CN114736435A - 负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用 - Google Patents

负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用 Download PDF

Info

Publication number
CN114736435A
CN114736435A CN202210333912.5A CN202210333912A CN114736435A CN 114736435 A CN114736435 A CN 114736435A CN 202210333912 A CN202210333912 A CN 202210333912A CN 114736435 A CN114736435 A CN 114736435A
Authority
CN
China
Prior art keywords
black phosphorus
flame retardant
phosphorus nanosheet
polyphenol compound
layer black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210333912.5A
Other languages
English (en)
Other versions
CN114736435B (zh
Inventor
潘俊丞
刘述梅
赵建青
朱亚明
蒋智杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210333912.5A priority Critical patent/CN114736435B/zh
Publication of CN114736435A publication Critical patent/CN114736435A/zh
Application granted granted Critical
Publication of CN114736435B publication Critical patent/CN114736435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用;该阻燃剂由氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物混合后在避光、常温下搅拌反应12~24h,通过离心分离,干燥所得;氨基修饰寡层黑磷纳米片悬浊液是将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体的氛围中球磨,冷却至室温,过筛除去球磨珠;洗涤与离心分离,干燥后超声分散于去离子水中所得。本发明阻燃剂在环氧树脂基体中易均匀分散,阻燃效率高,在用量低至0.3wt%时,可使环氧树脂达到UL‑94V‑0等级,LOI达到29.4%用量为0.5wt%时,可使环氧树脂的拉伸强度从66.3MPa增至80.9MPa。

Description

负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与 应用
技术领域
本发明涉及阻燃剂及制备技术领域,具体涉及一种负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法以及其作为高效阻燃剂在环氧树脂中的应用。
背景技术
黑磷纳米片是一种新型的片层二维材料,通过剥离黑磷晶块而成,具有比表面积大、热稳定性高、化学稳定性强等优点。黑磷纳米片为磷单质,由磷元素构成,应用于高分子材料阻燃效率较高。环氧树脂(EP)作为胶黏剂、涂料等广泛应用于航空航天、电子、电气等领域。然而环氧树脂易于燃烧,在使用过程中存在较大的火灾隐患。添加阻燃剂可以有效增加环氧树脂的阻燃性,但是目前存在阻燃剂添加量大,对材料力学强度降低严重等问题,开发黑磷纳米片在环氧树脂中的阻燃应用意义十分重大。
单层或寡层黑磷纳米片为磷单质,与常用的红磷阻燃剂相似,阻燃效率高。阻燃机理为高温下在气相转化为PO·,PO2·和HPO·等,清除H·和OH·自由基从而抑制燃烧;在凝聚相则氧化成各种磷酸衍生物,催化环氧树脂降解形成致密的阻燃炭层;此外,寡层黑磷纳米片的层状结构起到物理屏障的作用,阻止挥发性可燃气体的逸出和氧气的进入,抑制燃烧。但由于片层之间存在较强的范德华力,如果发生重叠、团聚而导致比表面积大幅減少,失去纳米材料的优势,阻燃效果大大下降。此外,黑磷纳米片表面没有可反应性基团,在高分子基体中分散性差,这使其阻燃应用受到了很大限制。单层或寡层黑磷纳米片的制备及其表面改性技术对于其阻燃效率的发挥十分关键。Qu Zhencai等人(Surfacecoordination of black phosphorene for excellent stability,flame retardancyand thermal conductivity in epoxy resin.Chemical Engineering Journal,397(2020)12541)采用超声波细胞粉碎机超声处理得到1-2层的黑磷纳米片,用磺酸钌(RuL3)配位改性后添加到环氧树脂中,用量为3.0wt%时通过UL-94V-0等级,添加量较高。现有用于阻燃应用的黑磷纳米片基本采用超声剥离的方法制备,制备过程完全暴露在空气中,所得黑磷纳米片氧化严重,阻燃效果差,用量大,不利于黑磷纳米片的应用发展。
球磨是利用物料和球磨珠之间的高速剪切力来磨碎或研磨物料的一种常用方式,工业上已被广泛应用于纳米材料的制备。相比于超声剥离的方法,将黑磷晶块置于保护气体氛围下进行球磨,得到的黑磷纳米片氧化程度低,产量高,用于环氧树脂的阻燃应用可以起到良好的阻燃效果。中国发明专利申请CN201811022354.0公开了金属/黑磷纳米片复合材料、黑磷及黑磷烯的制备方法,其中金属/黑磷纳米片复合材料的制备方法是将过渡金属粉末与红磷粉末置于研钵或者球磨机中研磨,再在保护气体氛围中加热至500~1200℃获得金属/黑磷纳米片复合材料,再将金属/黑磷纳米片复合材料与有机溶剂或者水和有机溶剂的混合溶剂混合在一起,然后采用超声波发生装置超声处理获得黑磷烯。该技术中球磨的作用仅仅是对红磷与过渡金属粉末进行机械混合,少层黑磷烯仍是金属/黑磷复合材料进一步超声剥离得到,所得产物氧化较严重,且混有红磷,纯度不高。
多酚类化合物天然绿色环保,无毒无害,有抗氧化和一定的催化成炭作用,被用于阻燃剂的包覆。中国发明专利CN201810024903.1公开了一种二维纳米填料协效阻燃剂及其制备方法、应用;协效阻燃剂的组成是:阻燃剂100质量份,二维纳米填料2~500质量份,植物多酚5~500质量份,多价金属盐1~100质量份。该协效阻燃剂的制备方法是:先利用植物多酚和多价金属离子的多配位络合反应分别对阻燃剂和二维纳米填料进行包覆,然后再利用该络合反应将阻燃剂负载到二维纳米填料表面。该技术中多酚的作用是与多价金属离子之间进行络合反应,利用络合反应将四种组分结合在一起,从而形成二维纳米填料协效阻燃剂。该阻燃剂采用三步络合过程制备,步骤繁琐,在包覆植物多酚时没有采取遮光措施,光照下酚羟基易氧化,性能发生变化,以致得到的协效阻燃剂与环氧树脂质量比为20:100时,才使环氧树脂达到UL-94V-0等级,且对环氧树脂的力学性能损害严重。
发明内容
针对现有技术中存在的不足,本发明提供一种负载多酚类化合物寡层黑磷纳米片阻燃剂在用量低至0.3wt%时,对环氧树脂具有优良的阻燃效果,而且还可以提高环氧树脂的力学强度的负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法。
本发明另一目的在于提供所述的负载多酚类化合物寡层黑磷纳米片阻燃剂在制备阻燃环氧树脂的应用。
本发明目的通过如下技术方案实现:
一种负载多酚类化合物寡层黑磷纳米片阻燃剂,由氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物混合后在避光、常温下搅拌反应12~24h,通过离心分离,干燥所得;所述的氨基修饰寡层黑磷纳米片悬浊液是将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体的氛围中球磨,冷却至室温,过筛除去球磨珠;洗涤与离心分离,干燥后超声分散于去离子水中所得。
为进一步实现本发明目的,优选地,所述的球磨是在常温下以300~500r/min的转速进行球磨,每转30min停顿15min,时间总共为24~48h;所述的保护气体为氦气、氩气或氮气。
优选地,所述的球磨是将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体氛围的手套箱中封装于球磨罐中后再进行。
优选地,所述的水溶性含氮化合物为尿素、氯化铵或双氰胺;所述的多酚类化合物为茶多酚、单宁酸或原花青素;所述多酚类化合物的用量为氨基修饰寡层黑磷纳米片质量的5~10倍。
优选地,所述的黑磷晶块与水溶性含氮化合物的质量比控制在1:5~1:10;所述球磨珠的质量为黑磷晶块的50~100倍,球磨珠是直径为1~10mm的不锈钢珠。
优选地,所述的干燥所得的干燥是于40~75℃下真空干燥6~8h;所述的干燥后超声分散于去离子水中的干燥是于30~70℃下真空干燥12~24h;
所述的超声分散于去离子水中为:将氨基修饰寡层黑磷纳米片置于质量为其200~500倍的去离子水中,在冰浴中以250~500W功率、超声分散10~30min。
优选地,所述的避光的条件是:采用黑布或者锡箔纸包裹住混合了氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物的容器;
所述的常温下搅拌反应的搅拌转速为150~250r/min;
所述的洗涤与离心分离是过筛除去球磨珠后用去离子水洗涤产物,离心分离,倒去水溶液,再用去离子水洗涤一次,离心分离;离心分离的转速都为3500~10000r/min,时间为5~20min;
所述的通过离心分离的条件为:离心转速为5000~12000r/min,离心时间为10~30min。
所述的负载多酚类化合物寡层黑磷纳米片阻燃剂的制备方法,由如下步骤组成:
1)将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体氛围中球磨,冷却至室温,过筛除去球磨珠;洗涤与离心分离,干燥后超声分散于去离子水中,得氨基修饰寡层黑磷纳米片悬浊液;
2)取步骤1)得到的氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物混合,在避光、常温下搅拌反应12~24h;搅拌完毕后进行离心分离,将所得沉淀物干燥,得到的灰黑色粉末为负载多酚类化合物寡层黑磷纳米片阻燃剂。
所述的负载多酚类化合物寡层黑磷纳米片阻燃剂在制备阻燃环氧树脂的应用:将分别在溶剂中分散的负载多酚类化合物寡层黑磷纳米片阻燃剂和双酚A型环氧树脂预聚物混合后超声分散,100~120℃下搅拌1~2h,在60~80℃下加入4,4'-二氨基二苯基甲烷,搅拌5~15min后倒入模具中,在60~80℃下抽真空1~2h后放入烘箱中加热固化,冷却到室温,得到阻燃环氧树脂。
优选地,所述的固化条件为:依次在100±5℃下加热1.0~2.0h,120±5℃下加热1.0~2.0h,150±10℃下加热1.0~2.0h,180±5℃下加热1.0~2.0h;所述的分别在溶剂中分散是分别在丙酮中超声分散;其中负载多酚类化合物寡层黑磷纳米片阻燃剂是在其质量247~304倍的丙酮中超声分散;双酚A型环氧树脂预聚物是在其质量1~2倍的丙酮中超声分散;所述的超声分散条件为:在300~500W功率下、冰浴中超声分散10~30min;
所述负载多酚类化合物寡层黑磷纳米片阻燃剂的用量为负载多酚类化合物寡层黑磷纳米片阻燃剂、双酚A型环氧树脂预聚物和4,4'-二氨基二苯基甲烷三组分总质量的0.3%~0.5%;控制4,4'-二氨基二苯基甲烷活泼氢当量为双酚A型环氧树脂预聚物环氧基当量的0.9~1.0倍。
本发明的有益效果在于:
(1)本发明采用易工业化的球磨方法获得氨基修饰寡层黑磷纳米片,再避光、常温搅拌进一步负载天然绿色环保的多酚类化合物,制备方法简单,易于实施,重复性好,工业化生产及应用前景好。
(2)本发明所制备负载多酚类化合物寡层黑磷纳米片在环氧树脂基体中易均匀分散,阻燃效率高,在用量低至0.3wt%时,可使环氧树脂达到UL-94V-0等级,LOI达到29.4%。
(3)本发明所制备负载多酚类化合物寡层黑磷纳米片有一定的增强作用,用量为0.5wt%时,可使环氧树脂的拉伸强度从66.3MPa增至80.9MPa,提高22%;拉伸模量从3.0GPa增至4.0GPa,提高33%。
附图说明
图1为实施例2制备的BP-NH2-2纳米片的高分辨率N1s X射线光电子能谱图;
图2为实施例2制备的BP-NH2-2-TP纳米片的透射电镜图;
图3为实施例2制备的BP-NH2-2-TP纳米片的红外光谱图。
具体实施方式
为更好地理解本发明,下面结合附图何实施例对本发明作进一步的说明,但本发明的实施方式不限如此。
本发明各实施例和对比例均采用中国石油化工股份有限公司巴陵分公司牌号为CYD-128,通用名为E-51的双酚A型环氧树脂预聚物产品,环氧值是0.51mol/100g;黑磷由昆明黑磷科技有限公司(中国)提供;4,4-二氨基二苯基甲烷选用梯希爱有限公司产品;超声波清洗器为昆山市超声仪器有限公司(型号为KQ-400KD)产品;球磨机选用南京南大仪器有限公司(型号为QM-DK2)产品。
实施例1
(1)将5g黑磷晶块、25g氯化铵和250g直径为1mm的不锈钢珠在氦气氛围的手套箱中封装于500ml的球磨罐中;置于球磨机中进行球磨,球磨程序为:转速300r/min,每转30min停顿15min,球磨时间总共为48h;球磨完毕后,冷却至室温打开,过筛除去球磨珠;将所得固体转移至500ml烧杯中,加入250ml去离子水洗涤,离心分离,倒去水溶液,再用250ml去离子水洗涤,离心分离,离心转速均为3500r/min,离心时间为20min,所得沉淀物于40℃下真空干燥8h,得到3.1g灰黑色固体,为氨基修饰寡层黑磷纳米片,命名为BP-NH2-1;将其分散于620ml去离子水中,在500W功率下、冰浴中超声分散10min,得到BP-NH2-1悬浊液;
(2)取500ml BP-NH2-1悬浊液于1000ml单口烧瓶中,加入12.5g单宁酸(分子量1701.2,98%含量,北京伊诺凯科技有限公司),采用黑布包裹住瓶体,常温下,以150r/min转速搅拌24h;搅拌完毕后,对所得悬浊液进行离心分离,离心转速为5000r/min,离心时间为30min,所得沉淀物在30℃下真空干燥24h,得到负载单宁酸寡层黑磷纳米片,命名为BP-NH2-1-TA。
实施例2
(1)将5g黑磷晶块、30g尿素和350g直径为4mm的不锈钢珠在氩气氛围的手套箱中封装于500ml的球磨罐中;置于球磨机中进行球磨,球磨程序为:转速350r/min,每转30min停顿15min,球磨时间总共为40h;球磨完毕后,冷却至室温打开,过筛除去球磨珠;将所得固体转移至500ml烧杯中,加入250ml去离子水洗涤,离心分离,倒去水溶液,再用250ml去离子水洗涤,离心分离,离心转速均为5000r/min,离心时间为15min,所得沉淀物于55℃下真空干燥7.5h,得到3.5g灰黑色固体,为氨基修饰寡层黑磷纳米片,命名为BP-NH2-2;将其分散于1050ml去离子水中,在250W功率下、冰浴中超声分散30min,得到BP-NH2-2悬浊液;取BP-NH2-2进行X射线光电子能谱(XPS)分析,高分辨率N1s XPS谱图如附图1所示,在402.3ev和400.1ev处分别出现对应于N-H键和N-P键的两个峰,说明BP-NH2-2纳米片表面存在氨基,为氨基修饰寡层黑磷纳米片。
(2)取500ml BP-NH2-2悬浊液于1000ml单口烧瓶中,加入11.7g茶多酚(分子量281.36,98%含量,Trc品牌),采用锡纸包裹住瓶体;常温下,以180r/min转速搅拌20h;搅拌完毕后,对所得悬浊液进行离心分离,离心转速为8000r/min,离心时间为25min,所得沉淀物在50℃下真空干燥20h,得到负载茶多酚寡层黑磷纳米片,命名为BP-NH2-2-TP;取少量进行透射电镜(TEM)分析,结果如附图2;从TEM图可看出,剥离得到的寡层黑磷纳米片具有典型的少层结构,且片层表面干净;在高倍数高清TEM图中,可以清楚地看到归属于黑磷(020)晶面0.53nm的晶格条纹,还清楚地显示了厚度为2.12nm的晶格间距,说明剥离得到的寡层黑磷纳米片为4层左右;其红外光谱图如附图3,位于949cm-1处的峰归属于P–N键的伸缩振动;1445和1369cm-1处的吸收峰归属于取代苯环,1077cm-1处的弱峰归属于C-O-C的伸缩振动,这些峰的存在充分表明茶多酚已经成功负载在寡层黑磷纳米片上。
实施例3
(1)将5g黑磷晶块、40g尿素和400g直径为6mm的不锈钢珠在氮气氛围的手套箱中封装于500ml的球磨罐中;置于球磨机中进行球磨,球磨程序为:转速450r/min,每转30min停顿15min,球磨时间总共为30h;球磨完毕后,冷却至室温打开,过筛除去球磨珠;将所得固体转移至烧杯中,加入250ml去离子水洗涤,离心分离,倒去水溶液,再用250ml去离子水洗涤,离心分离,离心转速均为8000r/min,离心时间为10min,所得沉淀物于60℃下真空干燥7h,得到3.9g灰黑色固体,为氨基修饰寡层黑磷纳米片,命名为BP-NH2-3,将其分散于1755ml去离子水中,在400W功率下、冰浴中超声分散20min,得到BP-NH2-3悬浊液;
(2)取500ml BP-NH2-3悬浊液于1000ml单口烧瓶中,加入10.6g原花青素(分子量594.52,95%含量,Adamas品牌),采用黑布包裹住瓶体,常温下,以200r/min转速搅拌15h;搅拌完毕后,对所得悬浊液进行离心分离,离心转速为10000r/min,离心时间为20min,得到沉淀物,将其在60℃下真空干燥15h,得到负载茶多酚寡层黑磷纳米片,命名为BP-NH2-3-PC。
实施例4
(1)将5g黑磷晶块、50g双氰胺和500g直径为10mm的不锈钢珠在氮气氛围的手套箱中封装于500ml的球磨罐中;置于球磨机中进行球磨,球磨程序为:转速500r/min,每转30min停顿15min,球磨时间总共为24h;球磨完毕后,冷却至室温打开,过筛除去球磨珠;将所得固体转移至烧杯中,加入250ml去离子水洗涤,离心分离,倒去水溶液,再用250ml去离子水洗涤,离心分离,离心转速均为10000r/min,离心时间为5min,所得沉淀物于75℃下真空干燥6h,得到4.1g灰黑色固体,为氨基修饰寡层黑磷纳米片,命名为BP-NH2-4;将其分散于2050ml去离子水中,在500W功率下、冰浴中超声分散10min,得到BP-NH2-4悬浊液;
(2)取500ml BP-NH2-4悬浊液于1000ml单口烧瓶中,加入10.0g原花青素(分子量594.52,95%含量,Adamas品牌),采用黑布包裹住瓶体,常温下,以250r/min转速搅拌12h;搅拌完毕后,对所得悬浊液进行离心分离,离心转速为12000r/min,离心时间为10min,所得沉淀物在70℃下真空干燥12h,得到负载原花青素寡层黑磷纳米片,命名为BP-NH2-4-PC。
应用实施例1
取0.16g BP-NH2-2-TP加入到50ml丙酮中,在300W功率下、冰浴中超声分散30min;取42.00g双酚A型环氧树脂预聚物加入到53ml丙酮中,在300W功率下、冰浴中超声分散30min;将两者混合,在300W功率下、冰浴中超声分散30min后,在100℃下搅拌2h以挥发大部分丙酮,然后在60℃下加入9.55g 4,4'-二氨基二苯基甲烷,搅拌15min后倒入模具中,在60℃下抽真空2h后放入烘箱中加热固化,固化条件为:依次在95℃下加热2.0h,115℃下加热2.0h,140℃下加热2.0h,175℃下加热2.0h,然后冷却到室温,得到负载茶多酚寡层黑磷纳米片阻燃环氧树脂,负载茶多酚寡层黑磷纳米片的理论含量为0.3wt%。
应用实施例2
取0.21g BP-NH2-2-TP加入到70ml丙酮中,在400W功率下、冰浴中超声分散20min;取42.00g双酚A型环氧树脂预聚物加入到80ml丙酮中,在450W功率下、冰浴中超声分散15min;将两者混合,在350W功率下、冰浴中超声分散25min后,在120℃下搅拌1h以挥发大部分丙酮,然后在70℃下加入9.55g 4,4'-二氨基二苯基甲烷,搅拌10min后倒入模具中,在70℃下抽真空1.5h后放入烘箱中加热固化,固化条件为:依次在100℃下加热1.5h,120℃下加热1.5h,150℃下加热1.5h,180℃下加热1.5h,然后冷却到室温,得到负载茶多酚寡层黑磷纳米片阻燃环氧树脂,负载茶多酚寡层黑磷纳米片的理论含量为0.4wt%。
应用实施例3
取0.26g BP-NH2-2-TP加入到100ml丙酮中,在500W功率下、冰浴中超声分散10min;取42.00g双酚A型环氧树脂预聚物加入到106ml丙酮中,在500W功率下、冰浴中超声分散10min;将两者混合,在500W功率下、冰浴中超声分散10min后,在120℃下搅拌2h以挥发大部分丙酮,然后在80℃下加入10.50g 4,4'-二氨基二苯基甲烷,搅拌5min后倒入模具中,在80℃下抽真空1h后放入烘箱中加热固化,固化条件为:依次在105℃下加热1.0h,125℃下加热1.0h,160℃下加热1.0h,185℃下加热1.0h,然后冷却到室温,得到负载茶多酚寡层黑磷纳米片阻燃环氧树脂,负载茶多酚寡层黑磷纳米片的理论含量为0.5wt%。
应用对比例1
应用实施例1的配方中不加负载茶多酚寡层黑磷纳米片(BP-NH2-2-TP),得到非阻燃环氧树脂。
应用对比例2
在应用实施例1基础上,将BP-NH2-2-TP替换成氨基修饰寡层黑磷纳米片BP-NH2-2,得到BP-NH2-2理论含量为0.3wt%的环氧树脂。
应用对比例3
以文献Surface coordination of black phosphorene for excellentstability,flame retardancy and thermal conductivity in epoxy resin(ChemicalEngineering Journal,397(2020)12541)中所述方法制备阻燃剂RuL3@BP,在应用实施例1基础上,将BP-NH2-2-TP替换成RuL3@BP,用量改为1.627g,得到RuL3@BP理论含量为3.0wt%的环氧树脂。
环氧树脂固化物的拉伸性能采用AGS-10KNI型万能材料试验机,按ASTM D-638标准进行测试;垂直燃烧实验按照ANSL UL-1985标准在水平垂直燃烧试验仪UL94-SC50(英国FTT公司)上进行测试;LOI实验按照ASTM D2863-97标准在氧指数试验仪FTA-SC48(英国FTT公司)上进行测试。应用实施例1-3与应用对比例1-3所制环氧树脂固化物的力学性能以及阻燃性能的结果如表1。
表1应用实施例1~3与应用对比例1~3所制环氧树脂固化物的性能
Figure BDA0003575982170000081
从表1可知,本发明负载多酚类化合物寡层黑磷纳米片应用实施例1-3阻燃环氧树脂均达到UL-94V-0阻燃等级,且用量仅需0.3~0.5wt%。本发明负载多酚类化合物寡层黑磷纳米片阻燃环氧树脂在质量用量为0.5wt%时(应用实施例3),LOI升至30.0%;拉伸强度从未加阻燃剂的66.3MPa增至80.9MPa,提高22.0%;拉伸模量从3.0GPa增至4.0GPa,提高33%。现有技术改性黑磷(应用对比例3)用量为3.0wt%才使环氧树脂通过UL-94V-0等级,本发明在阻燃剂用量远小于应用对比例3的情况下,达到了同样的阻燃性能。此外,仅进行氨基修饰的寡层黑磷纳米片阻燃效果较差,在用量为0.3wt%时(应用对比例2),不能使环氧树脂达到UL-94V-0阻燃等级;力学性能提高也不如负载了多酚类化合物的寡层黑磷纳米片明显。由此可见,本发明负载多酚类化合物寡层黑磷纳米片对环氧树脂阻燃效率高,可以在用量低至0.3wt%的情况下达到优良的阻燃效果,且还可以一定程度地提高拉伸强度等力学性能。
本发明在避光、常温条件下采取简单的机械搅拌方式即在寡层黑磷纳米片上负载了多酚类化合物,并充分利用多酚类化合物以下四方面的作用实现了寡层黑磷纳米片对环氧树脂的高效阻燃:(1)抗氧化作用,避免寡层黑磷纳米片被空气氧化使阻燃效率降低;(2)多酚类化合物的酚羟基带负电,由于静电排斥,从而寡层黑磷纳米片之间难团聚;(3)很好地改善黑磷纳米片与环氧树脂基体之间的相容性,促使寡层黑磷纳米片在环氧树脂基体中均匀分散,充分地发挥阻燃作用;(4)一定的催化成炭作用,与寡层黑磷纳米片产生协同阻燃作用。为了负载多酚类化合物,本发明在保护气氛下将过量的水溶性含氮化合物与黑磷晶块一同进行球磨的方式,利用球磨过程中产生的高温高压,使其插入到黑磷片层中,层间距变大,层间范德华力被削弱,在较大剪切力作用时层与层分离,不仅实现了黑磷晶块的剥离,而且还在黑磷纳米片上引入了氨基,得到氨基修饰的寡层黑磷纳米片。黑磷纳米片上含有氨基后,与多酚类化合物形成较强的有机相互作用,更容易结合。
本发明制备的负载多酚类化合物寡层黑磷纳米片层数控制在4~6层,尺寸均匀,制备方法简单,易于实施,重复性好,易实现工业化生产。

Claims (10)

1.一种负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,由氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物混合后在避光、常温下搅拌反应12~24h,通过离心分离,干燥所得;所述的氨基修饰寡层黑磷纳米片悬浊液是将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体的氛围中球磨,冷却至室温,过筛除去球磨珠;洗涤与离心分离,干燥后超声分散于去离子水中所得。
2.根据权利要求1所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的球磨是在常温下以300~500r/min的转速进行球磨,每转30min停顿15min,时间总共为24~48h;所述的保护气体为氦气、氩气或氮气。
3.根据权利要求2所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的球磨是将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体氛围的手套箱中封装于球磨罐中后再进行。
4.根据权利要求1所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的水溶性含氮化合物为尿素、氯化铵或双氰胺;所述的多酚类化合物为茶多酚、单宁酸或原花青素;所述多酚类化合物的用量为氨基修饰寡层黑磷纳米片质量的5~10倍。
5.根据权利要求1所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的黑磷晶块与水溶性含氮化合物的质量比控制在1:5~1:10;所述球磨珠的质量为黑磷晶块的50~100倍,球磨珠是直径为1~10mm的不锈钢珠。
6.根据权利要求1所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的干燥所得的干燥是于40~75℃下真空干燥6~8h;所述的干燥后超声分散于去离子水中的干燥是于30~70℃下真空干燥12~24h;
所述的超声分散于去离子水中为:将氨基修饰寡层黑磷纳米片置于质量为其200~500倍的去离子水中,在冰浴中以250~500W功率、超声分散10~30min。
7.根据权利要求1所述的负载多酚类化合物寡层黑磷纳米片阻燃剂,其特征在于,所述的避光的条件是:采用黑布或者锡箔纸包裹住混合了氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物的容器;
所述的常温下搅拌反应的搅拌转速为150~250r/min;
所述的洗涤与离心分离是过筛除去球磨珠后用去离子水洗涤产物,离心分离,倒去水溶液,再用去离子水洗涤一次,离心分离;离心分离的转速都为3500~10000r/min,时间为5~20min;
所述的通过离心分离的条件为:离心转速为5000~12000r/min,离心时间为10~30min。
8.权利要求1-7任一项所述的负载多酚类化合物寡层黑磷纳米片阻燃剂的制备方法,其特征在于由如下步骤组成:
1)将黑磷晶块、水溶性含氮化合物和球磨珠在保护气体氛围中球磨,冷却至室温,过筛除去球磨珠;洗涤与离心分离,干燥后超声分散于去离子水中,得氨基修饰寡层黑磷纳米片悬浊液;
2)取步骤1)得到的氨基修饰寡层黑磷纳米片悬浊液与多酚类化合物混合,在避光、常温下搅拌反应12~24h;搅拌完毕后进行离心分离,将所得沉淀物干燥,得到的灰黑色粉末为负载多酚类化合物寡层黑磷纳米片阻燃剂。
9.权利要求1~7任一项所述的负载多酚类化合物寡层黑磷纳米片阻燃剂在制备阻燃环氧树脂的应用,其特征在于:将分别在溶剂中分散的负载多酚类化合物寡层黑磷纳米片阻燃剂和双酚A型环氧树脂预聚物混合后超声分散,100~120℃下搅拌1~2h,在60~80℃下加入4,4'-二氨基二苯基甲烷,搅拌5~15min后倒入模具中,在60~80℃下抽真空1~2h后放入烘箱中加热固化,冷却到室温,得到阻燃环氧树脂。
10.根据权利要求9所述的负载多酚类化合物寡层黑磷纳米片阻燃剂在制备阻燃环氧树脂的应用,所述的固化条件为:依次在100±5℃下加热1.0~2.0h,120±5℃下加热1.0~2.0h,150±10℃下加热1.0~2.0h,180±5℃下加热1.0~2.0h;所述的分别在溶剂中分散是分别在丙酮中超声分散;其中负载多酚类化合物寡层黑磷纳米片阻燃剂是在其质量247~304倍的丙酮中超声分散;双酚A型环氧树脂预聚物是在其质量1~2倍的丙酮中超声分散;所述的超声分散条件为:在300~500W功率下、冰浴中超声分散10~30min;
所述负载多酚类化合物寡层黑磷纳米片阻燃剂的用量为负载多酚类化合物寡层黑磷纳米片阻燃剂、双酚A型环氧树脂预聚物和4,4'-二氨基二苯基甲烷三组分总质量的0.3%~0.5%;控制4,4'-二氨基二苯基甲烷活泼氢当量为双酚A型环氧树脂预聚物环氧基当量的0.9~1.0倍。
CN202210333912.5A 2022-03-31 2022-03-31 负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用 Active CN114736435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210333912.5A CN114736435B (zh) 2022-03-31 2022-03-31 负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210333912.5A CN114736435B (zh) 2022-03-31 2022-03-31 负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114736435A true CN114736435A (zh) 2022-07-12
CN114736435B CN114736435B (zh) 2023-12-01

Family

ID=82279190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210333912.5A Active CN114736435B (zh) 2022-03-31 2022-03-31 负载多酚类化合物寡层黑磷纳米片阻燃剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114736435B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107722356A (zh) * 2017-10-19 2018-02-23 云南江磷集团股份有限公司 三聚氰胺氰尿酸盐微胶囊化赤磷阻燃剂产品及其制备方法
CN110492043A (zh) * 2019-09-09 2019-11-22 新乡市中科科技有限公司 一种含有机-无机涂层锂电池用隔膜及其制备方法
CN113388308A (zh) * 2021-05-17 2021-09-14 昆明理工大学 一种环氧树脂防腐阻燃涂料及其制备方法
CN113621295A (zh) * 2021-05-17 2021-11-09 昆明理工大学 一种具有防腐和阻燃功能的水性环氧树脂涂料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107722356A (zh) * 2017-10-19 2018-02-23 云南江磷集团股份有限公司 三聚氰胺氰尿酸盐微胶囊化赤磷阻燃剂产品及其制备方法
CN110492043A (zh) * 2019-09-09 2019-11-22 新乡市中科科技有限公司 一种含有机-无机涂层锂电池用隔膜及其制备方法
CN113388308A (zh) * 2021-05-17 2021-09-14 昆明理工大学 一种环氧树脂防腐阻燃涂料及其制备方法
CN113621295A (zh) * 2021-05-17 2021-11-09 昆明理工大学 一种具有防腐和阻燃功能的水性环氧树脂涂料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JINGWEN WANG等: "Biodegradable L-lysine-modified amino black phosphorus/poly (l-lactide-coε-caprolactone) nanofibers with enhancements in hydrophilicity, shape recovery and osteodifferentiation properties", 《COLLOIDS AND SURFACES B: BIOINTERFACES》, vol. 2022, no. 209, pages 112209 *
SHUILAI QIU等: "Hindered phenolic antioxidant passivation of black phosphorus affords air stability and free radical quenching", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》, vol. 2022, no. 606, pages 1395 *
YA YI等: "Two-dimensional black phosphorus: Synthesis, modification, properties, and applications", 《MATERIALS SCIENCE AND ENGINEERING R 》, vol. 2017, no. 120, pages 1 - 33 *

Also Published As

Publication number Publication date
CN114736435B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Kong et al. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate
Qu et al. Improved flame retardancy of epoxy resin composites modified with a low additive content of silica-microencapsulated phosphazene flame retardant
Shao et al. A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties
Zhang et al. Design of h-BN@ boronate polymer core-shell nanoplates to simultaneously enhance the flame retardancy and mechanical properties of epoxy resin through the interficial regulation
US9327985B2 (en) Graphene oxide sheet, article containing graphene-containing substance produced by reducing the graphene oxide sheet, and process for production of the graphene oxide sheet
Peng et al. Amorphous cobalt borate nanosheets grown on MoS2 nanosheet for simultaneously improving the flame retardancy and mechanical properties of polyacrylonitrile composite fiber
Gong et al. Superior thermal and fire safety performances of epoxy-based composites with phosphorus-doped cerium oxide nanosheets
Ren et al. Construction of few-layered black phosphorus/graphite-like carbon nitride binary hybrid nanostructure for reducing the fire hazards of epoxy resin
Xu et al. Functionalization of α-zirconium phosphate by polyphosphazene and its effect on the flame retardance of an intumescent flame retardant polypropylene system
Sang et al. Polyphosphazene-wrapped Fe–MOF for improving flame retardancy and smoke suppression of epoxy resins
Guo et al. NiFe prussian blue analogue nanocages decorated magnesium hydroxide rod for enhancing fire safety and mechanical properties of epoxy resin
Lv et al. Fabrication of ZIF‐8@ Polyphosphazene core‐shell structure and its efficient synergism with ammonium polyphosphate in flame‐retarding epoxy resin
Peng et al. BNP-linked covalent organic frameworks for efficient flame retarding and toxic smoke suppression of polyacrylonitrile composite fiber
Bao et al. The effect of strawberry-like nickel-decorated flame retardant for enhancing the fire safety and smoke suppression of epoxy resin
Yan et al. Novel bio-derived phytic acid and melamine interlayered/surface dual modified layered double hydroxide by one-pot method and its highly efficient flame retardant performance for polypropylene
Yu et al. Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins
Krishnadevi et al. Development of cyclophosphazene and rice husk ash incorporated epoxy composites for high performance applications
Yu et al. Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate
Xu et al. Synergistic effect on flame retardancy and thermal behavior of polycarbonate filled with α‐zirconium phosphate@ gel‐silica
Sui et al. Covalently functionalized graphene oxide wrapped by silicon–nitrogen-containing molecules: preparation and simultaneous enhancement of the thermal stability, flame retardancy and mechanical properties of epoxy resin nanocomposites
Dong et al. Fire hazard suppression of intumescent flame retardant polypropylene based on a novel Ni‐containing char‐forming agent
CN112111094A (zh) 树脂包覆二乙基次磷酸铝阻燃低密度聚乙烯及其制备方法
Lin et al. Growing metal–organic framework nanoparticles on short carbon fibers to improve flame retardancy, smoke suppression and mechanical properties of the flame retardant epoxy composites
Gao et al. Induced assembly of polystyrene composites for simultaneously improving flame retardant and electromagnetic shielding properties
Wang et al. Facile synthesis of carbon microspheres/tin ethylenediamine tetramethylene phosphonate hybrid for improving the mechanical, flame‐retardant, and thermal properties of epoxy resin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant