CN114734445A - 一种四足机器人动态适应负载的控制方法 - Google Patents

一种四足机器人动态适应负载的控制方法 Download PDF

Info

Publication number
CN114734445A
CN114734445A CN202210498718.2A CN202210498718A CN114734445A CN 114734445 A CN114734445 A CN 114734445A CN 202210498718 A CN202210498718 A CN 202210498718A CN 114734445 A CN114734445 A CN 114734445A
Authority
CN
China
Prior art keywords
robot
load
fuselage
force
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210498718.2A
Other languages
English (en)
Other versions
CN114734445B (zh
Inventor
苏波
许�鹏
江磊
许威
党睿娜
汪建兵
邓秦丹
邢伯阳
刘宇飞
王志瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongbing Intelligent Innovation Research Institute Co ltd
Original Assignee
Zhongbing Intelligent Innovation Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongbing Intelligent Innovation Research Institute Co ltd filed Critical Zhongbing Intelligent Innovation Research Institute Co ltd
Priority to CN202210498718.2A priority Critical patent/CN114734445B/zh
Publication of CN114734445A publication Critical patent/CN114734445A/zh
Application granted granted Critical
Publication of CN114734445B publication Critical patent/CN114734445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

本发明属于机器人运动控制技术领域,具体涉及一种四足机器人动态适应负载的控制方法。该方法包括:针对机器人的负载参数进行估计,所述机器人的负载参数包括机器人的机身质量及机身质心位置;基于估计获取的机器人的负载参数,建立机器人的虚拟伺服力与力矩;将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应。本发明通过建立机器人负载自适应稳定控制器实现对外界负载的抗扰动,从而提升机器人在复杂路面下的通过性能。

Description

一种四足机器人动态适应负载的控制方法
技术领域
本发明属于机器人运动控制技术领域,具体涉及一种四足机器人动态适应负载的控制方法。
背景技术
四足机器人相比于传统的轮式、履带式车辆,可通过选择离散的摆动腿落足点,因此可适应高原、山地等复杂的地形,目前,四足机器人主要针对已知负载做一些算法上的控制,当机器人需要搭载外界未知负载时:1)重新采用第三方测量工具进行标定;2)依靠自身的控制器鲁棒性进行负载适应。前者可标定出机器人的负载参数,进而输入至动态适应控制器中,但是效率较低;后者针对大的负载,且负载分配不均时,超出机器人的调整范围,机器人将变得不稳定,甚至发生倾覆的危险。部分高校及研究机构虽开展了机器人负载参数自适应整定方面的研究,一方面未考虑机器人腿足连杆质量的影响,另一方面针对如何进一步适应负载的控制研究较为欠缺。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何提供一种四足机器人动态适应负载的控制方法。
(二)技术方案
为解决上述技术问题,本发明提供一种四足机器人动态适应负载的控制方法,所述方法包括如下步骤:
步骤1:针对机器人的负载参数进行估计,所述机器人的负载参数包括机器人的机身质量及机身质心位置;
步骤2:基于估计获取的机器人的负载参数,建立机器人的虚拟伺服力与力矩;
步骤3:将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应。
其中,所述步骤1包括:
步骤11:在机器人的机身原点处建立动力学方程;
步骤12:在机器人站立平衡条件下,建立力平衡方程,估计机器人的机身质量;
步骤13:在机器人站立平衡条件下,建立力矩平衡方程,采用最小二乘法估计机器人的机身质心位置。
其中,所述步骤2中,包括:
步骤21:根据估计的负载参数建立机器人高度方向的虚拟伺服力;
步骤22:根据估计的机身质心位置建立机器人转动方向的虚拟伺服力矩。
其中,所述步骤3中,将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应;具体包括:
步骤31:建立虚拟伺服力/力矩与足端力之间的映射关系;
步骤32:建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解;
步骤33:建立底层柔顺伺服控制器。
其中,所述步骤11中,以机器人为研究对象,在机身原点处建立动力学方程,具体如下:
Figure BDA0003633934090000021
Figure BDA0003633934090000022
其中,
Figure BDA0003633934090000023
式中,Fi为第i条腿的地面作用力矢量,Gi,j为第i条腿第j个关节连杆的重力矢量,mi,j为第i条腿第j个关节连杆的质量,Ii,j为第i条腿第j个关节连杆的转动惯量,
Figure BDA0003633934090000031
为第i条腿第j个关节连杆质心的平动加速度,
Figure BDA0003633934090000032
为第i条腿第j个关节的角加速度,Gt为含负载的机身重力矢量,mt为含负载的机身质量,It为含负载的机身转动惯量,
Figure BDA0003633934090000033
为机身姿态角加速度,
Figure BDA0003633934090000034
为含负载的机身平动加速度,FG为作用在机身原点的合力矢量,MG为作用在机身原点的合力矩矢量,ri为足相对机身原点的位置矢量,rb_com为机身质心相对机身原点的位置矢量,ri,j_com为腿足各关节连杆质心相对机身原点的位置矢量。
其中,所述步骤12中,在机器人站立平衡条件下,合力为零,即FG=0,估计负载质量以及含负载的机身质量,得到:
Figure BDA0003633934090000035
mL=Gt_z/g-mb
Gt_z/g=mL+mb
式中,Gt_z为Gt的z元素,g=-9.812为重力加速度,mb为不含负载的机身质量,mL为机身质量,Gt_z/g为含负载的机身质量。
其中,所述步骤13中,在机器人站立平衡条件下,合力矩为零,即MG=0,机器人的机身质心位置表达如下:
Figure BDA0003633934090000036
Figure BDA0003633934090000037
式中,R为机身姿态变换矩阵,rb_com_b为含负载机身质心相对机身原点的位置矢量;
选取N组不同姿态下的站立平衡状态,采用最小二乘法求解rb_com_b,计算如下:
Figure BDA0003633934090000041
其中,所述步骤21中,根据估计的负载参数建立机器人虚拟伺服力,机身在平动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,平动刚度、阻尼与质量成正比,将负载重力作为前馈,考虑了负载的虚拟力建立如下:
Figure BDA0003633934090000042
式中,Fm为机体虚拟力矢量;kpp为位置正定增益矩阵;p为机身实际的位置矢量;pd为机身期望的位置矢量;kpd为位置正定微分系数矩阵;
Figure BDA0003633934090000043
为机身实际的平动速度矢量,
Figure BDA0003633934090000044
为机身期望的平动速度矢量。
其中,所述步骤22中,根据估计的机身质心位置建立机器人虚拟伺服力矩,机身在转动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,旋转刚度、阻尼与转动惯量成正比,将负载重力产生的力矩作为前馈,考虑了负载的虚拟力矩建立如下:
Figure BDA0003633934090000045
Figure BDA0003633934090000046
Figure BDA0003633934090000047
其中,
Figure BDA0003633934090000048
Figure BDA0003633934090000049
Figure BDA0003633934090000051
式中,Mm为机体虚拟力矩矢量;
Figure BDA0003633934090000052
为姿态正定增益矩阵;
Figure BDA0003633934090000053
为机身实际的姿态矢量;
Figure BDA0003633934090000054
为机身期望的姿态矢量;
Figure BDA0003633934090000055
为姿态正定微分系数矩阵;
Figure BDA0003633934090000056
为机身实际的转动速度矢量,
Figure BDA0003633934090000057
为机身期望的转动速度矢量,
Figure BDA0003633934090000058
为不含负载的机身旋转刚度、阻尼系数矩阵。
其中,所述步骤31中,建立虚拟伺服力/力矩与足端力之间的映射关系,建立如下:
Figure BDA0003633934090000059
所述步骤32中,建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解,目标优化函数如下:
minF(x)=(Ax-b)TS(Ax-b)+αxTWx+β||x-x*||;
其中,
Figure BDA00036339340900000510
式中,S为加权矩阵,W为半正定对称矩阵,α、β为整定因子.x*为上一时刻的优化解;
约束条件如下:
Figure BDA00036339340900000511
Figure BDA00036339340900000512
上式中,
Figure BDA00036339340900000513
为第i接触点的法向力;
Figure BDA00036339340900000514
为第i接触点的切向力;μ为滑动摩擦系数;
所述步骤33中,以分配足部的力作为输入,建立关节柔顺伺服控制器,设计如下所示:
Figure BDA00036339340900000515
式中:K、K为控制器刚度、阻尼系数矩阵;θd为期望的关节角度向量;θ为实际的关节角度向量;
Figure BDA0003633934090000061
为期望的关节角速度向量;
Figure BDA0003633934090000062
为实际的关节角速度向量;τff=-JTFd为关节力前馈项;Fd为足端期望力;J为关节力雅可比矩阵;u为关节柔顺伺服控制器输入。
(三)有益效果
本发明充分考虑机器人各连杆的质量影响,通过建立机器人动态适应负载的控制器实现对外界负载的自适应,提高四足机器人可变负载下的通过性,通过负载参数估计进一步建立负载适应控制器,从而实现机器人对未知负载的动态稳定适应。
与现有技术相比较,本发明具备如下有益效果:
(1)本发明采用地面力信息及机器人已知的物理参数能够精确估计机器人机身的质量与质心位置。
(2)本发明根据估计的负载信息,建立虚拟伺服力/力矩前馈输入,能够有效提升机器人对负载的动态响应性能。
(3)本发明采用虚拟伺服与底层柔顺控制方法,可提高机器人可变负载下的稳定性与柔顺性。
(4)本发明可快速实现对外界负载的自适应,提高四足机器人行走效率。
附图说明
图1为四足机器人动态适应负载方法实现的步骤流程图;
图2是负载参数估计示意图;
图3是四足机器人负载动态适应控制器。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本发明提供一种四足机器人动态适应负载的控制方法,如图1所示,所述方法包括如下步骤:
步骤1:针对机器人的负载参数进行估计,所述机器人的负载参数包括机器人的机身质量及机身质心位置;
步骤2:基于估计获取的机器人的负载参数,建立机器人的虚拟伺服力与力矩;
步骤3:将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应。
其中,所述步骤1包括:
步骤11:在机器人的机身原点处建立动力学方程;
步骤12:在机器人站立平衡条件下,建立力平衡方程,估计机器人的机身质量;
步骤13:在机器人站立平衡条件下,建立力矩平衡方程,采用最小二乘法估计机器人的机身质心位置。
其中,如图3所示,所述步骤2中,包括:
步骤21:根据估计的负载参数建立机器人高度方向的虚拟伺服力;
步骤22:根据估计的机身质心位置建立机器人转动方向的虚拟伺服力矩。
其中,如图3所示,所述步骤3中,将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应;具体包括:
步骤31:建立虚拟伺服力/力矩与足端力之间的映射关系;
步骤32:建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解;
步骤33:建立底层柔顺伺服控制器。
其中,所述步骤11中,如图2所示,以机器人为研究对象,在机身原点处建立动力学方程,具体如下:
Figure BDA0003633934090000071
Figure BDA0003633934090000081
其中,
Figure BDA0003633934090000082
式中,Fi为第i条腿的地面作用力矢量,Gi,j为第i条腿第j个关节连杆的重力矢量,mi,j为第i条腿第j个关节连杆的质量,Ii,j为第i条腿第j个关节连杆的转动惯量,
Figure BDA0003633934090000083
为第i条腿第j个关节连杆质心的平动加速度,
Figure BDA0003633934090000084
为第i条腿第j个关节的角加速度,Gt为含负载的机身重力矢量,mt为含负载的机身质量,It为含负载的机身转动惯量,
Figure BDA0003633934090000085
为机身姿态角加速度,
Figure BDA0003633934090000086
为含负载的机身平动加速度,FG为作用在机身原点的合力矢量,MG为作用在机身原点的合力矩矢量,ri为足相对机身原点的位置矢量,rb_com为机身质心相对机身原点的位置矢量,ri,j_com为腿足各关节连杆质心相对机身原点的位置矢量。
其中,所述步骤12中,在机器人站立平衡条件下,合力为零,即FG=0,估计负载质量以及含负载的机身质量,得到:
Figure BDA0003633934090000087
mL=Gt_z/g-mb
Gt_z/g=mL+mb
式中,Gt_z为Gt的z元素,g=-9.812为重力加速度,mb为不含负载的机身质量,mL为机身质量,Gt_z/g为含负载的机身质量。
其中,所述步骤13中,在机器人站立平衡条件下,合力矩为零,即MG=0,机器人的机身质心位置表达如下:
Figure BDA0003633934090000088
Figure BDA0003633934090000089
式中,R为机身姿态变换矩阵,rb_com_b为含负载机身质心相对机身原点的位置矢量;
选取N组不同姿态下的站立平衡状态,采用最小二乘法求解rb_com_b,计算如下:
Figure BDA0003633934090000091
其中,所述步骤21中,根据估计的负载参数建立机器人虚拟伺服力,机身在平动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,平动刚度、阻尼与质量成正比,将负载重力作为前馈,考虑了负载的虚拟力建立如下:
Figure BDA0003633934090000092
式中,Fm为机体虚拟力矢量;kpp为位置正定增益矩阵;p为机身实际的位置矢量;pd为机身期望的位置矢量;kpd为位置正定微分系数矩阵;
Figure BDA0003633934090000093
为机身实际的平动速度矢量,
Figure BDA0003633934090000094
为机身期望的平动速度矢量。
其中,所述步骤22中,根据估计的机身质心位置建立机器人虚拟伺服力矩,机身在转动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,旋转刚度、阻尼与转动惯量成正比,将负载重力产生的力矩作为前馈,考虑了负载的虚拟力矩建立如下:
Figure BDA0003633934090000095
Figure BDA0003633934090000096
Figure BDA0003633934090000097
其中,
Figure BDA0003633934090000098
Figure BDA0003633934090000101
Figure BDA0003633934090000102
式中,Mm为机体虚拟力矩矢量;
Figure BDA0003633934090000103
为姿态正定增益矩阵;
Figure BDA0003633934090000104
为机身实际的姿态矢量;
Figure BDA0003633934090000105
为机身期望的姿态矢量;
Figure BDA0003633934090000106
为姿态正定微分系数矩阵;
Figure BDA0003633934090000107
为机身实际的转动速度矢量,
Figure BDA0003633934090000108
为机身期望的转动速度矢量,
Figure BDA0003633934090000109
为不含负载的机身旋转刚度、阻尼系数矩阵。
其中,所述步骤31中,建立虚拟伺服力/力矩与足端力之间的映射关系,建立如下:
Figure BDA00036339340900001010
所述步骤32中,建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解,目标优化函数如下:
minF(x)=(Ax-b)TS(Ax-b)+αxTWx+β||x-x*||;
其中,
Figure BDA00036339340900001011
式中,S为加权矩阵,W为半正定对称矩阵,α、β为整定因子.x*为上一时刻的优化解;
约束条件如下:
Figure BDA00036339340900001012
Figure BDA00036339340900001013
上式中,
Figure BDA00036339340900001014
为第i接触点的法向力;
Figure BDA00036339340900001015
为第i接触点的切向力;μ为滑动摩擦系数;
所述步骤33中,以分配足部的力作为输入,建立关节柔顺伺服控制器,设计如下所示:
Figure BDA0003633934090000111
式中:K、K为控制器刚度、阻尼系数矩阵;θd为期望的关节角度向量;θ为实际的关节角度向量;
Figure BDA0003633934090000112
为期望的关节角速度向量;
Figure BDA0003633934090000113
为实际的关节角速度向量;τff=-JTFd为关节力前馈项;Fd为足端期望力;J为关节力雅可比矩阵;u为关节柔顺伺服控制器输入。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种四足机器人动态适应负载的控制方法,其特征在于,所述方法包括如下步骤:
步骤1:针对机器人的负载参数进行估计,所述机器人的负载参数包括机器人的机身质量及机身质心位置;
步骤2:基于估计获取的机器人的负载参数,建立机器人的虚拟伺服力与力矩;
步骤3:将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应。
2.如权利要求1所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤1包括:
步骤11:在机器人的机身原点处建立动力学方程;
步骤12:在机器人站立平衡条件下,建立力平衡方程,估计机器人的机身质量;
步骤13:在机器人站立平衡条件下,建立力矩平衡方程,采用最小二乘法估计机器人的机身质心位置。
3.如权利要求2所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤2中,包括:
步骤21:根据估计的负载参数建立机器人高度方向的虚拟伺服力;
步骤22:根据估计的机身质心位置建立机器人转动方向的虚拟伺服力矩。
4.如权利要求3所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤3中,将虚拟伺服力与力矩优化分配至各支撑腿,并通过关节映射实现负载的动态适应;具体包括:
步骤31:建立虚拟伺服力/力矩与足端力之间的映射关系;
步骤32:建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解;
步骤33:建立底层柔顺伺服控制器。
5.如权利要求4所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤11中,以机器人为研究对象,在机身原点处建立动力学方程,具体如下:
Figure FDA0003633934080000021
Figure FDA0003633934080000022
其中,
Figure FDA0003633934080000023
式中,Fi为第i条腿的地面作用力矢量,Gi,j为第i条腿第j个关节连杆的重力矢量,mi,j为第i条腿第j个关节连杆的质量,Ii,j为第i条腿第j个关节连杆的转动惯量,
Figure FDA0003633934080000024
为第i条腿第j个关节连杆质心的平动加速度,
Figure FDA0003633934080000025
为第i条腿第j个关节的角加速度,Gt为含负载的机身重力矢量,mt为含负载的机身质量,It为含负载的机身转动惯量,
Figure FDA0003633934080000026
为机身姿态角加速度,
Figure FDA0003633934080000027
为含负载的机身平动加速度,FG为作用在机身原点的合力矢量,MG为作用在机身原点的合力矩矢量,ri为足相对机身原点的位置矢量,rb_com为机身质心相对机身原点的位置矢量,ri,j_com为腿足各关节连杆质心相对机身原点的位置矢量。
6.如权利要求5所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤12中,在机器人站立平衡条件下,合力为零,即FG=0,估计负载质量以及含负载的机身质量,得到:
Figure FDA0003633934080000028
mL=Gt_z/g-mb
Gt_z/g=mL+mb
式中,Gt_z为Gt的z元素,g=-9.812为重力加速度,mb为不含负载的机身质量,mL为机身质量,Gt_z/g为含负载的机身质量。
7.如权利要求6所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤13中,在机器人站立平衡条件下,合力矩为零,即MG=0,机器人的机身质心位置表达如下:
Figure FDA0003633934080000031
Figure FDA0003633934080000032
式中,R为机身姿态变换矩阵,rb_com_b为含负载机身质心相对机身原点的位置矢量;
选取N组不同姿态下的站立平衡状态,采用最小二乘法求解rb_com_b,计算如下:
Figure FDA0003633934080000033
8.如权利要求7所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤21中,根据估计的负载参数建立机器人虚拟伺服力,机身在平动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,平动刚度、阻尼与质量成正比,将负载重力作为前馈,考虑了负载的虚拟力建立如下:
Figure FDA0003633934080000034
式中,Fm为机体虚拟力矢量;kpp为位置正定增益矩阵;p为机身实际的位置矢量;pd为机身期望的位置矢量;kpd为位置正定微分系数矩阵;
Figure FDA0003633934080000035
为机身实际的平动速度矢量,
Figure FDA0003633934080000036
为机身期望的平动速度矢量。
9.如权利要求8所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤22中,根据估计的机身质心位置建立机器人虚拟伺服力矩,机身在转动方向被简化为具有弹簧和阻尼的虚拟元件,在相同的阻尼比和自然频率下,旋转刚度、阻尼与转动惯量成正比,将负载重力产生的力矩作为前馈,考虑了负载的虚拟力矩建立如下:
Figure FDA0003633934080000041
Figure FDA0003633934080000042
Figure FDA0003633934080000043
其中,
Figure FDA0003633934080000044
Figure FDA0003633934080000045
Figure FDA0003633934080000046
式中,Mm为机体虚拟力矩矢量;
Figure FDA0003633934080000047
为姿态正定增益矩阵;
Figure FDA0003633934080000048
为机身实际的姿态矢量;
Figure FDA0003633934080000049
为机身期望的姿态矢量;
Figure FDA00036339340800000410
为姿态正定微分系数矩阵;
Figure FDA00036339340800000411
为机身实际的转动速度矢量,
Figure FDA00036339340800000412
为机身期望的转动速度矢量,
Figure FDA00036339340800000413
为不含负载的机身旋转刚度、阻尼系数矩阵。
10.如权利要求9所述的四足机器人动态适应负载的控制方法,其特征在于,所述步骤31中,建立虚拟伺服力/力矩与足端力之间的映射关系,建立如下:
Figure FDA00036339340800000414
所述步骤32中,建立虚拟伺服力/力矩力分配的目标优化函数,求解满足约束的一组最优解,目标优化函数如下:
min F(x)=(Ax-b)TS(Ax-b)+αxTWx+β||x-x*||;
其中,
Figure FDA0003633934080000051
式中,S为加权矩阵,W为半正定对称矩阵,α、β为整定因子.x*为上一时刻的优化解;
约束条件如下:
Figure FDA0003633934080000052
Figure FDA0003633934080000053
上式中,
Figure FDA0003633934080000054
为第i接触点的法向力;
Figure FDA0003633934080000055
为第i接触点的切向力;μ为滑动摩擦系数;
所述步骤33中,以分配足部的力作为输入,建立关节柔顺伺服控制器,设计如下所示:
Figure FDA0003633934080000056
式中:K、K为控制器刚度、阻尼系数矩阵;θd为期望的关节角度向量;θ为实际的关节角度向量;
Figure FDA0003633934080000057
为期望的关节角速度向量;
Figure FDA0003633934080000058
为实际的关节角速度向量;τff=-JTFd为关节力前馈项;Fd为足端期望力;J为关节力雅可比矩阵;u为关节柔顺伺服控制器输入。
CN202210498718.2A 2022-05-09 2022-05-09 一种四足机器人动态适应负载的控制方法 Active CN114734445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498718.2A CN114734445B (zh) 2022-05-09 2022-05-09 一种四足机器人动态适应负载的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498718.2A CN114734445B (zh) 2022-05-09 2022-05-09 一种四足机器人动态适应负载的控制方法

Publications (2)

Publication Number Publication Date
CN114734445A true CN114734445A (zh) 2022-07-12
CN114734445B CN114734445B (zh) 2024-06-28

Family

ID=82285265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498718.2A Active CN114734445B (zh) 2022-05-09 2022-05-09 一种四足机器人动态适应负载的控制方法

Country Status (1)

Country Link
CN (1) CN114734445B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115556111A (zh) * 2022-10-26 2023-01-03 哈尔滨工业大学 基于变惯性参数建模的飞行机械臂耦合扰动控制方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110231050A1 (en) * 2010-03-22 2011-09-22 Goulding John R In-Line Legged Robot Vehicle and Method for Operating
CN102591344A (zh) * 2012-03-05 2012-07-18 中国人民解放军国防科学技术大学 四足仿生机器人的时位控制方法
CN102799184A (zh) * 2012-08-22 2012-11-28 中科宇博(北京)文化有限公司 仿生机械恐龙爬行稳定性控制方法
CN107065908A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人静步态机身运动轨迹的方法
CN107256284A (zh) * 2017-05-10 2017-10-17 中国北方车辆研究所 一种实时交互式四足机器人多步态动力学建模方法及系统
CN108614427A (zh) * 2018-06-07 2018-10-02 中国北方车辆研究所 一种四足机器人应激控制方法和装置
CN108897318A (zh) * 2018-06-22 2018-11-27 哈尔滨理工大学 液压四足机器人动力机构负载匹配方法
CN109093626A (zh) * 2018-09-28 2018-12-28 中科新松有限公司 四足机器人的机身姿态控制方法及装置
CN109760761A (zh) * 2019-01-30 2019-05-17 清华大学深圳研究生院 一种基于生物仿生原理和直觉的四足机器人运动控制方法
CN109871018A (zh) * 2019-02-25 2019-06-11 北京航空航天大学 一种具有腰部自由度四足机器人的控制方法
CN110083982A (zh) * 2019-05-17 2019-08-02 山东大学 多肢腿式机器人分布式动力学建模方法
CN110682273A (zh) * 2019-10-09 2020-01-14 中科新松有限公司 一种基于并联机构思维的多足支撑步行机器人运动控制框架
CN111208826A (zh) * 2020-02-18 2020-05-29 杭州云深处科技有限公司 四足机器人溜蹄步态规划方法、装置、设备及可读介质
CN111857170A (zh) * 2020-07-29 2020-10-30 中国人民解放军陆军装甲兵学院 一种四足机器人腿部关节负载规律分析方法
CN112596531A (zh) * 2021-03-04 2021-04-02 德鲁动力科技(成都)有限公司 一种四足机器人自适应负载参数调整方法
CN113771046A (zh) * 2021-10-25 2021-12-10 中国北方车辆研究所 一种最小化Jerk指标摆动轨迹规划方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110231050A1 (en) * 2010-03-22 2011-09-22 Goulding John R In-Line Legged Robot Vehicle and Method for Operating
CN102591344A (zh) * 2012-03-05 2012-07-18 中国人民解放军国防科学技术大学 四足仿生机器人的时位控制方法
CN102799184A (zh) * 2012-08-22 2012-11-28 中科宇博(北京)文化有限公司 仿生机械恐龙爬行稳定性控制方法
CN107065908A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人静步态机身运动轨迹的方法
CN107256284A (zh) * 2017-05-10 2017-10-17 中国北方车辆研究所 一种实时交互式四足机器人多步态动力学建模方法及系统
CN108614427A (zh) * 2018-06-07 2018-10-02 中国北方车辆研究所 一种四足机器人应激控制方法和装置
CN108897318A (zh) * 2018-06-22 2018-11-27 哈尔滨理工大学 液压四足机器人动力机构负载匹配方法
CN109093626A (zh) * 2018-09-28 2018-12-28 中科新松有限公司 四足机器人的机身姿态控制方法及装置
CN109760761A (zh) * 2019-01-30 2019-05-17 清华大学深圳研究生院 一种基于生物仿生原理和直觉的四足机器人运动控制方法
CN109871018A (zh) * 2019-02-25 2019-06-11 北京航空航天大学 一种具有腰部自由度四足机器人的控制方法
CN110083982A (zh) * 2019-05-17 2019-08-02 山东大学 多肢腿式机器人分布式动力学建模方法
CN110682273A (zh) * 2019-10-09 2020-01-14 中科新松有限公司 一种基于并联机构思维的多足支撑步行机器人运动控制框架
CN111208826A (zh) * 2020-02-18 2020-05-29 杭州云深处科技有限公司 四足机器人溜蹄步态规划方法、装置、设备及可读介质
CN111857170A (zh) * 2020-07-29 2020-10-30 中国人民解放军陆军装甲兵学院 一种四足机器人腿部关节负载规律分析方法
CN112596531A (zh) * 2021-03-04 2021-04-02 德鲁动力科技(成都)有限公司 一种四足机器人自适应负载参数调整方法
CN113771046A (zh) * 2021-10-25 2021-12-10 中国北方车辆研究所 一种最小化Jerk指标摆动轨迹规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115556111A (zh) * 2022-10-26 2023-01-03 哈尔滨工业大学 基于变惯性参数建模的飞行机械臂耦合扰动控制方法
CN115556111B (zh) * 2022-10-26 2023-08-18 哈尔滨工业大学 基于变惯性参数建模的飞行机械臂耦合扰动控制方法

Also Published As

Publication number Publication date
CN114734445B (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2022252863A1 (zh) 轮腿式机器人的控制方法、装置、轮腿式机器人及设备
CN111252162B (zh) 一种双足机器人足部柔顺平衡控制系统及方法
CN110244791A (zh) 一种双足机器人足部力和力矩跟随控制方法
CN110202580B (zh) 一种扰动恢复的仿人机器人空间柔顺控制模型构建方法
CN109050658B (zh) 基于模型预测控制的汽车主动前轮转向自适应调节方法
Zhang et al. Mechanism design for locust-inspired robot with one-DOF leg based on jumping stability
CN109032142A (zh) 一种含腰部结构的双足机器人设计以及反馈控制方法
CN114734445A (zh) 一种四足机器人动态适应负载的控制方法
CN109426145A (zh) 关节柔性双臂空间机器人的自适应神经网络滑模控制方法
CN112975978B (zh) 多足机器人负重平衡方法、装置和多足机器人
CN110597064B (zh) 基于非线性和不确定模型的主动悬挂输出反馈控制方法
US20110213495A1 (en) External force target generating device of legged mobile robot
CN115933723B (zh) 一种应用于双足机器人快速行走的全身柔顺控制方法
Li et al. Stabilizing humanoids on slopes using terrain inclination estimation
CN106737669B (zh) 考虑外力冲击干扰和阻尼的多足机器人能量裕度计算方法
CN107584983A (zh) 汽车主动悬架系统的参数化控制方法
KR20140085684A (ko) 로봇의 보행제어방법 및 시스템
CN113359729A (zh) 一种电驱动足式机器人滑移抑制方法
CN109947099A (zh) 一种基于事件触发机制的机器人控制方法及装置
Ridderstrom et al. Quadruped posture control based on simple force distribution-a notion and a trial
CN115857354A (zh) 一种四足机器人优化足底力分配和轨迹跟踪的方法
JP2019025989A (ja) サスペンション制御システム
CN108227484A (zh) 一种仿人机器人偏摆力矩控制方法
CN113467246B (zh) 一种双足机器人偏摆力矩补偿方法
Li et al. Active control of under-actuated foot tilting for humanoid push recovery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant