CN114736666A - 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用 - Google Patents

一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用 Download PDF

Info

Publication number
CN114736666A
CN114736666A CN202210255321.0A CN202210255321A CN114736666A CN 114736666 A CN114736666 A CN 114736666A CN 202210255321 A CN202210255321 A CN 202210255321A CN 114736666 A CN114736666 A CN 114736666A
Authority
CN
China
Prior art keywords
cspbbr
pfga
pncs
passivated
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210255321.0A
Other languages
English (en)
Other versions
CN114736666B (zh
Inventor
李飞明
陈天聚
张鹏
陈海妮
李婉婷
吴曼纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnan Normal University
Original Assignee
Minnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnan Normal University filed Critical Minnan Normal University
Priority to CN202210255321.0A priority Critical patent/CN114736666B/zh
Publication of CN114736666A publication Critical patent/CN114736666A/zh
Application granted granted Critical
Publication of CN114736666B publication Critical patent/CN114736666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用,包括以下步骤:(1)全氟戊二酸铯的制备;(2)前驱体溶液的配制;(3)CsPbBr3 PNCs的制备。全氟戊二酸是一种碳链长度与立方相CsPbBr3 PNCs晶格参数高度匹配的一种双齿配体,本发明通过全氟戊二酸对CsPbBr3 PNCs的精准配位实现一个较高的结合能,可使产品在单一酸配体简单的钝化下依然拥有一个较好的发光性能以及优异的极性环境稳定性,同时由于PFGA‑CsPbBr3 PNCs裸露外界的C‑F亲水表面,使得该产品在多种极性溶剂中都展现良好的分散性。另外,基于钙钛矿的卤素交换性质,本发明以PFGA‑CsPbBr3 PNCs为荧光探针构建了Cl的波长移动型荧光可视化传感并用于尿液中氯离子均相实时高效检测及河、海砂氯离子的快速鉴定。

Description

一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用。
背景技术
近年来,钙钛矿纳米晶(Perovskite nanocrystals,PNCs)由于其优异的光学响应和可精准调谐的带隙宽度(例如卤素交换可引起360-700nm荧光发射区波长移动)在荧光可视化传感领域备受重视。然而发展较为缓慢,主要原因是PNCs本身固有的离子特性对环境的高度敏感,使其荧光性质容易受到空气或者极性溶剂的影响发生猝灭,且通常离子的检测需要极性环境辅助离子的扩散过程,因此制备极性可分散的高稳定PNCs对分析传感领域具有重要意义。
表面配体的钝化是提高PNCs稳定性的有效手段之一。然而由于配体与PNCs界面的高动态离子结合方式(即结合-解离过程),使PNCs在极性溶剂诱导下易产生配体脱落问题,这会导致PNCs颗粒堆叠而产生光学性质较差的大块颗粒或多晶。另外,通常PNCs表面配体的碳链端会组成一个非极性界面,因此PNCs在纯化过程中常采用异丙醇或乙酸乙酯等中极性或者弱极性作为憎溶剂以辅助纳米晶沉降,但这预示常规配体在极性溶剂中不理想的分散性。
发明内容
为解决上述技术问题,本发明提供一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用。本发明通过全氟戊二酸(Perfluoropglutaric acid,PFGA)对CsPbBr3 PNCs进行钝化, PFGA是晶格参数与立方相CsPbBr3 PNCs高度匹配的一种双齿配体,PFGA与CsPbBr3 PNCs 之间优异的结合能可使产品在单一酸配体简单的钝化下依然拥有一个较好的发光性能以及优异的极性环境稳定性,同时由于PFGA-CsPbBr3 PNCs裸露外界的C-F亲水表面,使得该产品在多种极性溶剂(包括四氢呋喃、乙酸乙酯、异丙醇、乙醇、乙腈、丙酮等)中都展现良好的分散性。
为了实现上述目的,本发明采用如下技术方案:
一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,包括以下步骤:
(1)全氟戊二酸铯(PFGA-Cs)的制备:
称取PFGA溶于异丙醇中并搅拌均匀,逐滴加入略过量的氢氧化铯溶液,并继续搅拌至反应完全,然后离心收集固体产物,无水乙醚纯化洗涤两遍,真空干燥得到PFGA-Cs粉末;
(2)前驱体溶液的配制;
称取摩尔比为0.5:1~3:1(例如0.5:1、1:1、2:1和3:1)的PFGA-Cs和溴化铅溶于无水DMSO中,超声至完全溶解得到前驱体溶液,封装待用;
(3)PFGA-CsPbBr3 PNCs的制备;
取一定量乙醇于玻璃小瓶中搅拌,并加入前驱体溶液继续搅拌5-60min,产品用异丙醇离心洗涤两次并用异丙醇重新分散,得到PFGA-CsPbBr3 PNCs储备液。其中乙醇与前驱体溶液的体积比为1:0.05-0.2,整个反应在25℃水浴中进行,以此减少环境温度引起的误差。
本发明所制备的全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶可用于尿氯,河、海砂氯离子的检测,具体如下:
(1)尿液氯离子的均相荧光可视化传感包括以下步骤:吸取一定量的PFGA-CsPbBr3 PNCs储备液,超声分散均匀,加入NaCl标准溶液,无需搅拌可直接进行卤素交换反应,荧光表征收集波长移动变化绘制标准工作曲线并在紫外灯下观察交换前后荧光变色情况。测定实际样品尿液时,无需经过前处理,直接取微量尿液至PFGA-CsPbBr3 PNCs异丙醇溶液中进行反应并采集荧光。
(2)河、海砂氯离子的荧光可视化及其快速鉴定:吸取一定量的PFGA-CsPbBr3PNCs 储备液,超声分散均匀,分别加入至两份同等质量的河、海砂中,(河、海砂事先置于干燥箱 100℃干燥两个小时),剧烈震荡,每隔5min测一次荧光光谱及紫外吸收光谱,并在紫外灯下观察交换前后荧光变色情况。
本发明的技术原理:如图1为PFGA-CsPbBr3 PNCs的制备方案和PFGA的可能的作用机制。本发明采用配体辅助共沉淀法,利用与立方相CsPbBr3 PNCs晶格参数高度匹配的一种双齿配体全氟戊二酸对CsPbBr3 PNCs进行精准钝化,其潜在配位模式与分子生物学“分子装订肽”类似。通过PFGA的配位作用抑制CsPbBr3在憎溶剂中的成核生长,使其保持在纳米尺度,以此得到PFGA-CsPbBr3 PNCs。另外,基于钙钛矿的卤素交换性质,本发明以PFGA-CsPbBr3 PNCs为荧光探针构建了Cl-的波长移动型荧光可视化传感,由于PNCs的离子特性以及极性溶剂中快速的离子迁移,有助于实现Cl-的实时高效检测。
本发明具有以下有益效果:
(1)PFGA与CsPbBr3 PNCs表现出较高的结合能,可通过单一的酸配体的简单钝化方式实现良好的的发光性能以及优异的极性环境稳定性,这在目前报道的所有配体策略中是无法达到的。
(2)PFGA-CsPbBr3 PNCs裸露外界的C-F亲水表面,使其在多种极性溶剂(包括四氢呋喃、乙酸乙酯、异丙醇、乙醇、乙腈、丙酮等)中都表现出良好的分散性,具有较广的应用范围。
(3)Cl-的检测影响着生活和生产的方方面面,例如体液的Cl-浓度可以用于预测和诊断人体的健康状况,建筑行业的Cl-浓度可以检验沙石的品质避免海沙以次充好,而在食品行业也有对Cl-浓度的监测指标,因此研究Cl-的简单高效实时的检测具有重要的意义。
附图说明
图1为PFGA-CsPbBr3 PNCs的制备方法以及PFGA的潜在作用方式。
图2为PFGA-CsPbBr3 PNCs的紫外(紫色)和荧光光谱(绿色),其插图为PFGA-CsPbBr3 PNCs储备液在白光(左边)和365nm紫外光照射(右边)下的实物图。
图3为PFGA-CsPbBr3 PNCs异丙醇溶液的长期稳定性测试。
图4(a)为PFGA-CsPbBr3 PNCs异丙醇溶液与NaCl的作用情况和在365nm紫外激发下的荧光照片,和(b)基于波长移动与Cl-浓度的标准曲线及其(c)对尿氯浓度的检测情况。
图5是紫外灯下交换前后荧光变色情况。
具体实施方式
为便于更好地理解本发明,下面将结合本申请实施方式,对本发明进行详细的描述。
本发明使用的部分试剂如下:氯化钠(99%,阿拉丁试剂有限公司)、氢氧化铯(50%wt in water,阿拉丁试剂有限公司)、六氟戊二酸(98%,阿拉丁试剂有限公司)、溴化铅(99%,阿拉丁试剂有限公司)、二甲基亚砜(99.7%,萨恩化学科技有限公司)、乙醇(99.5%,西陇科学股份有限公司)、异丙醇(99.7%,西陇科学股份有限公司)、无水乙醚(99.7%,西陇科学股份有限公司)。此外,实验用水均为超纯水(18.2MΩcm)。
本发明使用的部分实验器材如下:DF-101S集热式恒温加热磁力搅拌器(郑州长城科工贸有限公司),Milli-Q超纯水仪(Millipore,USA),BP-211D系列电子分析天平(Mettler- Toledo Instruments Co,Ltd.Shanghai),Cary Eclipse荧光分光光度计(Agilent,USA), Specord 200plus紫外-可见分光光度计(Analytik Jena,Germany),Tecnai-G2-F30透射电子显微镜(FEI,USA)。
实施例1
一种全氟戊二酸钝化的CsPbBr3PNCs的制备方法,包括以下步骤:
(1)PFGA-Cs的制备:称取2.4g PFGA于50ml离心管中,加入20ml异丙醇中搅拌溶解,然后逐滴加入1.62ml的氢氧化铯溶液,并继续搅拌至反应完全。然后离心收集固体产物,无水乙醚纯化洗涤两遍,真空干燥得到PFGA-Cs白色粉末。
(2)前驱体的配置:称取50.4mg PFGA-Cs和36.7mg的溴化铅于3ml离心管中,加入1ml DMSO并超声至完全溶解,得到前驱体溶液,封装待用。
(3)PFGA-CsPbBr3 PNCs的制备。取5ml无水乙醇于玻璃小瓶中搅拌,然后移液枪吸取200μl的前驱体溶液继续搅拌15min,产物用异丙醇离心洗涤两次并用20ml异丙醇重新分散,得到PFGA-CsPbBr3 PNCs储备液。整个反应在25℃水浴中进行,以减少环境温度的误差。
结果如图2所示,所得的PFGA-CsPbBr3 PNCs可以较好的分散在异丙醇中,荧光量子产率约为86%,半峰宽22nm,与报道的传统油酸油胺钝化的OA/OAm-CsPbBr3 PNCs相当。
应用例1
尿液氯离子的荧光可视化传感,包括以下步骤:
将PFGA-CsPbBr3 PNCs储备液超声分散均匀。取3ml上述PFGA-CsPbBr3 PNCs储备液与5μl NaCl标准溶液(0-300mM)混匀,在365nm紫外灯激发下,测试样品荧光波长移动变化并绘制标准工作曲线。实际尿液样品测定时,无需经过前处理,直接取5μl尿液至3ml PFGA-CsPbBr3 PNCs储备液中进行反应,采集荧光并带入工作曲线计算实际浓度。
结果如图4a和图4b所示,随着NaCl浓度增加,PFGA-CsPbBr3 PNCs出现明显的蓝移,与Cl-的浓度成良好的单指数线性关系。此外,通过对随机三份尿液中氯浓度直接检测,结果如图4c所示,本方法具有相对较好的回收率(94%-106%),表明基于PFGA-CsPbBr3PNCs 均相卤素交换对尿液中Cl-荧光可视化传感方法的可行性。
应用例2
固相河、海沙氯离子的荧光可视化传感及其快速鉴定:吸取一定量的PFGA-CsPbBr3 PNCs储备液,超声分散均匀,分别加入至两份同等质量的河、海砂中,(河、海砂事先置于干燥箱100℃干燥两个小时),剧烈震荡,每隔5min测一次荧光光谱及紫外吸收光谱,并在紫外灯下观察交换前后荧光变色情况。如图5a、b所示,其荧光发射峰位置和吸收光谱基本不变,表明河沙中的氯离子含量极低,所以PFGA-CsPbBr3 PNCs的峰位置基本保持不变。如图5c、d所示,海砂表面的氯离子与PFGA-CsPbBr3 PNCs进行卤素交换,荧光由原来的绿色变成蓝色(5min内即可完成,且无需前处理)。因此可以根据荧光的变色情况实现海砂与河砂的快速鉴定,即绿色的为河砂,蓝色的为海砂。
稳定性测试
为了验证PFGA-CsPbBr3 PNCs探针的稳定性或可存储性,对PFGA-CsPbBr3 PNCs异丙醇溶液进行长期的稳定性测试。结果如图3所示,PFGA-CsPbBr3 PNCs在全氟戊二酸的锚定下展现出优异的极性环境稳定性,在异丙醇中避光保存2个月后还可以保留着约98%的相对荧光强度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,其特征在于,包括以下步骤:
(1)全氟戊二酸铯的制备:
称取PFGA溶于异丙醇中并搅拌均匀,逐滴加入略过量的氢氧化铯溶液,并继续搅拌至反应完全,然后离心收集固体产物,洗涤,干燥,得到PFGA-Cs粉末;
(2)前驱体溶液的配制;
称取摩尔比为0.5:1~3: 1的PFGA-Cs粉末和溴化铅溶于无水DMSO中,超声至完全溶解,得到前驱体溶液;
(3)PFGA-CsPbBr3 PNCs的制备;
取乙醇于玻璃瓶中搅拌,并加入前驱体溶液继续搅拌5-60 min,产品经洗涤并重新分散后,得到全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶。
2.根据权利要求1所述的一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,其特征在于,步骤(1)中,固体产物采用无水乙醚纯化洗涤两遍。
3.根据权利要求1所述的一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,其特征在于,步骤(2)中,PFGA-Cs粉末和溴化铅的摩尔比为0.5:1、1:1、 2:1或3:1。
4.根据权利要求1所述的一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,其特征在于,步骤(3)中,所述产品用异丙醇离心洗涤两次并用异丙醇重新分散。
5.根据权利要求1所述的一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备方法,其特征在于,步骤(3)中,乙醇与前驱体溶液的体积比为1:0.05~0.2,整个反应在25℃水浴中进行。
6.根据权利要求1~5任一项所述的制备方法得到的全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶。
7.如权利要求6所述的全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶在氯离子检测中的应用。
8.根据权利要求7所述的应用,其特征在于,所述氯离子检测包括尿氯,河、海砂氯离子的检测。
CN202210255321.0A 2022-03-15 2022-03-15 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用 Active CN114736666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210255321.0A CN114736666B (zh) 2022-03-15 2022-03-15 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210255321.0A CN114736666B (zh) 2022-03-15 2022-03-15 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用

Publications (2)

Publication Number Publication Date
CN114736666A true CN114736666A (zh) 2022-07-12
CN114736666B CN114736666B (zh) 2023-05-09

Family

ID=82276719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210255321.0A Active CN114736666B (zh) 2022-03-15 2022-03-15 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用

Country Status (1)

Country Link
CN (1) CN114736666B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129684A1 (en) * 2009-05-28 2012-05-24 Centre National De La Recherche Scientifique Cnrs Use of a porous crystalline hybrid solid as a nitrogen oxide reduction catalyst and devices
CN107522225A (zh) * 2017-09-18 2017-12-29 河北工业大学 一种无机钙钛矿纳米片的合成方法
CN107603614A (zh) * 2017-09-12 2018-01-19 华中科技大学 一种金属卤化物钙钛矿量子点的制备方法
CN109279648A (zh) * 2018-11-27 2019-01-29 重庆大学 一种2-己基癸酸修饰的全无机钙钛矿量子点材料的制备方法
US20200248070A1 (en) * 2019-01-31 2020-08-06 Lextar Electronics Corporation Perovskite luminescent nanocrystal, light emitting device, and manufacturing method for perovskite luminescent nanocrystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129684A1 (en) * 2009-05-28 2012-05-24 Centre National De La Recherche Scientifique Cnrs Use of a porous crystalline hybrid solid as a nitrogen oxide reduction catalyst and devices
CN102481558A (zh) * 2009-05-28 2012-05-30 国立科学研究中心 多孔结晶混杂固体作为氮氧化物还原催化剂的用途和设备
CN107603614A (zh) * 2017-09-12 2018-01-19 华中科技大学 一种金属卤化物钙钛矿量子点的制备方法
CN107522225A (zh) * 2017-09-18 2017-12-29 河北工业大学 一种无机钙钛矿纳米片的合成方法
CN109279648A (zh) * 2018-11-27 2019-01-29 重庆大学 一种2-己基癸酸修饰的全无机钙钛矿量子点材料的制备方法
US20200248070A1 (en) * 2019-01-31 2020-08-06 Lextar Electronics Corporation Perovskite luminescent nanocrystal, light emitting device, and manufacturing method for perovskite luminescent nanocrystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈玲芝;柳维端;甘泽;陈思琦;李岳彬: "溶剂辅助CsPbBr_3无机钙钛矿量子点薄膜自组装及光学性能研究" *

Also Published As

Publication number Publication date
CN114736666B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
Wang et al. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH
Wang et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions
Xu et al. Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water
Song et al. Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters
Wei et al. A sensitive fluorescent sensor for the detection of trace water in organic solvents based on carbon quantum dots with yellow fluorescence
Zhao et al. Synthesis and characterization of biocompatible ZnO nanoparticles
Hofmann et al. Protein-templated gold nanoclusters sequestered within sol–gel thin films for the selective and ratiometric luminescence recognition of Hg 2+
CN111687408B (zh) 一种荧光铜纳米团簇、制备方法及其应用
Gao et al. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems
Xiao et al. Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection
Zhang et al. Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots
Liu et al. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties
Chu et al. A new fluorescence probe comprising nitrogen-doped graphene quantum dots for the selective and quantitative determination of cerium (iv)
Shu et al. Polymer surface ligand and silica coating induced highly stable perovskite nanocrystals with enhanced aqueous fluorescence for efficient Hg 2+ and glutathione detection
US9029167B2 (en) Preparation of an optical PH sensor based on fluorescein and 1-heptanesulfonic acid sodium Co-intercalated layered double hydroxide
Boxi et al. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles
Wu et al. ZIF-8 encapsulated upconversion nanoprobes to evaluate pH variations in food spoilage
Liu et al. One‐pot synthesis of copper nanocluster/Tb‐MOF composites for the ratiometric fluorescence detection of Cu2+
Yao et al. Sulfhydryl functionalized carbon quantum dots as a turn-off fluorescent probe for sensitive detection of Hg 2+
Sachdev et al. Label-free fluorescence “turn-on” detection of SO 3 2− by gold nanoclusters: integration in a hydrogel platform and intracellular detection
Ge et al. Fast synthesis of fluorescent SiO 2@ CdTe nanoparticles with reusability in detection of H 2 O 2
Mohapatra et al. Highly stable fluorescent CsPbBr3 perovskite nanocrystals with reduced in-vitro toxicity for bioimaging and mercury ion detection in cells
CN114736666A (zh) 一种全氟戊二酸钝化的CsPbBr3钙钛矿纳米晶的制备与应用
RU2702418C1 (ru) Люминесцентный сенсор концентрации ионов тяжёлых металлов в воде и способ его применения
Sun et al. Inner filter effect-based upconversion fluorescence sensing of sulfide ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant