diuretic bensulazolone, anti-inflammatory oxybenzene phenylbutazone, sedative bromomethyloctopine and the like; the malonic acid generates carbon dioxide and water after being heated, has no pollution problem, and can be directly used as an aluminum surface treating agent. In addition, malonic acid and its esters can be widely used as pharmaceutical intermediates, and diethyl malonate, a compound generated by substituting hydroxyl groups in two carboxyl groups of malonic acid by ethoxy groups, is an important organic synthetic raw material and is used for dye and drug synthesis, such as the manufacture of barbiturates, vitamin B1, B6 and the like. With the rapid development of the domestic and international chemical industries at present and the vigorous development of the application of malonic acid, the yield and quality of malonic acid are greatly increased day by day.
The main synthesis method for malonic acid currently used in practical production is chemical synthesis. The method has the characteristics that the process route and the production period are short, three wastes are few, but the hydrolysis process belongs to a reversible reaction, and the malonic acid is easy to generate decarboxylation reaction under high temperature to decompose and generate acetic acid, water and carbon dioxide, so the product yield is low, but the method is easy to control the generation of impurities, so the product purity is higher; secondly, the ester exchange process can prepare high-purity malonic acid with high content, less impurities and low moisture content and obtain a byproduct of preparing ethyl acetate with higher purity as long as the purity of the raw materials is controlled, and the method has the following defects: acetic acid, pungent sour taste, and a mixed solution of ethyl acetate and ethanol as by-products are needed, which is not easy to handle.
The biosynthetic pathway of malonate has not been well developed, and a method for producing malonate from malonyl-CoA by malonyl-CoA hydrolase activity is known (WO 2013134424). However, the malonyl-CoA pathway produces metabolites less efficiently than the aspartate pathway, and thus, the aspartate pathway is a more efficient method for producing malonate.
Disclosure of Invention
In view of the above problems, the present invention provides a recombinant Escherichia coli capable of producing malonic acid, which is capable of synthesizing malonic acid from oxaloacetate-aspartate pathway using glucose as a raw material, wherein the recombinant Escherichia coli is a phosphoenolpyruvate carboxylase ppc derived from Escherichia coli, an aspartate aminotransferase aspC, an aspartate- α decarboxylase panD, and a Pseudomonas aeruginosa (Pseudomonas aeruginosa) derived β -alanine pyruvate aminotransferase pa0132, an Escherichia coli derived succinic semialdehyde dehydrogenase yneI, and a Corynebacterium glutamicum (Corynebacterium glutamicum) derived pyruvate carboxylase pyc, which are constitutively overexpressed. The schematic diagram of the synthesis route of the malonic acid constructed by the invention is shown in figure 1.
In some embodiments, the recombinant e.coli is BL21(TPP), which is host e.coli BL21(DE3), and the modular constitutive overexpression expresses the phosphoenolpyruvate carboxylase ppc, the aspartate aminotransferase aspC, the aspartate-alpha decarboxylase panD, the beta-alanine pyruvate aminotransferase gene pa0132, the succinate semialdehyde dehydrogenase yneI, and the pyruvate carboxylase pyc individually.
In some embodiments, said e.coli BL21(SCR) is e.coli BL21(DE3) as host, said modular constitutive overexpression is fusion expression of said phosphoenolpyruvate carboxylase ppc and said aspartate aminotransferase aspC, expression of said aspartate- α -decarboxylase panD and said pyruvate carboxylase pyc separately, fusion expression of said succinate semialdehyde dehydrogenase yneI and said β -alanine pyruvate aminotransferase pa 0132.
In some embodiments, the recombinant E.coli described above, the promoter used for the modular constitutive overexpression is the constitutive promoter ML2719, the sequence of which is shown in SEQ ID NO: 39.
In some embodiments, any of the above recombinant E.coli cells is a host E.coli BL21(DE 3).
In some embodiments, the recombinant E.coli as described in any of the above, the phosphoenolpyruvate carboxylase ppc, aspartate aminotransferase aspC and aspartate- α -decarboxylase panD are derived from E.coli BL21(DE 3).
In some embodiments, in any of the methods described above, the succinic semialdehyde dehydrogenase ynel is from escherichia coli K12.
In some embodiments, the recombinant Escherichia coli as described in any of the above, wherein the phosphoenolpyruvate carboxylase ppc has a protein sequence as shown in SEQ ID NO 35 at positions 1-883;
the protein sequence of the aspartate aminotransferase aspC is shown as 904-1299 in SEQ ID NO 35;
the protein sequence of the aspartate-alpha-decarboxylase panD is shown as SEQ ID NO 38;
the protein sequence of the beta-alanine pyruvate transaminase pa0132 is shown as 483-930 in SEQ ID NO: 36;
the protein sequence of the succinic semialdehyde dehydrogenase yneI is shown as 1-462 in SEQ ID NO: 36; and/or
The protein sequence of the pyruvate carboxylase pyc is shown as SEQ ID NO: 37.
In some embodiments, in any of the recombinant E.coli described above, the sequence of the linker peptide of the protein expressed by the fusion of phosphoenolpyruvate carboxylase and aspartate aminotransferase is shown in SEQ ID NO 26.
In some embodiments, in any of the recombinant E.coli described above, the sequence of the linker peptide of the protein expressed by fusion of succinate semialdehyde dehydrogenase and the β -alanine pyruvate transaminase is shown in SEQ ID NO 26.
In some embodiments, in any of the recombinant E.coli described above, the phosphoenolpyruvate carboxylase and the aspartate aminotransferase are expressed as a fusion protein having the sequence shown in SEQ ID NO 35.
In some embodiments, in any of the above recombinant Escherichia coli, the succinate semialdehyde dehydrogenase and the beta-alanine pyruvate transaminase are expressed as a fusion protein having the sequence shown in SEQ ID NO: 36.
It is a second object of the present invention to provide a method for constructing a recombinant Escherichia coli as described in any of the above, comprising transferring one or more plasmids containing a gene ppc encoding phosphoenolpyruvate carboxylase derived from Escherichia coli, a gene aspC encoding aspartate aminotransferase, a gene panD encoding aspartate- α -decarboxylase, and a gene pa0132 encoding β -alanine pyruvate aminotransferase derived from Pseudomonas aeruginosa, a gene yneI encoding succinate semialdehyde dehydrogenase derived from Escherichia coli, and a gene pyc encoding pyruvate carboxylase derived from Corynebacterium glutamicum into an Escherichia coli host to perform modular constitutive overexpression.
In some embodiments, in any of the methods described above, the recombinant e.coli BL21(TPP) is e.coli BL21(DE3) as the host, and the modular constitutive overexpression comprises the step of transferring each plasmid comprising the gene ppc encoding phosphoenolpyruvate carboxylase derived from e.coli, the gene aspC of aspartate aminotransferase, the gene panD of aspartate- α -decarboxylase, and the gene pa0132 encoding β -alanine pyruvate aminotransferase derived from pseudomonas aeruginosa, the gene yneI encoding succinate semialdehyde dehydrogenase derived from e.coli, and the gene pyc encoding pyruvate carboxylase derived from corynebacterium glutamicum into the e.coli host for modular constitutive overexpression such that these proteins are expressed individually.
In some embodiments, said e.coli BL21(SCR) is e.coli BL21(DE3) as host, and said modular constitutive overexpression comprises the step of transferring a plasmid fusion expressing phosphoenolpyruvate carboxylase gene ppc and said aspartate aminotransferase gene aspC, a plasmid separately expressing said aspartate- α -dehydrogenase gene panD and said pyruvate carboxylase gene pyc, and a plasmid fusion expressing said succinate semialdehyde dehydrogenase gene yneI and said β -alanine pyruvate aminotransferase gene pa0132 into the e.coli host for modular constitutive overexpression.
In some embodiments, in the above methods, the promoter used for constitutive overexpression of the segment is a constitutive promoter ML2719, the sequence of which is shown in SEQ ID NO: 39.
In some embodiments, in any of the above methods, the e.coli host is e.coli BL21(DE 3).
In some embodiments, in any of the methods described above, the phosphoenolpyruvate carboxylase gene ppc, aspartate aminotransferase gene aspC, and aspartate- α decarboxylase gene panD are from escherichia coli BL21(DE 3).
In some embodiments, in any of the methods described above, the succinic semialdehyde dehydrogenase gene ynel is from escherichia coli K12.
In some embodiments, the method of any one of the above, wherein the phosphoenolpyruvate carboxylase gene ppc has the sequence shown in SEQ ID NO 9;
the sequence of the aspartate aminotransferase gene aspC is shown as SEQ ID NO. 10;
the sequence of the aspartate-alpha-dehydrogenase gene panD is shown as SEQ ID NO 18;
the sequence of the gene pa0132 of the beta-alanine pyruvate transaminase is shown as SEQ ID NO. 2;
the sequence of the gene yneI of the succinic semialdehyde dehydrogenase is shown in SEQ ID NO. 1; and/or
The sequence of the gene pyc of pyruvate carboxylase is shown in SEQ ID NO 17.
In some embodiments, in any of the methods above, the recombinant e.coli is BL21 (SCR);
the plasmid for fusion expression of the phosphoenolpyruvate carboxylase gene ppc and the aspartate aminotransferase gene aspC is pCDF-ppc-linker-aspC;
the plasmid separately expressing the aspartate- α -dehydrogenase gene panD and the pyruvate-carboxylase gene pyc is pTrc 99A-pyc-panD; and/or
The plasmid for fusion expression of the succinic semialdehyde dehydrogenase gene yneI and the beta-alanine pyruvate transaminase gene pa0132 is pRSF-yneI-linker-pa 0132.
In some embodiments, in the above method, the pCDF-ppc-linker-aspC is constructed by homologous recombination of a linker fragment and a pCDF-ppc-aspC plasmid fragment; the linker fragment is obtained by performing PCR amplification on a linker-pCDF-F (SEQ ID NO:27) and a linker-pCDF-R (SEQ ID NO:28) by using a linker gene shown in SEQ ID NO:25 as a template; the pCDF-ppc-aspC plasmid fragment is a linearized pCDF-ppc-aspC plasmid fragment obtained by carrying out PCR amplification by using a primer pCDF-linker-F (SEQ ID NO:29) and a primer pCDF-linker-R (SEQ ID NO:30) as a template;
the pRSF-yneI-linker-pa0132 is constructed by a method of recombining homologous sequences of a linker fragment and a pRSF-yneI-pa0132 plasmid fragment; the linker fragment is obtained by performing PCR amplification on a linker gene shown in SEQ ID NO. 25 as a template and linker-pRSF-F (SEQ ID NO:31) and linker-pRSF-R (SEQ ID NO: 32); the pRSF-yneI-pa0132 plasmid fragment is obtained by taking pRSF-yneI-pa0132 plasmid as a template and carrying out PCR amplification by using primers pRSF-linker-F (SEQ ID NO:33) and pRSF-linker-R (SEQ ID NO:34) to obtain a linearized pRSF-yneI-pa0132 plasmid fragment;
the pTrc99A-pyc-panD was constructed by recombination of homologous sequences of the pyc, panD fragment and pTrc99A plasmid fragment.
In some embodiments, the above method, wherein the pCDF-ppc-aspC plasmid is constructed by recombining homologous sequences of a ppc, an aspC fragment and a pCDFDuet-1 plasmid fragment, wherein the ppc fragment is obtained by PCR amplification using a ppc gene shown in SEQ ID NO:9 as a template and primers ppc-F (SEQ ID NO:11) and ppc-R (SEQ ID NO: 12); the aspC fragment is obtained by using an aspC gene shown in SEQ ID NO. 10 as a template and performing PCR amplification by using primers aspC-F (SEQ ID NO. 13) and aspC-R (SEQ ID NO. 14); the pCDFDuet-1 plasmid fragment is a linearized pCDFDuet-1 plasmid fragment obtained by PCR amplification with primers pCDF-F (SEQ ID NO:15) and pCDF-R (SEQ ID NO:16) using the pCDFDuet-1 plasmid as a template;
the pRSF-yneI-pa0132 plasmid is constructed by recombining the homologous sequences of yneI, pa0132 fragment and pRSFDuet-1 plasmid fragment, wherein the yneI fragment is obtained by taking the yneI gene shown in SEQ ID NO. 1 as a template and carrying out PCR amplification by using primers yneI-F (SEQ ID NO:3) and yneI-R (SEQ ID NO:4) to obtain a yneI fragment; the pa0132 fragment is a pa0132 gene shown in SEQ ID NO. 2 as a template, and primers pa0132-F (SEQ ID NO. 5) and pa0132-R (SEQ ID NO. 6) are used for PCR amplification to obtain a pa0132 fragment; the pRSFDuet-1 plasmid fragment takes pRSFDuet-1 plasmid as a template, and primers pRSF-F (SEQ ID NO:7) and pRSF-R (SEQ ID NO:8) are used for PCR amplification to obtain a linearized pRSFDuet-1 plasmid fragment;
the pyc fragment is obtained by taking a pyc gene shown in SEQ ID NO:17 as a template and carrying out PCR amplification by using primers pyc-F (SEQ ID NO:19) and pyc-R (SEQ ID NO: 20); the panD fragment takes pyc gene shown in SEQ ID NO:18 as a template, and primers panD-F (SEQ ID NO:21) and panD-R (SEQ ID NO:22) are used for PCR amplification to obtain the panD fragment; the pTrc99A plasmid fragment was amplified by PCR using pTrc99A plasmid as a template and primers pTrc99A-F (SEQ ID NO:23) and pTrc99A-R (SEQ ID NO:24) to give a linearized pTrc99A plasmid fragment.
In some embodiments, in any of the methods described above, the recombinant E.coli is BL21(TPP) obtained by transferring pCDF-ppc-aspC, pRSF-yneI-pa0132 and pTrc99A-pyc-panD into BL21(DE 3).
BL21(SCR) recombinant bacteria express the fusion proteins ppc-linker-aspC (shown in SEQ ID NO: 35) and yneI-linker-pa0132 (shown in SEQ ID NO: 36) as well as protein pyc (shown in SEQ ID NO: 37) and panD (shown in SEQ ID NO: 38), wherein the amino acids 1-883 in the SEQ ID NO:35 are ppc protein, the amino acids 884-903 are linkers, the amino acids 904-1299 are aspC protein, the amino acids 1-462 in the SEQ ID NO:36 are yneI protein, the amino acids 463-482 are linkers, and the amino acids 483-930 are pa0132 protein. In contrast, BL21(TPP) recombinant bacteria individually expressed six proteins, ppc, aspC, yneI, pa0132, pyc and panD.
The third object of the present invention is to provide a method for producing malonic acid by using the recombinant Escherichia coli shake flask fermentation, which comprises inoculating any one of the recombinant Escherichia coli described above into an SOB medium containing 4-8g/L glucose, and fermenting at 30-37 ℃ and 300-.
In some embodiments, in the above method, the SoB medium contains peptone 20g/L, yeast extract 5g/L, MgSO 54·7H2O2.47 g/L, NaCl 0.5g/L, KCl 0.186 g/L; the antibiotics ampicillin (Amp), kanamycin (Kan) and streptomycin (Str) were added to the medium at a final concentration of 1 mM.
In some embodiments, in any of the above methods, the rotation speed of 0-3h is 200-300r/min, and the dissolved oxygen and the rotation speed are linked after 3h to ensure that the dissolved oxygen is 25% -35%, and the stirring rotation speed range is 300-800 r/min; the fermentation temperature is 37 ℃ within 0h-12 h; the fermentation temperature is 34 ℃ within 12h-24 h; the fermentation temperature is 32 ℃ within 24h-32 h; the fermentation temperature from 32h to the end of fermentation is 30 ℃; whenever the glucose concentration dropped to 0g/L, glucose was fed to a final concentration of 8 g/L.
In some embodiments, the method of any one of the above, wherein the recombinant E.coli is further cultured in seed broth; the seed liquid culture is to culture the recombinant escherichia coli in an LB culture medium to obtain a seed liquid, then to inoculate the seed liquid to a fermentation culture medium for fermentation, and to obtain an initial OD600Is 0.4-0.6. For example, the seed liquid can be prepared by selecting a single colony and inoculating the single colony in a 150mL conical flask containing 25mL of LB liquid medium at 37 ℃Shaking at 230rpm overnight or culturing for 12h, transferring 1mL bacterial solution into 50mL LB liquid culture medium the next day, culturing at 37 deg.C and 230rpm to OD600Reach 4-6, transfer to 50mL SOB medium.
The fourth purpose of the invention is to provide the application of any one of the recombinant escherichia coli or any one of the fermentation methods in the preparation of malonic acid and products derived from malonic acid.
In some embodiments, in the above applications, the derivative product includes, but is not limited to, diethyl malonate.
In one embodiment, for the above uses, the derivative product includes, but is not limited to, barbiturates, vitamin B1 or vitamin B6.
The invention has the advantages that:
compared with a chemical method, the Escherichia coli total biological method is used for synthesizing the malonic acid, mainly takes glucose as a substrate, greatly reduces the production cost of the malonic acid, and is simpler and quicker to operate; compared with the previously reported biological method for synthesizing the malonic acid, the synthetic pathway mentioned in the invention has fewer reactions, so the loss of the carbon source is less;
three of six overexpressed genes are from BL21(DE3), so that the stability and activity of the enzyme are better;
the mature fermentation process makes it possible to synthesize malonic acid by using Escherichia coli full-biological method, and the method has simple operation and low cost, and can be used for industrial production;
the constructed strain is a constitutive expression strain, and the used promoter is ML2719 which is 1.4 times of the inducible T7 promoter; IPTG induction is not needed in the fermentation process, and the production cost is saved.
Drawings
FIG. 1 is a schematic diagram of the synthesis route of malonic acid constructed according to the present invention.
FIG. 2 is a map of pRSF-yneI-pa0132 plasmid.
FIG. 3 is a plasmid map of pCDF-ppc-aspC.
FIG. 4 is a map of pTrc99A-pyc-panD plasmid.
FIG. 5 is a plasmid map of pCDF-ppc-linker-aspC.
FIG. 6 is a map of pRSF-yneI-linker-pa0132 plasmid.
FIG. 7 shows the detection result of the shake flask fermentation liquid phase of recombinant bacteria BL21 (TPP).
FIG. 8 shows the results of liquid phase detection of recombinant strain BL21(SCR) in shake flask fermentation.
FIG. 9 shows the results of the fermentation liquid phase detection of recombinant bacteria BL21(SCR) in a 5L fermentation tank under the gradient cooling fermentation strategy.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The present invention will be further described with reference to the following examples. It should be understood that the following examples are illustrative only and are not intended to limit the scope of the present invention.
The pRSFDuet-1 plasmid is a Youbao biological product, and the catalog number is VT 1238.
The pCDFDuet-1 plasmid is a Youbao biological product, and the catalog number is VT 1239.
The pTrc99a plasmid is a Youbao biological product with the catalog number VT 1294.
Example 1: construction of recombinant plasmid and acquisition of BL21(TPP) recombinant bacteria
1. Construction of recombinant plasmid pRSF-yneI-pa0132
The succinic semialdehyde dehydrogenase gene (yneI) (shown in SEQ ID NO: 1) and the beta-alanine pyruvate transaminase gene (pa0132) (shown in SEQ ID NO: 2) were synthesized by Jinzhi Biotech, Suzhou, Inc.;
using succinic semialdehyde dehydrogenase gene (yneI) as a template, and carrying out PCR amplification by using primers yneI-F (5'-CACACAGGAAACAGACCATGACCATTACTCCGGCAACTC-3', SEQ ID NO:3) and yneI-R (5'-TTCTTTACCAGACTCGAGTCAGATCCGGTCTTTCCACAC-3', SEQ ID NO:4) to obtain a yneI fragment;
PCR amplification was performed using the beta-alanine pyruvate transaminase gene (pa0132) as a template with primers pa0132-F (5'-CACACAGGAAACAGACCATGAATCAGCCCCTGAATGTC-3', SEQ ID NO:5) and pa0132-R (5'-GCCGGATGATTAATTGTCAAAAGCTTTCAGGCAATTCCGTTCAGAG-3', SEQ ID NO:6) to obtain pa0132 fragment;
using pRSFDuet-1 plasmid as template, using primers pRSF-F (5'-CTCGAGTCTGGTAAAGAAACCGC-3', SEQ ID NO:7) and pRSF-R (5'-ATTTCCTAATGCAGGAGTCGCAT-3', SEQ ID NO:8) to make PCR amplification to obtain linearized pRSFDuet-1 plasmid fragment;
and carrying out homologous recombination on the yneI fragment, the pa0132 fragment and the linearized pRSFDuet-1 plasmid fragment by using a homologous recombinase to obtain a recombinant plasmid pRSF-yneI-pa0132, transferring the recombinant plasmid pRSF-yneI-pa0132 into E.coli JM109 competent cells, carrying out colony PCR (polymerase chain reaction) to pick out a positive transformant, carrying out quality plasmid enzyme cutting verification, verifying that the correct plasmid is sent for sequencing, wherein the sequencing result is consistent with an expected sequence, and the plasmid map is shown in figure 2.
2. Construction of recombinant plasmid pCDF-ppc-aspC
Phosphoenolpyruvate carboxylase gene (ppc) (shown in SEQ ID NO: 9) and aspartate aminotransferase gene (aspC) (shown in SEQ ID NO: 10) were synthesized by Kinzhi Biotech, Suzhou;
PCR amplification was performed using phosphoenolpyruvate carboxylase gene (ppc) as a template and the primers ppc-F (5'-AACAGACCCCATGGGCATGAACGAACAATATTCCGCATT-3', SEQ ID NO:11) and ppc-R (5'-GCCGGATGATTAATTGTCAAGAATTCTTAGCCGGTATTACGCATACCTG-3', SEQ ID NO:12) to obtain a ppc fragment;
PCR amplification was performed using the aspartate aminotransferase gene (aspC) as a template and the primers aspC-F (5'-CACACAGGAAACAGACCATGTTTGAGAACATTACCGCCG-3', SEQ ID NO:13) and aspC-R (5'-GCCGCAAGCTTGTCGACTTACAGCACTGCCACAATCGC-3', SEQ ID NO:14) to obtain an aspC fragment;
PCR amplification was performed using pCDFDuet-1 plasmid as a template and primers pCDF-F (5'-GTCGACAAGCTTGCGGCC-3', SEQ ID NO:15) and pCDF-R (5'-ATTTCCTAATGCAGGAGTCGCAT-3', SEQ ID NO:16) to obtain a linearized pCDFDuet-1 plasmid fragment;
homologous recombination is carried out on the ppc fragment, the aspC fragment and the linearized pCDFDuet-1 plasmid fragment by using a homologous recombinase to obtain a recombinant plasmid pCDF-ppc-aspC, the recombinant plasmid pCDF-ppc-aspC is transferred into E.coli JM109 competent cells, a positive transformant is picked by colony PCR, quality improvement and enzyme cutting verification are carried out, the correct plasmid is verified and sent for sequencing, the sequencing result is consistent with the expected sequence, and the plasmid map is shown in figure 3.
3. Construction of the recombinant plasmid pTrc99A-pyc-panD
Pyruvate carboxylase gene (pyc) (sequence shown in SEQ ID NO: 17) and aspartate-alpha decarboxylase gene (panD) (sequence shown in SEQ ID NO: 18) were synthesized by Kingzhi Biotech, Suzhou;
PCR amplification was performed using the pyruvate carboxylase gene (pyc) as a template and primers pyc-F (5'-CACACAGGAAACAGACCGTGTCGACTCACACATCTTCAACG-3', SEQ ID NO:19) and pyc-R (5'-GCCGGATGATTAATTGTCAAGAATTCCTTAGGAAACGACGACGATCAAGTC-3', SEQ ID NO:20) to give a pyc fragment;
PCR amplification was performed using the aspartate- α decarboxylase gene (panD) as a template, and the primers panD-F (5'-GAAACAGACCCTCGAGCAAGAGGTATATATTAATGTTGCGTACTATCC-3', SEQ ID NO:21) and panD-R (5'-GCCAAAACAGCCAAGCTTCTAGATCGAGCGACTGGTTAAAAG-3', SEQ ID NO:22) to obtain a panD fragment;
PCR amplification was performed using pTrc99A plasmid as a template and primers pTrc99A-F (5'-AAGCTTGGCTGTTTTGGCG-3', SEQ ID NO:23) and pTrc99A-R (5'-CAGCTCATTTCAGAATATTTGCCA-3', SEQ ID NO:24) to obtain a linearized pTrc99A plasmid fragment;
homologous recombination is carried out on the pyc fragment, the panD fragment and the linearized pTrc99A plasmid fragment by using a homologous recombinase to obtain a recombinant plasmid pTrc99A-pyc-panD, the recombinant plasmid pTrc 99-pyc-panD is transferred into E.coli JM109 competent cells, colony PCR is used for picking positive transformants and carrying out quality improvement and enzyme cutting verification, the correct plasmids are verified and sent for sequencing, the sequencing result is consistent with the expected sequence, and the plasmid map is shown in figure 4.
4. The pRSF-yneI-pa0132, pCDF-ppc-aspC and pTrc99A-pyc-panD plasmids were electroporated into BL21(DE3) to obtain BL21(TPP) recombinant bacteria.
Example 2: construction of recombinant plasmid and acquisition of BL21(SCR) recombinant bacteria
1. The linker gene (SEQ ID NO:25 in sequence) was synthesized by Kinzhi Biotech, Suzhou, and its encoded amino groupThe sequence is (SSSSSSSG)4(SEQ ID NO:26) and was codon optimized according to the E.coli preference.
2. Construction of recombinant plasmid pCDF-ppc-linker-aspC
Using linker gene as template, using primer linker-pCDF-F (5'-TAATACCGGCGAATTCTCTTCAAGCTCTGGTAGCTCGTC-3', SEQ ID NO:27) and linker-pCDF-R (5'-CGGCGGTAATGTTCTCAAACATTCCGGAGCTCGAACTGCC-3', SEQ ID NO:28) to make PCR amplification to obtain linker fragment;
taking pCDF-ppc-aspC plasmid as a template, and carrying out PCR amplification by using primers pCDF-linker-F (5'-ATGTTTGAGAACATTACCGCCG-3', SEQ ID NO:29) and pCDF-linker-R (5'-GAATTCGCCGGTATTACGCA-3', SEQ ID NO:30) to obtain a linearized pCDF-ppc-aspC plasmid fragment;
homologous recombination is carried out on the linker fragment and the linearized pCDF-ppc-aspC plasmid fragment by using a homologous recombinase to obtain a recombinant plasmid pCDF-ppc-linker-aspC, the recombinant plasmid pCDF-ppc-linker-aspC is transferred into E.coli JM109 competent cells, a colony PCR (polymerase chain reaction) picks a positive transformant, plasmid cutting verification is carried out, a correct plasmid is verified and sent for sequencing, the sequencing result is consistent with an expected sequence, and a plasmid map is shown in figure 5.
3. Construction of recombinant plasmid pRSF-yneI-linker-pa0132
Using linker gene as template, using primer linker-pRSF-F (5'-ACGGAATTGCCAAGCTTTCTTCAAGCTCTGGTAGCTCGTC-3', SEQ ID NO:31) and linker-pRSF-R (5'-CCGGAGTAATGGTCATTCCGGAGCTCGAACTGCC-3', SEQ ID NO:32) to carry out PCR amplification to obtain linker fragment;
using pRSF-yneI-pa0132 plasmid as a template, and carrying out PCR amplification by using primers pRSF-linker-F (5'-ATGACCATTACTCCGGCAACTC-3', SEQ ID NO:33) and pRSF-linker-R (5'-AAGCTTGGCAATTCCGTTCA-3', SEQ ID NO:34) to obtain a linearized pRSF-yneI-pa0132 plasmid fragment;
homologous recombination is carried out on the linker fragment and the linearized pRSF-yneI-pa0132 plasmid fragment by using a homologous recombinase to obtain a recombinant plasmid pRSF-yneI-linker-pa0132, the recombinant plasmid pRSF-yneI-linker-pa0132 is transferred into E.coli JM109 competent cells, a positive transformant is picked by colony PCR, plasmid-upgrading and enzyme cutting verification are carried out, a correct plasmid is verified and sent for sequencing, the sequencing result is consistent with an expected sequence, and a plasmid map is shown in figure 6.
4. The plasmids pCDF-ppc-linker-aspC, pRSF-yneI-linker-pa0132 and pTrc99A-pyc-panD were electroporated into BL21(DE3) to obtain BL21(SCR) recombinant bacteria.
BL21(SCR) recombinant bacteria express the fusion proteins ppc-linker-aspC (shown in SEQ ID NO: 35) and yneI-linker-pa0132 (shown in SEQ ID NO: 36) as well as protein pyc (shown in SEQ ID NO: 37) and panD (shown in SEQ ID NO: 38), wherein the amino acids 1-883 in the SEQ ID NO:35 are ppc protein, the amino acids 884-903 are linkers, the amino acids 904-1299 are aspC protein, the amino acids 1-462 in the SEQ ID NO:36 are yneI protein, the amino acids 463-482 are linkers, and the amino acids 483-930 are pa0132 protein. In contrast, the BL21(TPP) recombinant strain prepared in example 1 expressed six proteins of ppc, aspC, yneI, pa0132, pyc, and panD, respectively.
The constitutive promoter ML2719 is used to drive the expression of each protein, and the sequence is shown in SEQ ID NO: 39.
Example 3: shake flask fermentation of recombinant escherichia coli
1. Preparing a seed solution: recombinant strains BL21(TPP) and BL21(SCR) obtained by activating an LB solid plate are respectively inoculated in 25mL of liquid LB culture medium, cultured at 37 ℃ at 230r/min for 12h and then inoculated with secondary seed liquid. 1mL of the culture broth was inoculated into 25mL of liquid LB medium and cultured at 37 ℃ at 230r/min for 12 hours.
2. And (3) fermentation: the inoculum size of 2% was inoculated into SOB medium with a liquid loading of 50mL/250mL, and incubated at 37 ℃ and 230 r/min. SOB medium: peptone 20g/L, yeast extract 5g/L, MgSO4·7H2O2.47 g/L, NaCl 0.5g/L, KCl 0.186g/L, and the antibiotics ampicillin (Amp), kanamycin (Kan), and streptomycin (Str), all at a final concentration of 1mM, were added to the medium.
And (4) analyzing results: sampling every 12H in the fermentation process, centrifuging for 10min at 13000r/min and passing the supernatant through 0.22 μ L filter membrane for HPLC detection (high performance liquid chromatography, American Bio-Rad Burley Aminex HPX-87H organic acid column with detection parameters of 5mM H)2SO4As a mobile phase, the flow rate of 0.6mL/min is used for sample injection, the column temperature is 30 ℃,the sample volume was 20. mu.L, and the temperature of the differential detector was 30 ℃.
The liquid phase detection result of the malonic acid accumulation amount of the recombinant bacterium BL21(TPP) is shown in FIG. 7, and the bacterium accumulates 0.61g/L malonic acid in 48 hours; the results of liquid phase detection of the accumulation of recombinant strain BL21(SCR) on malonic acid are shown in FIG. 8, and the accumulation of 0.83g/L malonic acid in 48h is improved by 36% compared with that in unfused strain BL21(TPP), which indicates that the fusion expression of phosphoenolpyruvate carboxylase and aspartate aminotransferase and the fusion expression of succinate semialdehyde dehydrogenase and beta-alanine pyruvate aminotransferase can reduce the loss of intermediate metabolites and promote the synthesis of malonic acid.
Example 4: 5L fermenter fermentation of recombinant Escherichia coli BL21(SCR)
1. Preparing a seed solution: the recombinant strain BL21(SCR) obtained by activating the LB solid plate is inoculated in 25mL of liquid LB culture medium, and the secondary seed solution is inoculated after the culture is carried out for 12h at 37 ℃ and 230 r/min. Inoculating 1mL of the culture solution into six bottles of 50mL liquid LB culture medium respectively, culturing at 37 ℃ and 230r/min for 12h, OD600Up to 4.42.
2. Fermentation conditions are as follows: inoculum size 10% (initial OD) by volume6000.46) and initial glucose concentration of 4g/L, wherein the rotating speed of 0-3h is 300r/min, and the dissolved oxygen is linked with the rotating speed after 3h so as to ensure that the dissolved oxygen is about 25 percent and the stirring rotating speed range is 300-800 r/min. The fermentation temperature is 37 ℃ within 0h-12 h; the fermentation temperature is 34 ℃ within 12h-24 h; the fermentation temperature is 32 ℃ between 24h and 32 h; the fermentation temperature from 32h to the end of the fermentation was 30 ℃. Every time the glucose concentration dropped to 0g/L, glucose was fed to a final concentration of 8g/L and sampled.
The fermentation medium is an SOB medium: peptone 20g/L, yeast extract 5g/L, MgSO4·7H2O2.47 g/L, NaCl 0.5g/L, KCl 0.186g/L, antibiotics ampicillin (Amp), kanamycin (Kan) and streptomycin (Str), all at a final concentration of 1mM, were added to the medium.
And (4) analyzing results: the procedure was the same as in example 3, and the fermentation results are shown in FIG. 9. The result shows that the recombinant bacterium BL21(SCR) accumulates 5.61g/L of malonic acid in 54 h.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
SEQ ID NO:1:
Figure BDA0003579897690000091
Figure BDA0003579897690000101
SEQ ID NO:2:
Figure BDA0003579897690000102
Figure BDA0003579897690000111
SEQ ID NO:9:
Figure BDA0003579897690000112
Figure BDA0003579897690000121
SEQ ID NO:10:
Figure BDA0003579897690000122
Figure BDA0003579897690000131
SEQ ID NO:17:
Figure BDA0003579897690000132
Figure BDA0003579897690000141
SEQ ID NO:18:
Figure BDA0003579897690000142
SEQ ID NO:25
tcttcaagctc tggtagctcg tcgtctgggt cttcaagttc cggcagttcg agctccgga
SEQ ID NO:35
MNEQYSALRSNVSMLGKVLGETIKDALGEHILERVETIRKLSKSSRAGNDANRQELLTTLQNLSNDELLPVARAFSQFLNLANTAEQYHSISPKGEAASNPEVIARTLRKLKNQPELSEDTIKKAVESLSLELVLTAHPTEITRRTLIHKMVEVNACLKQLDNKDIADYEHNQLMRRLRQLIAQSWHTDEIRKLRPSPVDEAKWGFAVVENSLWQGVPNYLRELNEQLEENLGYKLPVEFVPVRFTSWMGGDRDGNPNVTADITRHVLLLSRWKATDLFLKDIQVLVSELSMVEATPELLALVGEEGAAEPYRYLMKNLRSRLMATQAWLEARLKGEELPKPEGLLTQNEELWEPLYACYQSLQACGMGIIANGDLLDTLRRVKCFGVPLVRIDIRQESTRHTEALGELTRYLGIGDYESWSEADKQAFLIRELNSKRPLLPRNWQPSAETREVLDTCQVIAEAPQGSIAAYVISMAKTPSDVLAVHLLLKEAGIGFAMPVAPLFETLDDLNNANDVMTQLLNIDWYRGLIQGKQMVMIGYSDSAKDAGVMAASWAQYQAQDALIKTCEKAGIELTLFHGRGGSIGRGGAPAHAALLSQPPGSLKGGLRVTEQGEMIRFKYGLPEITVSSLSLYTGAILEANLLPPPEPKESWRRIMDELSVISCDLYRGYVRENKDFVPYFRSATPEQELGKLPLGSRPAKRRPTGGVESLRAIPWIFAWTQNRLMLPAWLGAGTALQKVVEDGKQSELEAMCRDWPFFSTRLGMLEMVFAKADLWLAEYYDQRLVDKALWPLGKELRNLQEEDIKVVLAIANDSHLMADLPWIAESIQLRNIYTDPLNVLQAELLHRSRQAEKEGQEPDPRVEQALMVTIAGIAAGMRNTGSSSSGSSSSGSSSSGSSSSGMFENITAAPADPILGLADLFRADERPGKINLGIGVYKDETGKTPVLTSVKKAEQYLLENETTKNYLGIDGIPEFGRCTQELLFGKGSALINDKRARTAQTPGGTGALRVAADFLAKNTSVKRVWVSNPSWPNHKSVFNSAGLEVREYAYYDAENHTLDFDALINSLNEAQAGDVVLFHGCCHNPTGIDPTLEQWQTLAQLSVEKGWLPLFDFAYQGFARGLEEDAEGLRAFAAMHKELIVASSYSKNFGLYNERVGACTLVAADSETVDRAFSQMKAAIRANYSNPPAHGASVVATILSNDALRAIWEQELTDMRQRIQRMRQLFVNTLQEKGANRDFSFIIKQNGMFSFSGLTKEQVLRLREEFGVYAVASGRVNVAGMTPDNMAPLCEAIVAVL
SEQ ID NO:36
MTITPATHAISINPATGEQLSVLPWAGADDIENALQLAAAGFRDWRETNIDYRAEKLRDIGKALRARSEEMAQMITREMGKPINQARAEVAKSANLCDWYAEHGPAMLKAEPTLVENQQAVIEYRPLGTILAIMPWNFPLWQVMRGAVPIILAGNGYLLKHAPNVMGCAQLIAQVFKDAGIPQGVYGWLNADNDGVSQMIKDSRIAAVTVTGSVRAGAAIGAQAGAALKKCVLELGGSDPFIVLNDADLELAVKAAVAGRYQNTGQVCAAAKRFIIEEGIASAFTERFVAAAAALKMGDPRDEENALGPMARFDLRDELHHQVEKTLAQGARLLLGGEKMAGAGNYYPPTVLANVTPEMTAFREEMFGPVAAITIAKDAEHALELANDSEFGLSATIFTTDETQARQMAARLECGGVFINGYCASDARVAFGGVKKSGFGRELSHFGLHEFCNIQTVWKDRISSSSGSSSSGSSSSGSSSSGMNQPLNVAPPVSSELNLRAHWMPFSANRNFQKDPRIIVAAEGSWLTDDKGRKVYDSLSGLWTCGAGHSRKEIQEAVARQLGTLDYSPGFQYGHPLSFQLAEKIAGLLPGELNHVFFTGSGSECADTSIKMARAYWRLKGQPQKTKLIGRARGYHGVNVAGTSLGGIGGNRKMFGQLMDVDHLPHTLQPGMAFTRGMAQTGGVELANELLKLIELHDASNIAAVIVEPMSGSAGVLVPPVGYLQRLREICDQHNILLIFDEVITAFGRLGTYSGAEYFGVTPDLMNVAKQVTNGAVPMGAVIASSEIYDTFMNQALPEHAVEFSHGYTYSAHPVACAAGLAALDILARDNLVQQSAELAPHFEKGLHGLQGAKNVIDIRNCGLAGAIQIAPRDGDPTVRPFEAGMKLWQQGFYVRFGGDTLQFGPTFNARPEELDRLFDAVGEALNGIA
SEQ ID NO:37
MSTHTSSTLPAFKKILVANRGEIAVRAFRAALETGAATVAIYPREDRGSFHRSFASEAVRIGTEGSPVKAYLDIDEIIGAAKKVKADAIYPGYGFLSENAQLARECAENGITFIGPTPEVLDLTGDKSRAVTAAKKAGLPVLAESTPSKNIDEIVKSAEGQTYPIFVKAVAGGGGRGMRFVASPDELRKLATEASREAEAAFGDGAVYVERAVINPQHIEVQILGDHTGEVVHLYERDCSLQRRHQKVVEIAPAQHLDPELRDRICADAVKFCRSIGYQGAGTVEFLVDEKGNHVFIEMNPRIQVEHTVTEEVTEVDLVKAQMRLAAGATLKELGLTQDKIKTHGAALQCRITTEDPNNGFRPDTGTITAYRSPGGAGVRLDGAAQLGGEITAHFDSMLVKMTCRGSDFETAVARAQRALAEFTVSGVATNIGFLRALLREEDFTSKRIATGFIADHPHLLQAPPADDEQGRILDYLADVTVNKPHGVRPKDVAAPIDKLPNIKDLPLPRGSRDRLKQLGPAAFARDLREQDALAVTDTTFRDAHQSLLATRVRSFALKPAAEAVAKLTPELLSVEAWGGATYDVAMRFLFEDPWDRLDELREAMPNVNIQMLLRGRNTVGYTPYPDSVCRAFVKEAASSGVDIFRIFDALNDVSQMRPAIDAVLETNTAVAEVAMAYSGDLSDPNEKLYTLDYYLKMAEEIVKSGAHILAIKDMAGLLRPAAVTKLVTALRREFDLPVHVHTHDTAGGQLATYFAAAQAGADAVDGASAPLSGTTSQPSLSAIVAAFAHTRRDTGLSLEAVSDLEPYWEAVRGLYLPFESGTPGPTGRVYRHEIPGGQLSNLRAQATALGLADRFELIEDNYAAVNEMLGRPTKVTPSSKVVGDLALHLVGAGVDPADFAADPQKYDIPDSVIAFLRGELGNPPGGWPEPLRTRALEGRSEGKAPLTEVPEEEQAHLDADDSKERRNSLNRLLFPKPTEEFLEHRRRFGNTSALDDREFFYGLVEGRETLIRLPDVRTPLLVRLDAISEPDDKGMRNVVANVNGQIRPMRVRDRSVESVTATAEKADSSNKGHVAAPFAGVVTVTVAEGDEVKAGDAVAIIEAMKMEATITASVDGKIDRVVVPAATKVEGGDLIVVVS
SEQ ID NO:38
MLRTILGSKIHRATVTQADLDYVGSVTIDADLVHAAGLIEGEKVAIVDITNGARLETYVIVGDAGTGNICINGAAAHLINPGDLVIIMSYLQATDAEAKAYEPKIVHVDADNRIVALGNDLAEALPGSGLLTSRSI
SEQ ID NO:39
Figure BDA0003579897690000161
Sequence listing
<110> Wanhua chemical group, Inc
Wan Hua Hua Xue (Sichuan) Co., Ltd.
<120> recombinant escherichia coli, preparation method and application thereof
<130> DSP1F220070ZX
<160> 39
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1389
<212> DNA
<213> Escherichia coli K12(Escherichia coli K-12)
<400> 1
atgaccatta ctccggcaac tcatgcaatt tcgataaatc ctgccacggg tgaacaactt 60
tctgtgctgc cgtgggctgg cgctgacgat atcgaaaacg cacttcagct ggcggcagca 120
ggctttcgcg actggcgcga gacaaatata gattatcgtg ctgaaaaact gcgtgatatc 180
ggtaaggctc tgcgcgctcg tagcgaagaa atggcgcaaa tgatcacccg cgaaatgggc 240
aaaccaatca accaggcgcg cgctgaagtg gcgaaatcgg cgaatttgtg tgactggtat 300
gcagaacatg gtccggcaat gctgaaggcg gaacctacgc tggtggaaaa tcagcaggcg 360
gttattgagt atcgaccgtt ggggacgatt ctggcgatta tgccgtggaa ttttccgtta 420
tggcaggtga tgcgtggcgc tgttcccatc attcttgcag gtaacggcta cttacttaaa 480
catgcgccga atgtgatggg ctgtgcacag ctcattgccc aggtgtttaa agatgcgggt 540
atcccacaag gcgtatatgg ctggctgaat gccgacaacg acggtgtcag tcagatgatt 600
aaagactcgc gcattgctgc tgtcacggtg accggaagtg ttcgtgcggg agcggctatt 660
ggcgcacagg ctggagcggc actgaaaaaa tgcgtactgg aactgggcgg ttcggatccg 720
tttattgtgc ttaacgatgc cgatctggaa ctggcggtga aagcggcggt agccggacgt 780
tatcagaata ccggacaggt atgtgcagcg gcaaaacgct ttattatcga agagggaatt 840
gcttcggcat ttaccgaacg ttttgtggca gctgcggcag ccttgaaaat gggcgatccc 900
cgtgacgaag agaacgctct cggaccaatg gctcgttttg atttacgtga tgagctgcat 960
catcaggtgg agaaaaccct ggcgcagggt gcgcgtttgt tactgggcgg ggaaaagatg 1020
gctggggcag gtaactacta tccgccaacg gttctggcga atgttacccc agaaatgacc 1080
gcgtttcggg aagaaatgtt tggccccgtt gcggcaatca ccattgcgaa agatgcagaa 1140
catgcactgg aactggctaa tgatagtgag ttcggccttt cagcgaccat ttttaccact 1200
gacgaaacac aggccagaca gatggcggca cgtctggaat gcggtggggt gtttatcaat 1260
ggttattgtg ccagcgacgc gcgagtggcc tttggtggcg tgaaaaagag tggctttggt 1320
cgtgagcttt cccatttcgg cttacacgaa ttctgtaata tccagacggt gtggaaagac 1380
cggatctga 1389
<210> 2
<211> 1347
<212> DNA
<213> Pseudomonas aeruginosa (Pseudomonas aeruginosa)
<400> 2
atgaatcagc ccctgaatgt cgctccgccc gtgagctcgg aattaaacct gcgcgcccac 60
tggatgccat tttcggctaa ccgcaatttc caaaaagacc cgcgtattat cgtcgcggcg 120
gagggctcct ggctgaccga cgacaagggc cgtaaagtat acgatagcct gtcaggatta 180
tggacctgcg gtgcggggca tagccgcaag gaaattcagg aagcggttgc tcgtcaactg 240
gggactttgg actattcgcc aggattccaa tatggacatc cattgtcttt ccagttggcc 300
gagaagattg ctgggttatt acctggggaa ttaaaccatg tcttttttac gggatcaggg 360
tcggagtgcg cagacacttc gattaagatg gcccgcgcct actggcgctt aaagggacaa 420
ccccagaaga ctaagctgat tggacgcgca cgcggttacc acggcgtgaa tgtcgcgggc 480
acaagccttg gagggatcgg ggggaaccgc aagatgttcg gacagctgat ggatgtggac 540
catcttcccc atacccttca gccaggtatg gcattcactc gcgggatggc gcagacagga 600
ggcgttgaac tggcgaatga gttattaaag ttaattgaat tgcacgatgc gtctaacatc 660
gcagcggtta ttgtcgagcc catgtccggt tccgcaggag ttttagtgcc acccgtgggc 720
tatctgcagc gtttgcgcga aatctgtgac caacacaata ttctgcttat ctttgatgaa 780
gtgattacgg ctttcgggcg tctgggtact tactcgggag ccgaatactt cggggtcacg 840
ccggacttga tgaatgttgc aaaacaggtc acgaatggtg cagtacctat gggtgctgta 900
atcgcctcta gcgagattta cgatactttc atgaaccagg cgctgcctga acatgcggtt 960
gaattttccc acggttatac atattcagcg cacccagtgg catgtgctgc gggattagca 1020
gcactggaca tcttggcgcg cgataactta gtacagcagt cagcagagtt agctccacac 1080
ttcgagaagg gattgcatgg ccttcaaggt gccaagaatg ttatcgacat tcgcaactgc 1140
ggcttagcag gcgcgatcca gatcgctccc cgtgatgggg atccgacagt tcgccccttt 1200
gaagccggga tgaaactgtg gcaacaaggg ttttacgtcc gtttcggcgg cgacactctg 1260
cagtttgggc caacatttaa tgcacgccca gaggaattgg accgtctttt tgacgctgta 1320
ggtgaggctc tgaacggaat tgcctga 1347
<210> 3
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
cacacaggaa acagaccatg accattactc cggcaactc 39
<210> 4
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ttctttacca gactcgagtc agatccggtc tttccacac 39
<210> 5
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
cacacaggaa acagaccatg aatcagcccc tgaatgtc 38
<210> 6
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gccggatgat taattgtcaa aagctttcag gcaattccgt tcagag 46
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ctcgagtctg gtaaagaaac cgc 23
<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atttcctaat gcaggagtcg cat 23
<210> 9
<211> 2652
<212> DNA
<213> E.coli BL21(DE3) (Escherichia coli BL21(DE3))
<400> 9
atgaacgaac aatattccgc attgcgtagt aatgtcagta tgctcggcaa agtgctggga 60
gaaaccatca aggatgcgtt gggagaacac attcttgaac gcgtagaaac tatccgtaag 120
ttgtcgaaat cttcacgcgc tggcaatgat gctaaccgcc aggagttgct caccacctta 180
caaaatttgt cgaacgacga gctgctgccc gttgcgcgtg cgtttagtca gttcctgaac 240
ctggccaaca ccgccgagca ataccacagc atttcgccga aaggcgaagc tgccagcaac 300
ccggaagtga tcgcccgcac cctgcgtaaa ctgaaaaacc agccggaact gagcgaagac 360
accatcaaaa aagcagtgga atcgctgtcg ctggaactgg tcctcacggc tcacccaacc 420
gaaattaccc gtcgtacact gatccacaaa atggtggaag tgaacgcctg tttaaaacag 480
ctcgataaca aagatatcgc tgactacgaa cacaaccagc tgatgcgtcg cctgcgccag 540
ttgatcgccc agtcatggca taccgatgaa atccgtaagc tgcgtccaag cccggtagat 600
gaagccaaat ggggctttgc cgtagtggaa aacagcctgt ggcaaggcgt accaaattac 660
ctgcgcgaac tgaacgaaca actggaagag aacctcggct acaaactgcc cgtcgaattt 720
gttccggtcc gttttacttc gtggatgggc ggcgaccgcg acggcaaccc gaacgtcact 780
gccgatatca cccgccacgt cctgctactc agccgctgga aagccaccga tttgttcctg 840
aaagatattc aggtgctggt ttctgaactg tcgatggttg aagcgacccc tgaactgctg 900
gcgctggttg gcgaagaagg tgccgcagaa ccgtatcgct atctgatgaa aaacctgcgt 960
tctcgcctga tggcgacaca ggcatggctg gaagcgcgcc tgaaaggcga agaactgcca 1020
aaaccagaag gcctgctgac acaaaacgaa gaactgtggg aaccgctcta cgcttgctac 1080
cagtcacttc aggcgtgtgg catgggtatt atcgccaacg gcgatctgct cgacaccctg 1140
cgccgcgtga aatgtttcgg cgtaccgctg gtccgtattg atatccgtca ggagagcacg 1200
cgtcataccg aagcgctggg cgagctgacc cgctacctcg gtatcggcga ctacgaaagc 1260
tggtcagagg ccgacaaaca ggcgttcctg atccgcgaac tgaactccaa acgtccgctt 1320
ctgccgcgca actggcaacc aagcgccgaa acgcgcgaag tgctcgatac ctgccaggtg 1380
attgccgaag caccgcaagg ctccattgcc gcctacgtga tctcgatggc gaaaacgccg 1440
tccgacgtac tggctgtcca cctgctgctg aaagaagcgg gtatcgggtt tgcgatgccg 1500
gttgctccgc tgtttgaaac cctcgatgat ctgaacaacg ccaacgatgt catgacccag 1560
ctgctcaata ttgactggta tcgtggcctg attcagggca aacagatggt gatgattggc 1620
tattccgact cagcaaaaga tgcgggagtg atggcagctt cctgggcgca atatcaggca 1680
caggatgcat taatcaaaac ctgcgaaaaa gcgggtattg agctgacgtt gttccacggt 1740
cgcggcggtt ccattggtcg cggcggcgca cctgctcatg cggcgctgct gtcacaaccg 1800
ccaggaagcc tgaaaggcgg cctgcgcgta accgaacagg gcgagatgat ccgctttaaa 1860
tatggtctgc cagaaatcac cgtcagcagc ctgtcgcttt ataccggggc gattctggaa 1920
gccaacctgc tgccaccgcc ggagccgaaa gagagctggc gtcgcattat ggatgaactg 1980
tcagtcatct cctgcgatgt ctaccgcggc tacgtacgtg aaaacaaaga ttttgtgcct 2040
tacttccgct ccgctacgcc ggaacaagaa ctgggcaaac tgccgttggg ttcacgtccg 2100
gcgaaacgtc gcccaaccgg cggcgtcgag tcactacgcg ccattccgtg gatcttcgcc 2160
tggacgcaaa accgtctgat gctccccgcc tggctgggtg caggtacggc gctgcaaaaa 2220
gtggtcgaag acggcaaaca gagcgagctg gaggctatgt gccgcgattg gccattcttc 2280
tcgacgcgtc tcggcatgct ggagatggtc ttcgccaaag cagacctgtg gctggcggaa 2340
tactatgacc aacgcctggt agacaaagca ctgtggccgt taggtaaaga gttacgcaac 2400
ctgcaagaag aagacatcaa agtggtgctg gcgattgcca acgattccca tctgatggcc 2460
gatctgccgt ggattgcaga gtctattcag ctacggaata tttacaccga cccgctgaac 2520
gtattgcagg ccgagttgct gcaccgctcc cgccaggcag aaaaagaagg ccaggaaccg 2580
gatcctcgcg tcgaacaagc gttaatggtc actattgccg ggattgcggc aggtatgcgt 2640
aataccggct aa 2652
<210> 10
<211> 1191
<212> DNA
<213> Escherichia coli BL21(DE3) (Escherichia coli BL21(DE3))
<400> 10
atgtttgaga acattaccgc cgctcctgcc gacccgattc tgggcctggc cgatctgttt 60
cgtgccgatg aacgtcccgg caaaattaac ctcgggattg gtgtctataa agatgagacg 120
ggcaaaaccc cggtactgac cagcgtgaaa aaggctgaac agtatctgct cgaaaatgaa 180
accaccaaaa attacctcgg cattgacggc atccctgaat ttggtcgctg cactcaggaa 240
ctgctgtttg gtaaaggtag cgccctgatc aatgacaaac gtgctcgcac ggcacagact 300
ccggggggca ctggcgcact acgcgtggct gccgatttcc tggcaaaaaa taccagcgtt 360
aagcgtgtgt gggtgagcaa cccaagctgg ccgaaccata agagcgtctt taactctgca 420
ggtctggaag ttcgtgaata cgcttattat gatgcggaaa atcacactct tgacttcgat 480
gcactgatta acagcctgaa tgaagctcag gctggcgacg tagtgctgtt ccatggctgc 540
tgccataacc caaccggtat cgaccctacg ctggaacaat ggcaaacact ggcacaactc 600
tccgttgaga aaggctggtt accgctgttt gacttcgctt accagggttt tgcccgtggt 660
ctggaagaag atgctgaagg actgcgcgct ttcgcggcta tgcataaaga gctgattgtt 720
gccagttcct actctaaaaa ctttggcctg tacaacgagc gtgttggcgc ttgtactctg 780
gttgctgccg acagtgaaac cgttgatcgc gcattcagcc aaatgaaagc ggcgattcgc 840
gctaactact ctaacccacc agcacacggc gcttctgttg ttgccaccat cctgagcaac 900
gatgcgttac gtgcgatttg ggaacaagag ctgactgata tgcgccagcg tattcagcgt 960
atgcgtcagt tgttcgtcaa tacgctgcag gaaaaaggcg caaaccgcga cttcagcttt 1020
atcatcaaac agaacggcat gttctccttc agtggcctga caaaagaaca agtgctgcgt 1080
ctgcgcgaag agtttggcgt atatgcggtt gcttctggtc gcgtaaatgt ggccgggatg 1140
acaccagata acatggctcc gctgtgcgaa gcgattgtgg cagtgctgta a 1191
<210> 11
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
aacagacccc atgggcatga acgaacaata ttccgcatt 39
<210> 12
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gccggatgat taattgtcaa gaattcttag ccggtattac gcatacctg 49
<210> 13
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
cacacaggaa acagaccatg tttgagaaca ttaccgccg 39
<210> 14
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gccgcaagct tgtcgactta cagcactgcc acaatcgc 38
<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
gtcgacaagc ttgcggcc 18
<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atttcctaat gcaggagtcg cat 23
<210> 17
<211> 3423
<212> DNA
<213> Corynebacterium glutamicum (Corynebacterium glutamicum)
<400> 17
gtgtcgactc acacatcttc aacgcttcca gcattcaaaa agatcttggt agcaaaccgc 60
ggcgaaatcg cggtccgtgc tttccgtgca gcactcgaaa ccggtgcagc cacggtagct 120
atttaccccc gtgaagatcg gggatcattc caccgctctt ttgcttctga agctgtccgc 180
attggtaccg aaggctcacc agtcaaggcg tacctggaca tcgatgaaat tatcggtgca 240
gctaaaaaag ttaaagcaga tgccatttac ccgggatacg gcttcctgtc tgaaaatgcc 300
cagcttgccc gcgagtgtgc ggaaaacggc attactttta ttggcccaac cccagaggtt 360
cttgatctca ccggtgataa gtctcgcgcg gtaaccgccg cgaagaaggc tggtctgcca 420
gttttggcgg aatccacccc gagcaaaaac atcgatgaga tcgttaaaag cgctgaaggc 480
cagacttacc ccatctttgt gaaggcagtt gccggtggtg gcggacgcgg tatgcgtttt 540
gttgcttcac ctgatgagct tcgcaaatta gcaacagaag catctcgtga agctgaagcg 600
gctttcggcg atggcgcggt atatgtcgaa cgtgctgtga ttaaccctca gcatattgaa 660
gtgcagatcc ttggcgatca cactggagaa gttgtacacc tttatgaacg tgactgctca 720
ctgcagcgtc gtcaccaaaa agttgtcgaa attgcgccag cacagcattt ggatccagaa 780
ctgcgtgatc gcatttgtgc ggatgcagta aagttctgcc gctccattgg ttaccagggc 840
gcgggaaccg tggaattctt ggtcgatgaa aagggcaacc acgtcttcat cgaaatgaac 900
ccacgtatcc aggttgagca caccgtgact gaagaagtca ccgaggtgga cctggtgaag 960
gcgcagatgc gcttggctgc tggtgcaacc ttgaaggaat tgggtctgac ccaagataag 1020
atcaagaccc acggtgcagc actgcagtgc cgcatcacca cggaagatcc aaacaacggc 1080
ttccgcccag ataccggaac tatcaccgcg taccgctcac caggcggagc tggcgttcgt 1140
cttgacggtg cagctcagct cggtggcgaa atcaccgcac actttgactc catgctggtg 1200
aaaatgacct gccgtggttc cgactttgaa actgctgttg ctcgtgcaca gcgcgcgttg 1260
gctgagttca ccgtgtctgg tgttgcaacc aacattggtt tcttgcgtgc gttgctgcgg 1320
gaagaggact tcacttccaa gcgcatcgcc accggattca ttgccgatca cccgcacctc 1380
cttcaggctc cacctgctga tgatgagcag ggacgcatcc tggattactt ggcagatgtc 1440
accgtgaaca agcctcatgg tgtgcgtcca aaggatgttg cagctcctat cgataagctg 1500
cctaacatca aggatctgcc actgccacgc ggttcccgtg accgcctgaa gcagcttggc 1560
ccagccgcgt ttgctcgtga tctccgtgag caggacgcac tggcagttac tgataccacc 1620
ttccgcgatg cacaccagtc tttgcttgcg acccgagtcc gctcattcgc actgaagcct 1680
gcggcagagg ccgtcgcaaa gctgactcct gagcttttgt ccgtggaggc ctggggcggc 1740
gcgacctacg atgtggcgat gcgtttcctc tttgaggatc cgtgggacag gctcgacgag 1800
ctgcgcgagg cgatgccgaa tgtaaacatt cagatgctgc ttcgcggccg caacaccgtg 1860
ggatacaccc cgtacccaga ctccgtctgc cgcgcgtttg ttaaggaagc tgccagctcc 1920
ggcgtggaca tcttccgcat cttcgacgcg cttaacgacg tctcccagat gcgtccagca 1980
atcgacgcag tcctggagac caacaccgcg gtagccgagg tggctatggc ttattctggt 2040
gatctctctg atccaaatga aaagctctac accctggatt actacctaaa gatggcagag 2100
gagatcgtca agtctggcgc tcacatcttg gccattaagg atatggctgg tctgcttcgc 2160
ccagctgcgg taaccaagct ggtcaccgca ctgcgccgtg aattcgatct gccagtgcac 2220
gtgcacaccc acgacactgc gggtggccag ctggcaacct actttgctgc agctcaagct 2280
ggtgcagatg ctgttgacgg tgcttccgca ccactgtctg gcaccacctc ccagccatcc 2340
ctgtctgcca ttgttgctgc attcgcgcac acccgtcgcg ataccggttt gagcctcgag 2400
gctgtttctg acctcgagcc gtactgggaa gcagtgcgcg gactgtacct gccatttgag 2460
tctggaaccc caggcccaac cggtcgcgtc taccgccacg aaatcccagg cggacagttg 2520
tccaacctgc gtgcacaggc caccgcactg ggccttgcgg atcgtttcga actcatcgaa 2580
gacaactacg cagccgttaa tgagatgctg ggacgcccaa ccaaggtcac cccatcctcc 2640
aaggttgttg gcgacctcgc actccacctc gttggtgcgg gtgtggatcc agcagacttt 2700
gctgccgatc cacaaaagta cgacatccca gactctgtca tcgcgttcct gcgcggcgag 2760
cttggtaacc ctccaggtgg ctggccagag ccactgcgca cccgcgcact ggaaggccgc 2820
tccgaaggca aggcacctct gacggaagtt cctgaggaag agcaggcgca cctcgacgct 2880
gatgattcca aggaacgtcg caatagcctc aaccgcctgc tgttcccgaa gccaaccgaa 2940
gagttcctcg agcaccgtcg ccgcttcggc aacacctctg cgctggatga tcgtgaattc 3000
ttctacggcc tggtcgaagg ccgcgagact ttgatccgcc tgccagatgt gcgcacccca 3060
ctgcttgttc gcctggatgc gatctctgag ccagacgata agggtatgcg caatgttgtg 3120
gccaacgtca acggccagat ccgcccaatg cgtgtgcgtg accgctccgt tgagtctgtc 3180
accgcaaccg cagaaaaggc agattcctcc aacaagggcc atgttgctgc accattcgct 3240
ggtgttgtca ccgtgactgt tgctgaaggt gatgaggtca aggctggaga tgcagtcgca 3300
atcatcgagg ctatgaagat ggaagcaaca atcactgctt ctgttgacgg caaaatcgat 3360
cgcgttgtgg ttcctgctgc aacgaaggtg gaaggtggcg acttgatcgt cgtcgtttcc 3420
taa 3423
<210> 18
<211> 411
<212> DNA
<213> E.coli BL21(DE3) (Escherichia coli BL21(DE3))
<400> 18
atgttgcgta ctatcctggg ctccaaaatt catcgtgcca ccgtcacgca ggcagacttg 60
gattatgtgg gctccgtgac catcgacgcg gacttagtcc acgccgccgg gttgatcgaa 120
ggcgagaaag tggcgattgt agacattacc aacggggctc gcttggaaac ttatgtcatt 180
gtgggtgatg cgggaactgg gaacatctgc attaacgggg ccgcagctca tctgatcaat 240
ccgggcgatt tggtgatcat catgtcatat ttgcaagcga cggatgcaga agctaaagca 300
tatgagccga agatcgtcca tgtcgacgct gataaccgca ttgtggcgct gggaaacgac 360
ctggctgagg ccttgccagg ttcaggcctt ttaaccagtc gctcgatcta g 411
<210> 19
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
cacacaggaa acagaccgtg tcgactcaca catcttcaac g 41
<210> 20
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
gccggatgat taattgtcaa gaattcctta ggaaacgacg acgatcaagt c 51
<210> 21
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
gaaacagacc ctcgagcaag aggtatatat taatgttgcg tactatcc 48
<210> 22
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gccaaaacag ccaagcttct agatcgagcg actggttaaa ag 42
<210> 23
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
aagcttggct gttttggcg 19
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
cagctcattt cagaatattt gcca 24
<210> 25
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
tcttcaagct ctggtagctc gtcgtctggg tcttcaagtt ccggcagttc gagctccgga 60
<210> 26
<211> 20
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 26
Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser
1 5 10 15
Ser Ser Ser Gly
20
<210> 27
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
taataccggc gaattctctt caagctctgg tagctcgtc 39
<210> 28
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
cggcggtaat gttctcaaac attccggagc tcgaactgcc 40
<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
atgtttgaga acattaccgc cg 22
<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
gaattcgccg gtattacgca 20
<210> 31
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
acggaattgc caagctttct tcaagctctg gtagctcgtc 40
<210> 32
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
ccggagtaat ggtcattccg gagctcgaac tgcc 34
<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
atgaccatta ctccggcaac tc 22
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
aagcttggca attccgttca 20
<210> 35
<211> 1299
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 35
Met Asn Glu Gln Tyr Ser Ala Leu Arg Ser Asn Val Ser Met Leu Gly
1 5 10 15
Lys Val Leu Gly Glu Thr Ile Lys Asp Ala Leu Gly Glu His Ile Leu
20 25 30
Glu Arg Val Glu Thr Ile Arg Lys Leu Ser Lys Ser Ser Arg Ala Gly
35 40 45
Asn Asp Ala Asn Arg Gln Glu Leu Leu Thr Thr Leu Gln Asn Leu Ser
50 55 60
Asn Asp Glu Leu Leu Pro Val Ala Arg Ala Phe Ser Gln Phe Leu Asn
65 70 75 80
Leu Ala Asn Thr Ala Glu Gln Tyr His Ser Ile Ser Pro Lys Gly Glu
85 90 95
Ala Ala Ser Asn Pro Glu Val Ile Ala Arg Thr Leu Arg Lys Leu Lys
100 105 110
Asn Gln Pro Glu Leu Ser Glu Asp Thr Ile Lys Lys Ala Val Glu Ser
115 120 125
Leu Ser Leu Glu Leu Val Leu Thr Ala His Pro Thr Glu Ile Thr Arg
130 135 140
Arg Thr Leu Ile His Lys Met Val Glu Val Asn Ala Cys Leu Lys Gln
145 150 155 160
Leu Asp Asn Lys Asp Ile Ala Asp Tyr Glu His Asn Gln Leu Met Arg
165 170 175
Arg Leu Arg Gln Leu Ile Ala Gln Ser Trp His Thr Asp Glu Ile Arg
180 185 190
Lys Leu Arg Pro Ser Pro Val Asp Glu Ala Lys Trp Gly Phe Ala Val
195 200 205
Val Glu Asn Ser Leu Trp Gln Gly Val Pro Asn Tyr Leu Arg Glu Leu
210 215 220
Asn Glu Gln Leu Glu Glu Asn Leu Gly Tyr Lys Leu Pro Val Glu Phe
225 230 235 240
Val Pro Val Arg Phe Thr Ser Trp Met Gly Gly Asp Arg Asp Gly Asn
245 250 255
Pro Asn Val Thr Ala Asp Ile Thr Arg His Val Leu Leu Leu Ser Arg
260 265 270
Trp Lys Ala Thr Asp Leu Phe Leu Lys Asp Ile Gln Val Leu Val Ser
275 280 285
Glu Leu Ser Met Val Glu Ala Thr Pro Glu Leu Leu Ala Leu Val Gly
290 295 300
Glu Glu Gly Ala Ala Glu Pro Tyr Arg Tyr Leu Met Lys Asn Leu Arg
305 310 315 320
Ser Arg Leu Met Ala Thr Gln Ala Trp Leu Glu Ala Arg Leu Lys Gly
325 330 335
Glu Glu Leu Pro Lys Pro Glu Gly Leu Leu Thr Gln Asn Glu Glu Leu
340 345 350
Trp Glu Pro Leu Tyr Ala Cys Tyr Gln Ser Leu Gln Ala Cys Gly Met
355 360 365
Gly Ile Ile Ala Asn Gly Asp Leu Leu Asp Thr Leu Arg Arg Val Lys
370 375 380
Cys Phe Gly Val Pro Leu Val Arg Ile Asp Ile Arg Gln Glu Ser Thr
385 390 395 400
Arg His Thr Glu Ala Leu Gly Glu Leu Thr Arg Tyr Leu Gly Ile Gly
405 410 415
Asp Tyr Glu Ser Trp Ser Glu Ala Asp Lys Gln Ala Phe Leu Ile Arg
420 425 430
Glu Leu Asn Ser Lys Arg Pro Leu Leu Pro Arg Asn Trp Gln Pro Ser
435 440 445
Ala Glu Thr Arg Glu Val Leu Asp Thr Cys Gln Val Ile Ala Glu Ala
450 455 460
Pro Gln Gly Ser Ile Ala Ala Tyr Val Ile Ser Met Ala Lys Thr Pro
465 470 475 480
Ser Asp Val Leu Ala Val His Leu Leu Leu Lys Glu Ala Gly Ile Gly
485 490 495
Phe Ala Met Pro Val Ala Pro Leu Phe Glu Thr Leu Asp Asp Leu Asn
500 505 510
Asn Ala Asn Asp Val Met Thr Gln Leu Leu Asn Ile Asp Trp Tyr Arg
515 520 525
Gly Leu Ile Gln Gly Lys Gln Met Val Met Ile Gly Tyr Ser Asp Ser
530 535 540
Ala Lys Asp Ala Gly Val Met Ala Ala Ser Trp Ala Gln Tyr Gln Ala
545 550 555 560
Gln Asp Ala Leu Ile Lys Thr Cys Glu Lys Ala Gly Ile Glu Leu Thr
565 570 575
Leu Phe His Gly Arg Gly Gly Ser Ile Gly Arg Gly Gly Ala Pro Ala
580 585 590
His Ala Ala Leu Leu Ser Gln Pro Pro Gly Ser Leu Lys Gly Gly Leu
595 600 605
Arg Val Thr Glu Gln Gly Glu Met Ile Arg Phe Lys Tyr Gly Leu Pro
610 615 620
Glu Ile Thr Val Ser Ser Leu Ser Leu Tyr Thr Gly Ala Ile Leu Glu
625 630 635 640
Ala Asn Leu Leu Pro Pro Pro Glu Pro Lys Glu Ser Trp Arg Arg Ile
645 650 655
Met Asp Glu Leu Ser Val Ile Ser Cys Asp Leu Tyr Arg Gly Tyr Val
660 665 670
Arg Glu Asn Lys Asp Phe Val Pro Tyr Phe Arg Ser Ala Thr Pro Glu
675 680 685
Gln Glu Leu Gly Lys Leu Pro Leu Gly Ser Arg Pro Ala Lys Arg Arg
690 695 700
Pro Thr Gly Gly Val Glu Ser Leu Arg Ala Ile Pro Trp Ile Phe Ala
705 710 715 720
Trp Thr Gln Asn Arg Leu Met Leu Pro Ala Trp Leu Gly Ala Gly Thr
725 730 735
Ala Leu Gln Lys Val Val Glu Asp Gly Lys Gln Ser Glu Leu Glu Ala
740 745 750
Met Cys Arg Asp Trp Pro Phe Phe Ser Thr Arg Leu Gly Met Leu Glu
755 760 765
Met Val Phe Ala Lys Ala Asp Leu Trp Leu Ala Glu Tyr Tyr Asp Gln
770 775 780
Arg Leu Val Asp Lys Ala Leu Trp Pro Leu Gly Lys Glu Leu Arg Asn
785 790 795 800
Leu Gln Glu Glu Asp Ile Lys Val Val Leu Ala Ile Ala Asn Asp Ser
805 810 815
His Leu Met Ala Asp Leu Pro Trp Ile Ala Glu Ser Ile Gln Leu Arg
820 825 830
Asn Ile Tyr Thr Asp Pro Leu Asn Val Leu Gln Ala Glu Leu Leu His
835 840 845
Arg Ser Arg Gln Ala Glu Lys Glu Gly Gln Glu Pro Asp Pro Arg Val
850 855 860
Glu Gln Ala Leu Met Val Thr Ile Ala Gly Ile Ala Ala Gly Met Arg
865 870 875 880
Asn Thr Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser
885 890 895
Ser Gly Ser Ser Ser Ser Gly Met Phe Glu Asn Ile Thr Ala Ala Pro
900 905 910
Ala Asp Pro Ile Leu Gly Leu Ala Asp Leu Phe Arg Ala Asp Glu Arg
915 920 925
Pro Gly Lys Ile Asn Leu Gly Ile Gly Val Tyr Lys Asp Glu Thr Gly
930 935 940
Lys Thr Pro Val Leu Thr Ser Val Lys Lys Ala Glu Gln Tyr Leu Leu
945 950 955 960
Glu Asn Glu Thr Thr Lys Asn Tyr Leu Gly Ile Asp Gly Ile Pro Glu
965 970 975
Phe Gly Arg Cys Thr Gln Glu Leu Leu Phe Gly Lys Gly Ser Ala Leu
980 985 990
Ile Asn Asp Lys Arg Ala Arg Thr Ala Gln Thr Pro Gly Gly Thr Gly
995 1000 1005
Ala Leu Arg Val Ala Ala Asp Phe Leu Ala Lys Asn Thr Ser Val Lys
1010 1015 1020
Arg Val Trp Val Ser Asn Pro Ser Trp Pro Asn His Lys Ser Val Phe
1025 1030 1035 1040
Asn Ser Ala Gly Leu Glu Val Arg Glu Tyr Ala Tyr Tyr Asp Ala Glu
1045 1050 1055
Asn His Thr Leu Asp Phe Asp Ala Leu Ile Asn Ser Leu Asn Glu Ala
1060 1065 1070
Gln Ala Gly Asp Val Val Leu Phe His Gly Cys Cys His Asn Pro Thr
1075 1080 1085
Gly Ile Asp Pro Thr Leu Glu Gln Trp Gln Thr Leu Ala Gln Leu Ser
1090 1095 1100
Val Glu Lys Gly Trp Leu Pro Leu Phe Asp Phe Ala Tyr Gln Gly Phe
1105 1110 1115 1120
Ala Arg Gly Leu Glu Glu Asp Ala Glu Gly Leu Arg Ala Phe Ala Ala
1125 1130 1135
Met His Lys Glu Leu Ile Val Ala Ser Ser Tyr Ser Lys Asn Phe Gly
1140 1145 1150
Leu Tyr Asn Glu Arg Val Gly Ala Cys Thr Leu Val Ala Ala Asp Ser
1155 1160 1165
Glu Thr Val Asp Arg Ala Phe Ser Gln Met Lys Ala Ala Ile Arg Ala
1170 1175 1180
Asn Tyr Ser Asn Pro Pro Ala His Gly Ala Ser Val Val Ala Thr Ile
1185 1190 1195 1200
Leu Ser Asn Asp Ala Leu Arg Ala Ile Trp Glu Gln Glu Leu Thr Asp
1205 1210 1215
Met Arg Gln Arg Ile Gln Arg Met Arg Gln Leu Phe Val Asn Thr Leu
1220 1225 1230
Gln Glu Lys Gly Ala Asn Arg Asp Phe Ser Phe Ile Ile Lys Gln Asn
1235 1240 1245
Gly Met Phe Ser Phe Ser Gly Leu Thr Lys Glu Gln Val Leu Arg Leu
1250 1255 1260
Arg Glu Glu Phe Gly Val Tyr Ala Val Ala Ser Gly Arg Val Asn Val
1265 1270 1275 1280
Ala Gly Met Thr Pro Asp Asn Met Ala Pro Leu Cys Glu Ala Ile Val
1285 1290 1295
Ala Val Leu
<210> 36
<211> 930
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 36
Met Thr Ile Thr Pro Ala Thr His Ala Ile Ser Ile Asn Pro Ala Thr
1 5 10 15
Gly Glu Gln Leu Ser Val Leu Pro Trp Ala Gly Ala Asp Asp Ile Glu
20 25 30
Asn Ala Leu Gln Leu Ala Ala Ala Gly Phe Arg Asp Trp Arg Glu Thr
35 40 45
Asn Ile Asp Tyr Arg Ala Glu Lys Leu Arg Asp Ile Gly Lys Ala Leu
50 55 60
Arg Ala Arg Ser Glu Glu Met Ala Gln Met Ile Thr Arg Glu Met Gly
65 70 75 80
Lys Pro Ile Asn Gln Ala Arg Ala Glu Val Ala Lys Ser Ala Asn Leu
85 90 95
Cys Asp Trp Tyr Ala Glu His Gly Pro Ala Met Leu Lys Ala Glu Pro
100 105 110
Thr Leu Val Glu Asn Gln Gln Ala Val Ile Glu Tyr Arg Pro Leu Gly
115 120 125
Thr Ile Leu Ala Ile Met Pro Trp Asn Phe Pro Leu Trp Gln Val Met
130 135 140
Arg Gly Ala Val Pro Ile Ile Leu Ala Gly Asn Gly Tyr Leu Leu Lys
145 150 155 160
His Ala Pro Asn Val Met Gly Cys Ala Gln Leu Ile Ala Gln Val Phe
165 170 175
Lys Asp Ala Gly Ile Pro Gln Gly Val Tyr Gly Trp Leu Asn Ala Asp
180 185 190
Asn Asp Gly Val Ser Gln Met Ile Lys Asp Ser Arg Ile Ala Ala Val
195 200 205
Thr Val Thr Gly Ser Val Arg Ala Gly Ala Ala Ile Gly Ala Gln Ala
210 215 220
Gly Ala Ala Leu Lys Lys Cys Val Leu Glu Leu Gly Gly Ser Asp Pro
225 230 235 240
Phe Ile Val Leu Asn Asp Ala Asp Leu Glu Leu Ala Val Lys Ala Ala
245 250 255
Val Ala Gly Arg Tyr Gln Asn Thr Gly Gln Val Cys Ala Ala Ala Lys
260 265 270
Arg Phe Ile Ile Glu Glu Gly Ile Ala Ser Ala Phe Thr Glu Arg Phe
275 280 285
Val Ala Ala Ala Ala Ala Leu Lys Met Gly Asp Pro Arg Asp Glu Glu
290 295 300
Asn Ala Leu Gly Pro Met Ala Arg Phe Asp Leu Arg Asp Glu Leu His
305 310 315 320
His Gln Val Glu Lys Thr Leu Ala Gln Gly Ala Arg Leu Leu Leu Gly
325 330 335
Gly Glu Lys Met Ala Gly Ala Gly Asn Tyr Tyr Pro Pro Thr Val Leu
340 345 350
Ala Asn Val Thr Pro Glu Met Thr Ala Phe Arg Glu Glu Met Phe Gly
355 360 365
Pro Val Ala Ala Ile Thr Ile Ala Lys Asp Ala Glu His Ala Leu Glu
370 375 380
Leu Ala Asn Asp Ser Glu Phe Gly Leu Ser Ala Thr Ile Phe Thr Thr
385 390 395 400
Asp Glu Thr Gln Ala Arg Gln Met Ala Ala Arg Leu Glu Cys Gly Gly
405 410 415
Val Phe Ile Asn Gly Tyr Cys Ala Ser Asp Ala Arg Val Ala Phe Gly
420 425 430
Gly Val Lys Lys Ser Gly Phe Gly Arg Glu Leu Ser His Phe Gly Leu
435 440 445
His Glu Phe Cys Asn Ile Gln Thr Val Trp Lys Asp Arg Ile Ser Ser
450 455 460
Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser
465 470 475 480
Ser Gly Met Asn Gln Pro Leu Asn Val Ala Pro Pro Val Ser Ser Glu
485 490 495
Leu Asn Leu Arg Ala His Trp Met Pro Phe Ser Ala Asn Arg Asn Phe
500 505 510
Gln Lys Asp Pro Arg Ile Ile Val Ala Ala Glu Gly Ser Trp Leu Thr
515 520 525
Asp Asp Lys Gly Arg Lys Val Tyr Asp Ser Leu Ser Gly Leu Trp Thr
530 535 540
Cys Gly Ala Gly His Ser Arg Lys Glu Ile Gln Glu Ala Val Ala Arg
545 550 555 560
Gln Leu Gly Thr Leu Asp Tyr Ser Pro Gly Phe Gln Tyr Gly His Pro
565 570 575
Leu Ser Phe Gln Leu Ala Glu Lys Ile Ala Gly Leu Leu Pro Gly Glu
580 585 590
Leu Asn His Val Phe Phe Thr Gly Ser Gly Ser Glu Cys Ala Asp Thr
595 600 605
Ser Ile Lys Met Ala Arg Ala Tyr Trp Arg Leu Lys Gly Gln Pro Gln
610 615 620
Lys Thr Lys Leu Ile Gly Arg Ala Arg Gly Tyr His Gly Val Asn Val
625 630 635 640
Ala Gly Thr Ser Leu Gly Gly Ile Gly Gly Asn Arg Lys Met Phe Gly
645 650 655
Gln Leu Met Asp Val Asp His Leu Pro His Thr Leu Gln Pro Gly Met
660 665 670
Ala Phe Thr Arg Gly Met Ala Gln Thr Gly Gly Val Glu Leu Ala Asn
675 680 685
Glu Leu Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala
690 695 700
Val Ile Val Glu Pro Met Ser Gly Ser Ala Gly Val Leu Val Pro Pro
705 710 715 720
Val Gly Tyr Leu Gln Arg Leu Arg Glu Ile Cys Asp Gln His Asn Ile
725 730 735
Leu Leu Ile Phe Asp Glu Val Ile Thr Ala Phe Gly Arg Leu Gly Thr
740 745 750
Tyr Ser Gly Ala Glu Tyr Phe Gly Val Thr Pro Asp Leu Met Asn Val
755 760 765
Ala Lys Gln Val Thr Asn Gly Ala Val Pro Met Gly Ala Val Ile Ala
770 775 780
Ser Ser Glu Ile Tyr Asp Thr Phe Met Asn Gln Ala Leu Pro Glu His
785 790 795 800
Ala Val Glu Phe Ser His Gly Tyr Thr Tyr Ser Ala His Pro Val Ala
805 810 815
Cys Ala Ala Gly Leu Ala Ala Leu Asp Ile Leu Ala Arg Asp Asn Leu
820 825 830
Val Gln Gln Ser Ala Glu Leu Ala Pro His Phe Glu Lys Gly Leu His
835 840 845
Gly Leu Gln Gly Ala Lys Asn Val Ile Asp Ile Arg Asn Cys Gly Leu
850 855 860
Ala Gly Ala Ile Gln Ile Ala Pro Arg Asp Gly Asp Pro Thr Val Arg
865 870 875 880
Pro Phe Glu Ala Gly Met Lys Leu Trp Gln Gln Gly Phe Tyr Val Arg
885 890 895
Phe Gly Gly Asp Thr Leu Gln Phe Gly Pro Thr Phe Asn Ala Arg Pro
900 905 910
Glu Glu Leu Asp Arg Leu Phe Asp Ala Val Gly Glu Ala Leu Asn Gly
915 920 925
Ile Ala
930
<210> 37
<211> 1140
<212> PRT
<213> Corynebacterium glutamicum (Corynebacterium glutamicum)
<400> 37
Met Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu
1 5 10 15
Val Ala Asn Arg Gly Glu Ile Ala Val Arg Ala Phe Arg Ala Ala Leu
20 25 30
Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly
35 40 45
Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu
50 55 60
Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala
65 70 75 80
Ala Lys Lys Val Lys Ala Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu
85 90 95
Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr
100 105 110
Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser
115 120 125
Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu
130 135 140
Ser Thr Pro Ser Lys Asn Ile Asp Glu Ile Val Lys Ser Ala Glu Gly
145 150 155 160
Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Gly Arg
165 170 175
Gly Met Arg Phe Val Ala Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr
180 185 190
Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr
195 200 205
Val Glu Arg Ala Val Ile Asn Pro Gln His Ile Glu Val Gln Ile Leu
210 215 220
Gly Asp His Thr Gly Glu Val Val His Leu Tyr Glu Arg Asp Cys Ser
225 230 235 240
Leu Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ala Gln His
245 250 255
Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala Asp Ala Val Lys Phe
260 265 270
Cys Arg Ser Ile Gly Tyr Gln Gly Ala Gly Thr Val Glu Phe Leu Val
275 280 285
Asp Glu Lys Gly Asn His Val Phe Ile Glu Met Asn Pro Arg Ile Gln
290 295 300
Val Glu His Thr Val Thr Glu Glu Val Thr Glu Val Asp Leu Val Lys
305 310 315 320
Ala Gln Met Arg Leu Ala Ala Gly Ala Thr Leu Lys Glu Leu Gly Leu
325 330 335
Thr Gln Asp Lys Ile Lys Thr His Gly Ala Ala Leu Gln Cys Arg Ile
340 345 350
Thr Thr Glu Asp Pro Asn Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile
355 360 365
Thr Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val Arg Leu Asp Gly Ala
370 375 380
Ala Gln Leu Gly Gly Glu Ile Thr Ala His Phe Asp Ser Met Leu Val
385 390 395 400
Lys Met Thr Cys Arg Gly Ser Asp Phe Glu Thr Ala Val Ala Arg Ala
405 410 415
Gln Arg Ala Leu Ala Glu Phe Thr Val Ser Gly Val Ala Thr Asn Ile
420 425 430
Gly Phe Leu Arg Ala Leu Leu Arg Glu Glu Asp Phe Thr Ser Lys Arg
435 440 445
Ile Ala Thr Gly Phe Ile Ala Asp His Pro His Leu Leu Gln Ala Pro
450 455 460
Pro Ala Asp Asp Glu Gln Gly Arg Ile Leu Asp Tyr Leu Ala Asp Val
465 470 475 480
Thr Val Asn Lys Pro His Gly Val Arg Pro Lys Asp Val Ala Ala Pro
485 490 495
Ile Asp Lys Leu Pro Asn Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser
500 505 510
Arg Asp Arg Leu Lys Gln Leu Gly Pro Ala Ala Phe Ala Arg Asp Leu
515 520 525
Arg Glu Gln Asp Ala Leu Ala Val Thr Asp Thr Thr Phe Arg Asp Ala
530 535 540
His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe Ala Leu Lys Pro
545 550 555 560
Ala Ala Glu Ala Val Ala Lys Leu Thr Pro Glu Leu Leu Ser Val Glu
565 570 575
Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg Phe Leu Phe Glu
580 585 590
Asp Pro Trp Asp Arg Leu Asp Glu Leu Arg Glu Ala Met Pro Asn Val
595 600 605
Asn Ile Gln Met Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro
610 615 620
Tyr Pro Asp Ser Val Cys Arg Ala Phe Val Lys Glu Ala Ala Ser Ser
625 630 635 640
Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Ser Gln
645 650 655
Met Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Asn Thr Ala Val Ala
660 665 670
Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asp Pro Asn Glu Lys
675 680 685
Leu Tyr Thr Leu Asp Tyr Tyr Leu Lys Met Ala Glu Glu Ile Val Lys
690 695 700
Ser Gly Ala His Ile Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg
705 710 715 720
Pro Ala Ala Val Thr Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp
725 730 735
Leu Pro Val His Val His Thr His Asp Thr Ala Gly Gly Gln Leu Ala
740 745 750
Thr Tyr Phe Ala Ala Ala Gln Ala Gly Ala Asp Ala Val Asp Gly Ala
755 760 765
Ser Ala Pro Leu Ser Gly Thr Thr Ser Gln Pro Ser Leu Ser Ala Ile
770 775 780
Val Ala Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Ser Leu Glu
785 790 795 800
Ala Val Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr
805 810 815
Leu Pro Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg
820 825 830
His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Thr
835 840 845
Ala Leu Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Asn Tyr Ala
850 855 860
Ala Val Asn Glu Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser
865 870 875 880
Lys Val Val Gly Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp
885 890 895
Pro Ala Asp Phe Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser
900 905 910
Val Ile Ala Phe Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp
915 920 925
Pro Glu Pro Leu Arg Thr Arg Ala Leu Glu Gly Arg Ser Glu Gly Lys
930 935 940
Ala Pro Leu Thr Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala
945 950 955 960
Asp Asp Ser Lys Glu Arg Arg Asn Ser Leu Asn Arg Leu Leu Phe Pro
965 970 975
Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Arg Phe Gly Asn Thr
980 985 990
Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg
995 1000 1005
Glu Thr Leu Ile Arg Leu Pro Asp Val Arg Thr Pro Leu Leu Val Arg
1010 1015 1020
Leu Asp Ala Ile Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val
1025 1030 1035 1040
Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg Asp Arg Ser
1045 1050 1055
Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys
1060 1065 1070
Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala
1075 1080 1085
Glu Gly Asp Glu Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala
1090 1095 1100
Met Lys Met Glu Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp
1105 1110 1115 1120
Arg Val Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile
1125 1130 1135
Val Val Val Ser
1140
<210> 38
<211> 136
<212> PRT
<213> E.coli BL21(DE3) (Escherichia coli BL21(DE3))
<400> 38
Met Leu Arg Thr Ile Leu Gly Ser Lys Ile His Arg Ala Thr Val Thr
1 5 10 15
Gln Ala Asp Leu Asp Tyr Val Gly Ser Val Thr Ile Asp Ala Asp Leu
20 25 30
Val His Ala Ala Gly Leu Ile Glu Gly Glu Lys Val Ala Ile Val Asp
35 40 45
Ile Thr Asn Gly Ala Arg Leu Glu Thr Tyr Val Ile Val Gly Asp Ala
50 55 60
Gly Thr Gly Asn Ile Cys Ile Asn Gly Ala Ala Ala His Leu Ile Asn
65 70 75 80
Pro Gly Asp Leu Val Ile Ile Met Ser Tyr Leu Gln Ala Thr Asp Ala
85 90 95
Glu Ala Lys Ala Tyr Glu Pro Lys Ile Val His Val Asp Ala Asp Asn
100 105 110
Arg Ile Val Ala Leu Gly Asn Asp Leu Ala Glu Ala Leu Pro Gly Ser
115 120 125
Gly Leu Leu Thr Ser Arg Ser Ile
130 135
<210> 39
<211> 74
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
ttgacaatta atcatccggc tcgtataatg tgtggaattt tgggcagata acaatttcac 60
acaggaaaca gacc 74

Claims (10)

1. A recombinant Escherichia coli (Escherichia coli) capable of synthesizing malonic acid from oxaloacetate and aspartate by using glucose as a raw material is characterized in that the recombinant Escherichia coli is composed of an over-expression Escherichia coli-derived phosphoenolpyruvate carboxylase ppc, an aspartate aminotransferase aspC and an aspartate-alpha-decarboxylase panD, and Pseudomonas aeruginosa-derived beta-alanine pyruvate aminotransferase pa0132, Escherichia coli-derived succinic semialdehyde dehydrogenase yneI and Corynebacterium glutamicum-derived pyruvate carboxylase pyc.
2. The recombinant Escherichia coli of claim 1, wherein said modular constitutive overexpression is fusion expression of said phosphoenolpyruvate carboxylase ppc and said aspartate aminotransferase aspC, separate expression of said aspartate- α -decarboxylase panD and said pyruvate carboxylase pyc, and fusion expression of said succinate semialdehyde dehydrogenase yneI and said β -alanine pyruvate aminotransferase pa 0132.
3. The recombinant E.coli of claim 1 or 2, wherein the promoter used for modular constitutive overexpression is the constitutive promoter ML 2719;
taking escherichia coli BL21(DE3) as a host;
the phosphoenolpyruvate carboxylase ppc, the aspartate aminotransferase aspC and the aspartate- α -decarboxylase panD are from escherichia coli BL21(DE 3); and/or
The succinic semialdehyde dehydrogenase yneI is derived from Escherichia coli K12.
4. The recombinant Escherichia coli of any one of claims 1 to 3, wherein the phosphoenolpyruvate carboxylase ppc has a protein sequence shown in positions 1 to 883 in SEQ ID NO 35;
the protein sequence of the aspartate aminotransferase aspC is shown as position 904-1299 in SEQ ID NO 35;
the protein sequence of the aspartate-alpha-decarboxylase panD is shown as SEQ ID NO 38;
the protein sequence of the beta-alanine pyruvate transaminase pa0132 is shown as position 483-930 in SEQ ID NO 36;
the protein sequence of the succinic semialdehyde dehydrogenase yneI is shown as 1-462 in SEQ ID NO: 36; and/or
The protein sequence of the pyruvate carboxylase pyc is shown as SEQ ID NO: 37.
5. A method for constructing the recombinant Escherichia coli as claimed in any one of claims 1 to 4, which comprises transferring one or more plasmids containing the gene ppc encoding phosphoenolpyruvate carboxylase derived from Escherichia coli, the gene aspC encoding aspartate aminotransferase, the gene panD encoding aspartate- α -decarboxylase, and the gene pa0132 encoding β -alanine pyruvate aminotransferase derived from Pseudomonas aeruginosa, the gene yneI encoding succinate semialdehyde dehydrogenase derived from Escherichia coli, and the gene pyc encoding pyruvate carboxylase derived from Corynebacterium glutamicum into an Escherichia coli host for modular constitutive overexpression.
6. The method of claim 5, wherein said modular constitutive overexpression comprises the step of modular constitutive overexpression of a plasmid fusion expressing phosphoenolpyruvate carboxylase gene ppc and aspartate aminotransferase gene aspC, a plasmid separately expressing said aspartate- α -dehydrogenase gene panD and said pyruvate carboxylase gene pyc, and a plasmid fusion expressing said succinate semialdehyde dehydrogenase gene ynel and said β -alanine pyruvate aminotransferase gene pa0132 into an E.coli host.
7. The method according to claim 5 or 6, characterized in that the promoter used in the modular constitutive overexpression is the constitutive promoter ML 2719;
the Escherichia coli host is Escherichia coli BL21(DE 3);
the phosphoenolpyruvate carboxylase gene ppc, the aspartate aminotransferase gene aspC and the aspartate-alpha-dehydrogenase gene panD are from escherichia coli BL21(DE 3); and/or
The succinic semialdehyde dehydrogenase gene yneI is derived from Escherichia coli K12.
8. The method according to any one of claims 5 to 7, wherein the phosphoenolpyruvate carboxylase gene ppc has the sequence shown in SEQ ID NO 9;
the sequence of the aspartate aminotransferase gene aspC is shown as SEQ ID NO. 10;
the sequence of the aspartate-alpha-dehydrogenase gene panD is shown as SEQ ID NO 18;
the sequence of the beta-alanine pyruvate transaminase gene pa0132 is shown as SEQ ID NO 2;
the sequence of the succinic semialdehyde dehydrogenase gene yneI is shown in SEQ ID NO 1; and/or
The sequence of the pyruvate carboxylase gene pyc is shown in SEQ ID NO. 17.
9. A method for producing malonic acid by fermentation, comprising inoculating the recombinant Escherichia coli of any one of claims 1 to 4 into an SOB medium containing 4 to 8g/L glucose, and fermenting at 30 to 37 ℃ and 300-.
10. Use of the recombinant E.coli of any one of claims 1 to 4 or the method of claim 9 for the preparation of malonic acid and its derivatives.
CN202210342606.8A 2022-04-02 2022-04-02 Recombinant escherichia coli as well as preparation method and application thereof Active CN114736841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210342606.8A CN114736841B (en) 2022-04-02 2022-04-02 Recombinant escherichia coli as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210342606.8A CN114736841B (en) 2022-04-02 2022-04-02 Recombinant escherichia coli as well as preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114736841A true CN114736841A (en) 2022-07-12
CN114736841B CN114736841B (en) 2023-12-19

Family

ID=82278736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210342606.8A Active CN114736841B (en) 2022-04-02 2022-04-02 Recombinant escherichia coli as well as preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114736841B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177345A1 (en) * 2012-03-06 2016-06-23 Lygos, Inc. Recombinant host cells for the production of malonate
US20180237810A1 (en) * 2014-06-26 2018-08-23 Lygos, Inc. Recombinant host cells for the production of malonate
CN111621854A (en) * 2020-06-28 2020-09-04 江南大学 Trc promoter mutation library and application thereof
CN113122486A (en) * 2019-12-31 2021-07-16 江南大学 Method for total biosynthesis of malonic acid
CN113832087A (en) * 2020-06-23 2021-12-24 江南大学 Method for full-biological synthesis of malonic acid by using escherichia coli

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177345A1 (en) * 2012-03-06 2016-06-23 Lygos, Inc. Recombinant host cells for the production of malonate
US20180237810A1 (en) * 2014-06-26 2018-08-23 Lygos, Inc. Recombinant host cells for the production of malonate
CN113122486A (en) * 2019-12-31 2021-07-16 江南大学 Method for total biosynthesis of malonic acid
CN113832087A (en) * 2020-06-23 2021-12-24 江南大学 Method for full-biological synthesis of malonic acid by using escherichia coli
CN111621854A (en) * 2020-06-28 2020-09-04 江南大学 Trc promoter mutation library and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王丹等: "乳糖诱导丙酮酸羧化酶基因在大肠杆菌中的表达及对丁二酸产量的影响", 《生物工程学报》, vol. 25, no. 9, pages 1343 *

Also Published As

Publication number Publication date
CN114736841B (en) 2023-12-19

Similar Documents

Publication Publication Date Title
CN111471638B (en) Construction and application of corynebacterium glutamicum mutant strain capable of producing L-homoserine
MXPA02000729A (en) Methods for producing lamino acids by increasing cellular nadph.
CN110904018B (en) 5-aminolevulinic acid production strain and construction method and application thereof
CN113186143B (en) Construction and optimization method of engineering strain for producing tetrahydropyrimidine
CN111808829B (en) Gamma-glutamyl methylamine synthetase mutant and application thereof
WO1998018936A1 (en) Microbial preparation of substances from aromatic metabolism/i
CN113122486B (en) Method for total biosynthesis of malonic acid
CN114480235B (en) Method for preparing alpha-ketoisovalerate by fermenting metabolic engineering escherichia coli
CN117660277A (en) Metabolic engineering modified escherichia coli and application thereof in fermentation preparation of salidroside
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
WO2024140379A1 (en) Enzyme, strain for producing salidroside, and production method
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
KR101836719B1 (en) A modified 0-acetylhomoserine sulfhydrylase and method of producing L-methionine using the same
CN111057672B (en) Recombinant strain and application thereof
CN110872593B (en) Serine hydroxymethyl transferase mutant and application thereof
WO2023197692A1 (en) Engineered strain of yeast having mitochondrion-positioned reductive tca pathway and efficiently producing succinic acid, construction method therefor and use thereof
CN116904416A (en) Recombinant escherichia coli for efficiently producing tetrahydropyrimidine and construction method thereof
CN113832087B (en) Method for total biosynthesis of malonic acid by using escherichia coli
CN114736841B (en) Recombinant escherichia coli as well as preparation method and application thereof
CN114426983B (en) Method for producing 5-aminolevulinic acid by knocking out transcription regulatory factor Ncgl0580 in corynebacterium glutamicum
TW202233833A (en) Recombinant host cells to produce anthranilic acid
EP3489361B1 (en) Microorganism having activity of acyltransferase and use thereof
CN113444699B (en) Acetylacetone lyase mutant capable of improving acetylacetone synthesis efficiency, nucleotide, expression vector, recombinant bacterium and application
KR102312197B1 (en) Production of tryptophan from methane by metabolic engineered methanotrophs
EP4431609A1 (en) Method for improving 2, 4 dihydroxybutyric acid production and yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant