CN114736014B - 一种剩余极化陶瓷样品的挠曲电响应表征方法 - Google Patents

一种剩余极化陶瓷样品的挠曲电响应表征方法 Download PDF

Info

Publication number
CN114736014B
CN114736014B CN202210326032.5A CN202210326032A CN114736014B CN 114736014 B CN114736014 B CN 114736014B CN 202210326032 A CN202210326032 A CN 202210326032A CN 114736014 B CN114736014 B CN 114736014B
Authority
CN
China
Prior art keywords
ceramic sample
equivalent
piezoelectric
piezoelectric coefficient
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210326032.5A
Other languages
English (en)
Other versions
CN114736014A (zh
Inventor
陈伟津
李远哲
黄翔
熊伟明
唐振洵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202210326032.5A priority Critical patent/CN114736014B/zh
Publication of CN114736014A publication Critical patent/CN114736014A/zh
Application granted granted Critical
Publication of CN114736014B publication Critical patent/CN114736014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种剩余极化陶瓷样品的挠曲电响应表征方法,该方法包括:基于固相合成法制备陶瓷样品;在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品;基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数。通过使用本发明,能够快速分离出代表挠曲电响应的挠曲电等效压电系数。本发明作为一种剩余极化陶瓷样品的挠曲电响应表征方法,可广泛应用于材料测试领域。

Description

一种剩余极化陶瓷样品的挠曲电响应表征方法
技术领域
本发明涉及材料测试领域,尤其涉及一种剩余极化陶瓷样品的挠曲电响应表征方法。
背景技术
挠曲电效应广泛存在于固体材料、液晶、聚合物和生物膜等各种材料中,并且是一种应用非常广泛的力电耦合效应,在驱动、传感、能量收集等领域发挥了重要的作用。挠曲电效应反映了应变梯度与电极化之间的耦合关系(正挠曲电效应),逆挠曲电效应则反映了电场梯度与机械应力之间的耦合关系,其中挠曲电等效压电系数是衡量材料挠曲电性能的重要参数。常见挠曲电效应的表征方法为通过点环法、三点弯曲法、四点弯曲法、悬臂梁等方式来一步步推导计算出挠曲电等效压电系数,在推导过程中应变梯度的测量是重中之重,然而在实际测试中影响材料表观挠曲电响应的因素较多,并不一定能做到只有纯应变梯度的条件。而且铁电类挠曲电材料极化后会具有剩余极化,在通过上述方法表征挠曲电响应时会诱导出一定的压电响应,所以亟需一种可以分离铁电材料极化后压电响应和挠曲电响应的表征方法。
发明内容
为了解决上述技术问题,本发明的目的是提供一种剩余极化陶瓷样品的挠曲电响应表征方法,能够快速分离出代表挠曲电响应的挠曲电等效压电系数。
一种剩余极化陶瓷样品的挠曲电响应表征方法,包括以下步骤:
基于固相合成法制备陶瓷样品;
在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品;
基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数;
根据挠曲电等效压电系数计算等效挠曲电系数。
进一步,所述基于固相合成法制备陶瓷样品这一步骤,其具体包括:
通过化学计量比配置粉末;
将粉末湿法球磨后烘干并预烧,得到预烧后的粉末;
将预烧后的粉末再次球磨并烘干,得到烘干粉末;
对烘干粉末添加粘结剂进行造粒,得到造粒后的粉体;
将造粒后的粉体导入模具,通过冷静压成型,得到胚体;
将坯体去胶后烧结成型,得到陶瓷样品。
进一步,所述在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品这一步骤,其具体包括:
在陶瓷样品表面制备电极,带电极的陶瓷样品;
将带电极的陶瓷样品浸入预设温度的硅油中,并施加直流电压进行极化处理,得到极化陶瓷样品。
进一步,所述基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数这一步骤,其具体包括:
在极化陶瓷样品底部放置环状支撑物;
通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力并记录表观压电系数;
根据表观压电系数计算得到挠曲电等效压电系数和本征压电等效压电系数。
进一步,所述通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力并记录表观压电系数这一步骤,其具体包括:
通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力;
判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相同,测量得到第一表观压电系数;
将极化陶瓷样品翻转;
判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相反,测量得到第二表观压电系数。
进一步,所述挠曲电等效压电系数的计算公式如下:
Figure BDA0003573500270000021
上式中,
Figure BDA0003573500270000022
表示挠曲电等效压电系数,
Figure BDA0003573500270000023
表示第一表观压电系数,
Figure BDA0003573500270000024
表示第二表观压电系数。
进一步,所述本征压电等效压电系数的计算公式如下:
Figure BDA0003573500270000025
上式中,
Figure BDA0003573500270000026
表示本征压电等效压电系数,
Figure BDA0003573500270000027
表示第一表观压电系数,
Figure BDA0003573500270000028
表示第二表观压电系数。
进一步,所述等效挠曲电系数的计算公式如下:
Figure BDA0003573500270000031
上式中,μp表示样品的等效挠曲电系数,
Figure BDA0003573500270000032
表示样品挠曲电等效压电系数,C11表示样品材料杨氏模量,h表示样品厚度,σ表示样品材料泊松比,R表示环状支撑物的半径。
本发明方法的有益效果是:本发明通过点环法对极化后陶瓷样品使用准静态d33测量仪进行测试,得到挠曲电响应和压电响应极化方向相同时的表观压电系数,也可以得到挠曲电响应和压电响应极化方向相反时的表观压电系数,并从两者中分离出代表挠曲电响应的挠曲电等效压电系数。该方法成本低廉,便于实施且可以快速表征出挠曲电响应大小。
附图说明
图1是本发明一种剩余极化陶瓷样品的挠曲电响应表征方法的步骤流程图;
图2是本发明具体实施例点环法测量示意图;
图3是本发明具体实施例挠曲电效应和压电效应产生的极化方向相同时的示意图;
图4是本发明具体实施例挠曲电效应和压电效应产生的极化方向相反时的示意图;
图5是本发明具体实施例不同电压下极化后分离得到的本征压电等效压电系数与标准d33测试得到的压电系数;
图6是本发明具体实施例挠曲电与压电效应产生极化方向相同和相反时的表观压电系数以及分离得到的挠曲电等效压电系数的对比示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
如图1所示,本发明提供了一种剩余极化陶瓷样品的挠曲电响应表征方法,该方法包括以下步骤:
S1、基于固相合成法制备陶瓷样品;
具体地,所述陶瓷样品包括所有铁电材料,陶瓷样品制备方式为使用不同尺寸的圆形模具,通过冷静压成型并采用传统固相法烧结而成。
S1.1、通过化学计量比配置粉末;
S1.2、将粉末湿法球磨后烘干并预烧,得到预烧后的粉末;
S1.3、将预烧后的粉末再次球磨并烘干,得到烘干粉末;
S1.4、对烘干粉末添加粘结剂进行造粒,得到造粒后的粉体;
S1.5、将造粒后的粉体导入模具,通过冷静压成型,得到胚体;
S1.6、将坯体去胶后烧结成型,得到陶瓷样品。
S2、在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品;
S2.1、在陶瓷样品表面制备电极,带电极的陶瓷样品;
具体地,电机制备可以采用电子束蒸镀、热蒸镀、烧渗法等方式进行,电极材料可以选用金、银、铂等常见用于制备电极的材料。
S2.2、将带电极的陶瓷样品浸入预设温度的硅油中,并施加直流电压进行极化处理,得到极化陶瓷样品。
具体地,针对BaTiO3基陶瓷材料,优选100℃-120℃。
S3、参照图2,基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数。
S3.1、在极化陶瓷样品底部放置环状支撑物;
S3.2、通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力并记录表观压电系数;
具体地,使用准静态d33测量仪测试时,在样品底部加一个圆环状支撑物,当测量仪上探头对样品的中心施加应力时,样品将向下发生弯曲变形。
S3.2.1、通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力;
S3.2.2、参照图3,判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相同,得到第一表观压电系数;
具体地,判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相同,测量得到的值即是第一表观压电系数
Figure BDA0003573500270000041
S3.2.3、将极化陶瓷样品翻转;
S3.2.4、参照图4,判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相反,计算第二表观压电系数;
具体地,判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相反,测量得到的值即是第二表观压电系数
Figure BDA0003573500270000042
S3.3、根据表观压电系数计算得到挠曲电等效压电系数和本征压电等效压电系数。
具体地,所述挠曲电等效压电系数的计算公式如下:
Figure BDA0003573500270000043
上式中,
Figure BDA0003573500270000051
表示挠曲电等效压电系数,
Figure BDA0003573500270000052
表示第一表观压电系数,
Figure BDA0003573500270000053
表示第二表观压电系数。
所述本征压电等效压电系数的计算公式如下:
Figure BDA0003573500270000054
上式中,
Figure BDA0003573500270000055
表示本征压电等效压电系数,
Figure BDA0003573500270000056
表示第一表观压电系数,
Figure BDA0003573500270000057
表示第二表观压电系数。
S4、根据挠曲电等效压电系数计算得到等效挠曲电系数。
具体地,所述等效挠曲电系数的计算公式如下:
Figure BDA0003573500270000058
上式中,μp表示样品的等效挠曲电系数,
Figure BDA0003573500270000059
表示样品挠曲电等效压电系数,C11表示样品材料杨氏模量,h表示样品厚度,σ表示样品材料泊松比,R表示环状支撑物的半径。
实施例1:
将BaTiO3(纯度≥99),CaTiO3(纯度≥99),按照不同的化学计量比,通过用湿法球磨,在球磨机中以450转均匀混合6h后在干燥箱中进行烘干。将干燥后粉末在1000℃下保温2h进行预烧,再次球磨6h并烘干,添加粘结剂进行造粒,粘结剂为6%PVB溶于乙醇。随后将造粒后的粉体倒入模具中,在冷等静压机下压制成圆片状坯体。将坯体进行去胶处理,随后保温两小时烧结,得到陶瓷样品,将陶瓷表面打磨一层后制备电极。直接使用点环法测量BaTiO3未经极化的挠曲电等效压电系数为60pC/N,在适宜温度下(100~120℃)浸泡于硅油中极化后测得本征等效压电系数和挠曲电等效压电系数之和d33 eff’为510pC/N,本征等效压电系数与挠曲电等效压电系数之差d33 eff”为-200pC/N,可计算得到挠曲电等效压电系数为355pC/N。
按照实施例1中样品制备方法制得Ba0.9Ca0.1TiO3陶瓷,并制备电极后进行极化,测得本征等效压电系数和挠曲电等效压电系数之和d33 eff’为275pC/N,本征等效压电系数与挠曲电等效压电系数之差d33 eff”为-132pC/N,可计算得到挠曲电等效压电系数d33 eff,flexo为203.5pC/N。
实施例3:
按照实施例1中样品制备方法制得Ba0.8Ca0.2TiO3陶瓷,并制备电极后进行极化,测得本征等效压电系数和挠曲电等效压电系数之和d33 eff’为155pC/N,本征等效压电系数与挠曲电等效压电系数之差d33 eff”为64pC/N,可计算得到挠曲电等效压电系数d33 eff,flexo为45.5pC/N。
实施例4:
按照实施例1中样品制备方法制得Ba0.6Ca0.4TiO3陶瓷,并制备电极后进行极化,测得本征等效压电系数和挠曲电等效压电系数之和d33 eff’为106pC/N,本征等效压电系数与挠曲电等效压电系数之差d33 eff”为-62pC/N,可计算得到挠曲电等效压电系数d33 eff,flexo为84pC/N。
实施例5:
按照实施例1中样品制备方法制得Ba0.7Ca0.3TiO3陶瓷,并制备电极后进行极化,测得本征等效压电系数和挠曲电等效压电系数之和d33 eff’为50pC/N,本征等效压电系数与挠曲电等效压电系数之差d33 eff”为-4pC/N,可计算得到挠曲电等效压电系数d33 eff,flexo为27pC/N。
参照图5,可以看到在不同极化电压下,标准d33测试得到的压电系数和通过本方法分离得到的本征等效压电系数
Figure BDA0003573500270000061
大小和变化趋势都基本一致,从而验证了方法的可行性。
参照图6,可以看到测量到的第一表观压电系数
Figure BDA0003573500270000062
和第二表观压电系数
Figure BDA0003573500270000063
以及通过本方法计算得到的挠曲电等效压电系数
Figure BDA0003573500270000064
的关系。
实验结果表明,分离出的本征等效压电系数和标准d33测试得到的压电系数大小基本一致,表面利用此种方法表征挠曲电响应是准确有效的,这种方法操作简易,步骤简单,成本低廉且实验效果良好,结合等效模型,可以计算出挠曲电等效压电系数,有望应用于一般含残余极化挠曲电材料的测试。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (3)

1.一种剩余极化陶瓷样品的挠曲电响应表征方法,其特征在于,包括以下步骤:
基于固相合成法制备陶瓷样品;
在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品;
基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数;
根据挠曲电等效压电系数计算等效挠曲电系数;
所述基于准静态d33测量仪对极化陶瓷样品进行点环法测试,计算得到挠曲电等效压电系数和本征压电等效压电系数这一步骤,其具体包括;
在极化陶瓷样品底部放置环状支撑物;
通过准静态d33测量仪的上探头对极化陶瓷样品顶部表面的中心施加应力;
判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相同,测量得到第一表观压电系数;
将极化陶瓷样品翻转;
判断到极化陶瓷样品的剩余极化方向和挠曲电极化方向相反,测量得到第二表观压电系数;
根据表观压电系数计算得到挠曲电等效压电系数和本征压电等效压电系数;
所述挠曲电等效压电系数的计算公式如下;
Figure FDA0004147000960000011
其中,
Figure FDA0004147000960000012
表示挠曲电等效压电系数,
Figure FDA0004147000960000013
表示第一表观压电系数,
Figure FDA0004147000960000014
表示第二表观压电系数;
所述本征压电等效压电系数的计算公式如下;
Figure FDA0004147000960000015
其中,
Figure FDA0004147000960000016
表示本征压电等效压电系数;
所述等效挠曲电系数的计算公式如下;
Figure FDA0004147000960000017
其中,μp表示样品的等效挠曲电系数,C11表示样品材料杨氏模量,h表示样品厚度,σ表示样品材料泊松比,R表示环状支撑物的半径。
2.根据权利要求1所述一种剩余极化陶瓷样品的挠曲电响应表征方法,其特征在于,所述基于固相合成法制备陶瓷样品这一步骤,其具体包括:
通过化学计量比配置粉末;
将粉末湿法球磨后烘干并预烧,得到预烧后的粉末;
将预烧后的粉末再次球磨并烘干,得到烘干粉末;
对烘干粉末添加粘结剂进行造粒,得到造粒后的粉体;
将造粒后的粉体导入模具,通过冷静压成型,得到坯体;
将坯体去胶后烧结成型,得到陶瓷样品。
3.根据权利要求2所述一种剩余极化陶瓷样品的挠曲电响应表征方法,其特征在于,所述在陶瓷样品表面制备电极并进行极化处理,得到极化陶瓷样品这一步骤,其具体包括:
在陶瓷样品表面制备电极,得到带电极的陶瓷样品;
将带电极的陶瓷样品浸入预设温度的硅油中,并施加直流电压进行极化处理,得到极化陶瓷样品。
CN202210326032.5A 2022-03-30 2022-03-30 一种剩余极化陶瓷样品的挠曲电响应表征方法 Active CN114736014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210326032.5A CN114736014B (zh) 2022-03-30 2022-03-30 一种剩余极化陶瓷样品的挠曲电响应表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210326032.5A CN114736014B (zh) 2022-03-30 2022-03-30 一种剩余极化陶瓷样品的挠曲电响应表征方法

Publications (2)

Publication Number Publication Date
CN114736014A CN114736014A (zh) 2022-07-12
CN114736014B true CN114736014B (zh) 2023-05-05

Family

ID=82278461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210326032.5A Active CN114736014B (zh) 2022-03-30 2022-03-30 一种剩余极化陶瓷样品的挠曲电响应表征方法

Country Status (1)

Country Link
CN (1) CN114736014B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375042A (en) * 1980-11-24 1983-02-22 Eastman Kodak Company Temperature gradient method of nonuniformly poling a body of polymeric piezoelectric material and novel flexure elements produced thereby
CN105572173B (zh) * 2015-12-29 2018-07-03 西安交通大学 通过螺旋位移放大结构测量逆挠曲电系数的装置及方法
CN109950045B (zh) * 2019-03-19 2020-08-14 西安交通大学 一种具有可调控类挠曲电效应的挠曲电驻极体及其制备方法

Also Published As

Publication number Publication date
CN114736014A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Song et al. Conjuncted pyro‐piezoelectric effect for self‐powered simultaneous temperature and pressure sensing
Tufte et al. Silicon diffused-element piezoresistive diaphragms
Zhuang et al. The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3
Ramamurty et al. An experimental study of spherical indentation on piezoelectric materials
CN104529534B (zh) 一种提高铁电氧化物材料的挠曲电效应的方法
TW201109674A (en) Active non-contact probe card
WO2022116383A1 (zh) 三维力柔性触觉传感器及其制备方法与解耦方法
CN114736014B (zh) 一种剩余极化陶瓷样品的挠曲电响应表征方法
EP1591763A1 (en) Capacitance temperature sensor and temperature measuring device
Sauer et al. Piezoresistance and piezocapacitance effects in barium strontium titanate ceramics
Xiao et al. A sticky, thermal tolerant, tough BP@ PVP ionogel for epidermal sensors
D'Asaro et al. Multidimensional characterization of piezoresistive carbon black silicone rubber composites
CN107478361B (zh) 一种微结构化压敏传感器及其制备方法
CN107117964B (zh) 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
Kok et al. Substrate-free thick-film lead zirconate titanate (pzt) performance measurement using berlincourt method
CN115010483A (zh) 一种应变对成分不敏感的压电陶瓷材料及其制备方法和应用
CN103964845B (zh) 一种各向异性压电陶瓷材料及其制备方法
JPH05155658A (ja) パイロ電気セラミック材料
JP4686759B2 (ja) キャパシタンス温度計
JP4637485B2 (ja) 容量性圧力トランスデューサ、及び、該容量性圧力トランスデュ−サ用のリラクサ材料の調整プロセス
JP6234709B2 (ja) 圧電磁器組成物及びその製造方法
Chuai et al. Overload performance study and fabrication of the capacitive pressure-sensitive chip with linkage film
CN111908915B (zh) 一种锆钛酸镧铅基压电陶瓷及其制备方法与应用
König et al. Uniaxial stress dependence of the dielectric permittivity of the Na0. 5Bi0. 5TiO3–KTaO3 system
JP4780782B2 (ja) キャパシタンス温度計

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant