CN114718556A - Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters - Google Patents
Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters Download PDFInfo
- Publication number
- CN114718556A CN114718556A CN202110348654.3A CN202110348654A CN114718556A CN 114718556 A CN114718556 A CN 114718556A CN 202110348654 A CN202110348654 A CN 202110348654A CN 114718556 A CN114718556 A CN 114718556A
- Authority
- CN
- China
- Prior art keywords
- parameters
- sample
- model
- shale gas
- sample parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000009826 distribution Methods 0.000 claims abstract description 70
- 230000006870 function Effects 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 13
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 123
- 230000000007 visual effect Effects 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 238000012216 screening Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 238000007635 classification algorithm Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000002948 stochastic simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Theoretical Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Animal Husbandry (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Marine Sciences & Fisheries (AREA)
- General Business, Economics & Management (AREA)
- Geophysics (AREA)
- Agronomy & Crop Science (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本申请公开了人工裂缝参数的获取方法、装置及设备,该方法包括获取页岩气井模型;获取页岩气井模型中人工裂缝参数的初始概率分布;基于初始概率分布,获取多个第一样本参数;基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数;基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数。该方法能够减少人工裂缝参数获取过程中的人为工作量,并提高人工裂缝参数获取结果的准确性。
The present application discloses a method, device and equipment for obtaining parameters of artificial fractures. The method includes obtaining a shale gas well model; obtaining an initial probability distribution of parameters of artificial fractures in the shale gas well model; and obtaining a plurality of first samples based on the initial probability distribution parameters; obtaining multiple second sample parameters based on the shale gas well model, multiple first sample parameters and reference fitting errors; obtaining target artificial fracture parameters based on multiple second sample parameters and the shale gas well model. The method can reduce the manual workload in the process of obtaining artificial fracture parameters, and improve the accuracy of the results obtained by artificial fracture parameters.
Description
技术领域technical field
本申请实施例涉及页岩气井开采技术领域,特别涉及人工裂缝参数的获取方法、装置及设备。The embodiments of the present application relate to the technical field of shale gas well exploitation, and in particular, to a method, device, and equipment for obtaining parameters of artificial fractures.
背景技术Background technique
页岩气属于人造气藏,开采时需要通过大型水力压裂形成人工裂缝。页岩气井的生产能力与人工裂缝密切相关,评估页岩气井生产能力的核心步骤是获取人工裂缝参数。Shale gas is a man-made gas reservoir, and large-scale hydraulic fracturing is required to form artificial fractures during exploitation. The productivity of shale gas wells is closely related to artificial fractures. The core step in evaluating the productivity of shale gas wells is to obtain artificial fracture parameters.
相关技术中,通过建立页岩气井模型,然后人为地对人工裂缝参数进行不断修改,运用模型的计算结果来拟合气井的实际生产指标如产气量、产液量,若计算结果与实际观测结果十分接近,则认为模型中的人工裂缝参数符合页岩气井的真实情况,以此获得人工裂缝参数。In the related art, the shale gas well model is established, and the artificial fracture parameters are continuously modified artificially, and the calculation results of the model are used to fit the actual production indicators of the gas well, such as gas production and liquid production. If it is very close, it is considered that the artificial fracture parameters in the model are in line with the real situation of shale gas wells, so as to obtain the artificial fracture parameters.
然而由于影响页岩气井生产能力的因素太多,相关技术强赖于人工调参会使拟合结果存在很大不确定性,导致获取的人工裂缝参数准确性不高;此外,由于样本数量庞大,人工调参的工作量巨大,因此相关技术也不适用于实际情况,效率较低。However, since there are too many factors affecting the productivity of shale gas wells, the relative technology relies heavily on manual parameter adjustment, which will cause great uncertainty in the fitting results, resulting in low accuracy of the acquired artificial fracture parameters; in addition, due to the large number of samples , the workload of manual parameter adjustment is huge, so the related technology is not suitable for the actual situation, and the efficiency is low.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了人工裂缝参数的获取方法、装置及设备,用于减少人工裂缝参数获取过程中的人为工作量,并提高人工裂缝参数获取结果的准确性。The embodiments of the present application provide a method, device, and equipment for acquiring parameters of artificial fractures, which are used to reduce the manual workload in the process of acquiring parameters of artificial fractures, and improve the accuracy of the results of acquiring parameters of artificial fractures.
第一方面,本申请实施例提供了一种人工裂缝参数的获取方法,该方法包括:获取页岩气井模型;获取页岩气井模型中人工裂缝参数的初始概率分布;基于初始概率分布,获取多个第一样本参数;基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数;基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数。In a first aspect, an embodiment of the present application provides a method for obtaining parameters of artificial fractures, the method includes: obtaining a shale gas well model; obtaining an initial probability distribution of parameters of artificial fractures in the shale gas well model; multiple first sample parameters; multiple second sample parameters are obtained based on the shale gas well model, multiple first sample parameters and reference fitting errors; target artificial fracture parameters are obtained based on multiple second sample parameters and the shale gas well model .
在一种可能的实现方式中,基于初始概率分布,获取第一样本参数,包括:在初始概率分布中通过马尔科夫链蒙特卡洛方法进行随机抽样,获得多个第一样本参数。In a possible implementation manner, acquiring the first sample parameters based on the initial probability distribution includes: performing random sampling in the initial probability distribution by using a Markov Chain Monte Carlo method to obtain multiple first sample parameters.
在一种可能的实现方式中,基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数,包括:基于多个第一样本参数以及页岩气井模型获取多个第一样本模型;基于多个第一样本模型通过历史拟合误差函数获取多个第一拟合误差;基于多个第一样本参数以及多个第一拟合误差建立第一代理模型;基于第一代理模型以及参考拟合误差获取多个第二样本参数。In a possible implementation manner, acquiring a plurality of second sample parameters based on a shale gas well model, a plurality of first sample parameters, and a reference fitting error includes: based on a plurality of first sample parameters and a shale gas well model Obtain a plurality of first sample models; obtain a plurality of first fitting errors through a historical fitting error function based on the plurality of first sample models; establish a first fitting error based on the plurality of first sample parameters and the plurality of first fitting errors; a surrogate model; a plurality of second sample parameters are obtained based on the first surrogate model and the reference fitting error.
在一种可能的实现方式中,基于多个第一样本模型以及多个第一拟合误差建立第一代理模型,包括:基于多个第一样本参数以及多个第一拟合误差通过K最近邻分类KNN算法建立第二代理模型;基于第二代理模型通过马尔科夫链蒙特卡洛方法获取多个第三样本参数;基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型。In a possible implementation manner, establishing the first surrogate model based on the multiple first sample models and the multiple first fitting errors includes: passing the multiple first sample parameters and the multiple first fitting errors through K-nearest neighbor classification KNN algorithm establishes a second surrogate model; based on the second surrogate model, multiple third sample parameters are obtained through the Markov chain Monte Carlo method; based on multiple third sample parameters and the history fitting error function, the second surrogate model is The surrogate model is iterated to obtain a first surrogate model.
在一种可能的实现方式中,基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型,包括:基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,将达到第一条件的迭代后的第二代理模型作为第一代理模型,第一条件为参考数量个第三样本参数通过历史拟合误差函数得到的拟合误差与通过迭代后的第二代理模型得到的拟合误差的差值小于参考阈值。In a possible implementation manner, iterating the second surrogate model based on the plurality of third sample parameters and the historical fitting error function to obtain the first surrogate model includes: based on the plurality of third sample parameters and the historical fitting error The function iterates the second surrogate model, and takes the iterated second surrogate model that meets the first condition as the first surrogate model, and the first condition is the fitting error obtained by the reference number of third sample parameters through the historical fitting error function The difference from the fitting error obtained by the iterated second surrogate model is less than the reference threshold.
在一种可能的实现方式中,基于第一代理模型以及参考拟合误差获取多个第二样本参数,包括:基于第一代理模型获取满足参考拟合误差的多个样本参数,将满足参考拟合误差的多个样本参数作为多个第二样本参数。In a possible implementation manner, acquiring a plurality of second sample parameters based on the first surrogate model and the reference fitting error includes: acquiring, based on the first surrogate model, a plurality of sample parameters that satisfy the reference fitting error, which will satisfy the reference fitting error. The multiple sample parameters of the combined error are used as multiple second sample parameters.
在一种可能的实现方式中,基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数,包括:基于多个第二样本参数获取人工裂缝参数的目标概率分布;基于目标概率分布以及页岩气井模型对目标人工裂缝参数进行反演,获得目标人工裂缝参数。In a possible implementation manner, obtaining target artificial fracture parameters based on multiple second sample parameters and a shale gas well model includes: obtaining a target probability distribution of artificial fracture parameters based on multiple second sample parameters; The shale gas well model inverts the target artificial fracture parameters to obtain the target artificial fracture parameters.
在一种可能的实现方式中,所述人工裂缝参数至少包括人工裂缝的长度、人工裂缝的缝高值、人工裂缝的含水饱和度、人工裂缝的宽度以及人工裂缝的导流系数中的一种。In a possible implementation manner, the artificial fracture parameters include at least one of the length of the artificial fracture, the fracture height of the artificial fracture, the water saturation of the artificial fracture, the width of the artificial fracture, and the conductivity of the artificial fracture .
本申请实施例所提供的人工裂缝参数的获取方法,通过获取人工裂缝参数的初始概率分布,并基于概率分布获取多个第一样本参数,进一步对第一样本参数进行迭代和择优,获取代表性更高的第二样本参数,再基于第二样本参数获取人工裂缝参数,使得最终得到的人工裂缝参数准确性更高,有效地解决了目前页岩气井人工裂缝参数无法准确获取以及人工工作量大的问题。In the method for obtaining artificial fracture parameters provided by the embodiments of the present application, the initial probability distribution of artificial fracture parameters is obtained, and a plurality of first sample parameters are obtained based on the probability distribution, and the first sample parameters are further iterated and optimized to obtain The more representative second sample parameters, and then the artificial fracture parameters are obtained based on the second sample parameters, so that the final obtained artificial fracture parameters are more accurate, effectively solving the current shale gas well artificial fracture parameters cannot be accurately obtained and manual work. volume problem.
第二方面,本申请实施例提供了一种人工裂缝参数的获取装置,该装置包括:第一获取模块,用于获取页岩气井模型;第二获取模块,用于获取页岩气井模型中人工裂缝参数的初始概率分布;第三获取模块,用于基于初始概率分布,获取多个第一样本参数;第四获取模块,用于基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数;第五获取模块,用于基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数。In a second aspect, an embodiment of the present application provides a device for obtaining parameters of artificial fractures, the device comprising: a first obtaining module for obtaining a shale gas well model; a second obtaining module for obtaining artificial fractures in the shale gas well model The initial probability distribution of fracture parameters; the third acquisition module is used to acquire multiple first sample parameters based on the initial probability distribution; the fourth acquisition module is used to acquire multiple first sample parameters based on the shale gas well model, multiple first sample parameters and reference The fitting error obtains a plurality of second sample parameters; the fifth obtaining module is used for obtaining target artificial fracture parameters based on the plurality of second sample parameters and the shale gas well model.
在一种可能的实现方式中,第三获取模块,用于在初始概率分布中通过马尔科夫链蒙特卡洛方法进行随机抽样,获得多个第一样本参数。In a possible implementation manner, the third obtaining module is configured to perform random sampling through the Markov Chain Monte Carlo method in the initial probability distribution to obtain a plurality of first sample parameters.
在一种可能的实现方式中,第四获取模块,用于基于多个第一样本参数以及页岩气井模型获取多个第一样本模型;基于多个第一样本模型通过历史拟合误差函数获取多个第一拟合误差;基于多个第一样本参数以及多个第一拟合误差建立第一代理模型;基于第一代理模型以及参考拟合误差获取多个第二样本参数。In a possible implementation manner, a fourth acquisition module is configured to acquire a plurality of first sample models based on a plurality of first sample parameters and a shale gas well model; and perform history matching based on the plurality of first sample models The error function obtains a plurality of first fitting errors; establishes a first surrogate model based on the plurality of first sample parameters and the plurality of first fitting errors; obtains a plurality of second sample parameters based on the first surrogate model and the reference fitting errors .
在一种可能的实现方式中,第四获取模块,用于基于多个第一样本参数以及多个第一拟合误差通过K最近邻分类KNN算法建立第二代理模型;基于第二代理模型通过马尔科夫链蒙特卡洛方法获取多个第三样本参数;基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型。In a possible implementation manner, the fourth acquisition module is configured to establish a second surrogate model through the K-nearest neighbor classification KNN algorithm based on a plurality of first sample parameters and a plurality of first fitting errors; based on the second surrogate model A plurality of third sample parameters are obtained through the Markov chain Monte Carlo method; the second surrogate model is iterated based on the plurality of third sample parameters and the historical fitting error function to obtain a first surrogate model.
在一种可能的实现方式中,第四获取模块,用于基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,将达到第一条件的迭代后的第二代理模型作为第一代理模型,第一条件为参考数量个第三样本参数通过历史拟合误差函数得到的拟合误差与通过迭代后的第二代理模型得到的拟合误差的差值小于参考阈值。In a possible implementation manner, the fourth acquisition module is configured to iterate the second surrogate model based on the plurality of third sample parameters and the historical fitting error function, and obtain the iterated second surrogate model that meets the first condition As the first surrogate model, the first condition is that the difference between the fitting errors obtained by the reference number of third sample parameters through the historical fitting error function and the fitting errors obtained through the iterated second surrogate model is smaller than the reference threshold.
在一种可能的实现方式中,第四获取模块,用于基于第一代理模型获取满足参考拟合误差的多个样本参数,将满足所述参考拟合误差的多个样本参数作为多个第二样本参数。In a possible implementation manner, a fourth obtaining module is configured to obtain a plurality of sample parameters satisfying the reference fitting error based on the first surrogate model, and use the plurality of sample parameters satisfying the reference fitting error as a plurality of first surrogate models. Two sample parameters.
在一种可能的实现方式中,第五获取模块,用于基于多个第二样本参数获取人工裂缝参数的目标概率分布;基于目标概率分布以及页岩气井模型对目标人工裂缝参数进行反演,获得目标人工裂缝参数。In a possible implementation manner, the fifth acquisition module is configured to acquire the target probability distribution of artificial fracture parameters based on the plurality of second sample parameters; perform inversion of the target artificial fracture parameters based on the target probability distribution and the shale gas well model, Obtain the target artificial fracture parameters.
在一种可能的实现方式中,目标人工裂缝参数至少包括人工裂缝的长度、人工裂缝的缝高值、人工裂缝的含水饱和度、人工裂缝的宽度以及人工裂缝的导流系数中的一种。In a possible implementation manner, the target artificial fracture parameters include at least one of the length of the artificial fracture, the fracture height of the artificial fracture, the water saturation of the artificial fracture, the width of the artificial fracture, and the conductivity of the artificial fracture.
第三方面,本申请实施例提供了一种计算机设备,计算机设备包括处理器和存储器,存储器中存储有至少一条指令,至少一条指令在被处理器执行时实现如上第一方面任一所述的人工裂缝参数的获取方法。In a third aspect, an embodiment of the present application provides a computer device, the computer device includes a processor and a memory, the memory stores at least one instruction, and when the at least one instruction is executed by the processor, implements any one of the first aspect above. Methods of obtaining artificial fracture parameters.
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有至少一条指令,至少一条指令在被执行时实现如上第一方面任一所述的人工裂缝参数的获取方法。In a fourth aspect, embodiments of the present application provide a computer-readable storage medium, where at least one instruction is stored in the computer-readable storage medium, and the at least one instruction implements the artificial crack parameter described in any one of the first aspect above when executed. method of obtaining.
第五方面,本申请实施例提供了一种计算机程序(产品),所述计算机程序(产品)包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的人工裂缝参数的获取方法。In a fifth aspect, an embodiment of the present application provides a computer program (product), the computer program (product) comprising: computer program code, when the computer program code is run by a computer, the computer is made to perform the above aspects. The method of obtaining artificial fracture parameters in .
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本申请实施例提供的一种人工裂缝参数的获取方法的流程图;1 is a flowchart of a method for obtaining artificial fracture parameters provided by an embodiment of the present application;
图2是本申请实施例提供的一种页岩气井模型;Fig. 2 is a kind of shale gas well model provided by the embodiment of the present application;
图3是本申请实施例提供的一种页岩气井模型;Fig. 3 is a kind of shale gas well model provided by the embodiment of the present application;
图4是本申请实施例提供的一种第二样本模型的筛选结果;Fig. 4 is a screening result of a second sample model provided by the embodiment of the present application;
图5是本申请实施例提供的一种第二样本模型的筛选结果;FIG. 5 is a screening result of a second sample model provided by an embodiment of the present application;
图6是本申请实施例提供的一种第二样本模型的筛选结果;FIG. 6 is a screening result of a second sample model provided by an embodiment of the present application;
图7是本申请实施例提供的一种第二样本模型的筛选结果;7 is a screening result of a second sample model provided by an embodiment of the present application;
图8是本申请实施例提供的一种第二样本模型的筛选结果;8 is a screening result of a second sample model provided by an embodiment of the present application;
图9是本申请实施例提供的一种第二样本模型的筛选结果;FIG. 9 is a screening result of a second sample model provided by an embodiment of the present application;
图10是本申请实施例提供的一种可视化反演结果;FIG. 10 is a visual inversion result provided by an embodiment of the present application;
图11是本申请实施例提供的一种可视化反演结果;FIG. 11 is a visual inversion result provided by an embodiment of the present application;
图12是本申请实施例提供的一种可视化反演结果;FIG. 12 is a visual inversion result provided by an embodiment of the present application;
图13是本申请实施例提供的一种可视化反演结果;FIG. 13 is a visual inversion result provided by an embodiment of the present application;
图14是本申请实施例提供的一种可视化反演结果;FIG. 14 is a visual inversion result provided by an embodiment of the present application;
图15是本申请实施例提供的一种可视化反演结果;FIG. 15 is a visual inversion result provided by an embodiment of the present application;
图16是本申请实施例提供的一种可视化反演结果;FIG. 16 is a visual inversion result provided by an embodiment of the present application;
图17是本申请实施例提供的一种可视化反演结果;FIG. 17 is a visual inversion result provided by an embodiment of the present application;
图18是本申请实施例提供的一种可视化反演结果;FIG. 18 is a visual inversion result provided by an embodiment of the present application;
图19是本申请实施例提供的一种可视化反演结果;FIG. 19 is a visual inversion result provided by an embodiment of the present application;
图20是本申请实施例提供的一种可视化反演结果;FIG. 20 is a visual inversion result provided by an embodiment of the present application;
图21是本申请实施例提供的一种可视化反演结果;FIG. 21 is a visual inversion result provided by an embodiment of the present application;
图22是本申请实施例提供的一种可视化反演结果;FIG. 22 is a visual inversion result provided by an embodiment of the present application;
图23是本申请实施例提供的一种可视化反演结果;FIG. 23 is a visual inversion result provided by an embodiment of the present application;
图24是本申请实施例提供的一种可视化反演结果;FIG. 24 is a visual inversion result provided by an embodiment of the present application;
图25是本申请实施例提供的一种可视化反演结果;FIG. 25 is a visual inversion result provided by an embodiment of the present application;
图26是本申请实施例提供的一种可视化反演结果;FIG. 26 is a visual inversion result provided by an embodiment of the present application;
图27是本申请实施例提供的一种可视化反演结果;FIG. 27 is a visual inversion result provided by an embodiment of the present application;
图28是本申请实施例提供的一种可视化反演结果;FIG. 28 is a visual inversion result provided by an embodiment of the present application;
图29是本申请实施例提供的一种可视化反演结果;FIG. 29 is a visual inversion result provided by an embodiment of the present application;
图30是本申请实施例提供的一种人工裂缝参数的获取装置的示意图。FIG. 30 is a schematic diagram of a device for acquiring parameters of an artificial fracture provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present application clearer, the embodiments of the present application will be further described in detail below with reference to the accompanying drawings.
请参考图1,其示出了本申请实施例提供的一种人工裂缝参数的获取方法的流程图。本申请实施例提供的方法可以包括如下几个步骤:Please refer to FIG. 1 , which shows a flowchart of a method for acquiring parameters of artificial fractures provided by an embodiment of the present application. The method provided by the embodiment of the present application may include the following steps:
步骤101,获取页岩气井模型。
页岩气井模型指的是页岩气多段压裂水平井气液两相模型,此模型包括两个相态的流体流动,可选地,两个相态的流体可以为天然气和地层水。The shale gas well model refers to a gas-liquid two-phase model of a shale gas multi-stage fracturing horizontal well. The model includes fluid flows in two phases. Optionally, the fluids in the two phases can be natural gas and formation water.
在一种可能的实现方式中,根据页岩气井的已有信息建立页岩气井模型,获得页岩气井模型。其中,页岩气井的已有信息包括已有地质、气藏、流体、裂缝、井的信息。In a possible implementation manner, a shale gas well model is established according to the existing information of the shale gas well, and the shale gas well model is obtained. Among them, the existing information of shale gas wells includes information of existing geology, gas reservoirs, fluids, fractures, and wells.
示例性地,根据页岩气井的已有信息建立页岩气井模型,包括但不限于下述1011-1012子步骤:Exemplarily, the shale gas well model is established according to the existing information of the shale gas well, including but not limited to the following sub-steps 1011-1012:
1011、建立页岩气井的人工裂缝。1011. Establish artificial fractures of shale gas wells.
在一种可能的实现方式中,采用嵌入式离散裂缝技术(embedded discretefracture modle,EDFM)建立页岩气井的人工裂缝。In a possible implementation, artificial fractures of shale gas wells are established by using embedded discrete fracture model (EDFM).
1012、基于人工裂缝,根据页岩气井的已有信息建立页岩气井模型,获得页岩气井模型。1012. Based on the artificial fracture, establish a shale gas well model according to the existing information of the shale gas well, and obtain a shale gas well model.
在一种可能的实现方式中,基于人工裂缝,根据页岩气井的已有信息建立页岩气井气液两相数值模型,将岩气井气液两相数值模型作为页岩气井模型。In a possible implementation manner, based on artificial fractures, a gas-liquid two-phase numerical model of shale gas wells is established according to the existing information of shale gas wells, and the gas-liquid two-phase numerical model of rock gas wells is used as a shale gas well model.
在另一种可能的实现方式中,基于人工裂缝,根据页岩气井的已有信息建立页岩气井气液两相模拟模型,将岩气井气液两相模拟模型作为页岩气井模型。In another possible implementation manner, based on artificial fractures, a gas-liquid two-phase simulation model of shale gas wells is established according to the existing information of shale gas wells, and the gas-liquid two-phase simulation model of rock gas wells is used as a shale gas well model.
为了使页岩气井模型更接近页岩气井的真实情况,在上述任一一种实现方式中,还可以在页岩气井模型中加入天然裂缝,天然裂缝可以通过嵌入式离散裂缝技术建立。In order to make the shale gas well model closer to the real situation of the shale gas well, in any of the above implementation manners, natural fractures can also be added to the shale gas well model, and the natural fractures can be established by the embedded discrete fracture technology.
请参考图2,图2是本申请实施例提供的一种页岩气井模型。如图2所示,在该实施例中,基于人工裂缝,根据页岩气井的已有信息建立了页岩气井气液两相模拟模型作为页岩气井模型。该模拟模型包含了井筒长度、射孔位置、裂缝基本形态等信息,不包含天然裂缝的分布信息。Please refer to FIG. 2 , which is a shale gas well model provided by an embodiment of the present application. As shown in FIG. 2 , in this embodiment, based on artificial fractures, a gas-liquid two-phase simulation model of a shale gas well is established as a shale gas well model according to the existing information of the shale gas well. The simulation model includes information such as wellbore length, perforation position, and basic fracture shape, but does not include the distribution information of natural fractures.
可选地,页岩气井模型还可以包含天然裂缝,请参考图3,图3是本申请实施例提供的一种页岩气井模型。如图3所示,在该实施例中,基于人工裂缝,根据页岩气井的已有信息建立页岩气井气液两相模拟模型作为页岩气井模型,其中,该页岩气井气液两相模拟模型还包括了天然裂缝的分布信息。可选地,天然裂缝的分布信息通过随机模拟获得。Optionally, the shale gas well model may also include natural fractures. Please refer to FIG. 3 , which is a shale gas well model provided by an embodiment of the present application. As shown in FIG. 3 , in this embodiment, based on artificial fractures, a shale gas well gas-liquid two-phase simulation model is established as a shale gas well model according to the existing information of the shale gas well, wherein the shale gas well gas-liquid two-phase The simulation model also includes information on the distribution of natural fractures. Optionally, the distribution information of natural fractures is obtained by stochastic simulation.
步骤102,获取页岩气井模型中人工裂缝参数的初始概率分布。Step 102: Obtain the initial probability distribution of artificial fracture parameters in the shale gas well model.
页岩气井模型包括确定性参数和不确定性参数,确定性参数包括水平井长度、射孔簇数、储层长度、储层宽度、储层厚度以及基质渗透率等;不确定性参数包括人工裂缝的长度、人工裂缝的缝高值、人工裂缝的含水饱和度、人工裂缝的宽度以及人工裂缝的导流系数等,不确定参数即为本申请实施例的人工裂缝参数。The shale gas well model includes deterministic parameters and uncertain parameters. The deterministic parameters include horizontal well length, number of perforation clusters, reservoir length, reservoir width, reservoir thickness, and matrix permeability. Uncertain parameters include artificial The length of the fracture, the fracture height value of the artificial fracture, the water saturation of the artificial fracture, the width of the artificial fracture, and the conductivity coefficient of the artificial fracture, etc., the uncertain parameters are the artificial fracture parameters in the embodiment of the present application.
在一种可能的实现方式中,获取页岩气井模型中人工裂缝参数的初始概率分布包括:对页岩气井模型的确定性参数和人工裂缝参数进行初设置,获取确定性参数的数值和人工裂缝参数的初始概率分布。In a possible implementation manner, obtaining the initial probability distribution of the artificial fracture parameters in the shale gas well model includes: initially setting the deterministic parameters and artificial fracture parameters of the shale gas well model, and obtaining the numerical value of the deterministic parameters and the artificial fracture parameters. The initial probability distribution of the parameters.
其中,确定性参数值是固定的模型参数值,可以被设置为经验值。对于人工裂缝参数的初设置,可以将一个先验分布赋给人工裂缝参数,得到人工裂缝参数的初始概率分布。Among them, the deterministic parameter values are fixed model parameter values, which can be set as empirical values. For the initial setting of artificial fracture parameters, a prior distribution can be assigned to the artificial fracture parameters to obtain the initial probability distribution of the artificial fracture parameters.
先验分布是指在试验或抽样之前,根据其它有关参数,先为目标样本预估一个概率分布。可选地,在本实施例中,为人工裂缝参数赋予一个随机、均匀的预估概率分布,作为初始取样的分布。Prior distribution refers to predicting a probability distribution for the target sample based on other relevant parameters before testing or sampling. Optionally, in this embodiment, a random and uniform estimated probability distribution is assigned to the artificial fracture parameters as the distribution of initial sampling.
可选地,若页岩气井模型中还包括天然裂缝,则天然裂缝参数在页岩气井模型中是确定性参数,本申请实施例还可以使用一套固定的参数组合对天然裂缝参数进行初设置。Optionally, if the shale gas well model also includes natural fractures, the natural fracture parameters are deterministic parameters in the shale gas well model, and in this embodiment of the present application, a set of fixed parameter combinations may also be used to initially set the natural fracture parameters. .
步骤103,基于初始概率分布,获取多个第一样本参数。Step 103: Acquire a plurality of first sample parameters based on the initial probability distribution.
在一种可能的实现方式中,对人工裂缝的初始概率分布进行抽样,将抽样得到的多个人工裂缝参数作为第一样本参数。In a possible implementation manner, the initial probability distribution of artificial fractures is sampled, and multiple artificial fracture parameters obtained by sampling are used as the first sample parameters.
可选地,可以通过马尔科夫链蒙特卡洛方法在初始概率分布中进行随机抽样,获得多个第一样本参数。马尔科夫链蒙特卡洛方法是一种在贝叶斯理论框架下,通过计算机进行模拟并抽样的方法。Optionally, random sampling may be performed in the initial probability distribution through the Markov Chain Monte Carlo method to obtain a plurality of first sample parameters. The Markov Chain Monte Carlo method is a method of computer simulation and sampling under the framework of Bayesian theory.
可选地,也可以通过正交实验中的拉丁超立方抽样方法在初始概率分布中抽样,获得多个第一样本参数。拉丁超立方抽样方法可以使第一样本参数在高维空间内均匀分布,从而保证抽样的无偏性。可选地,第一样本参数的个数可以根据人工裂缝参数的多少进行适当调整,本发明实施例对此不做限定。Optionally, a plurality of first sample parameters can also be obtained by sampling from the initial probability distribution by using the Latin hypercube sampling method in the orthogonal experiment. The Latin hypercube sampling method can make the first sample parameters evenly distributed in the high-dimensional space, so as to ensure the unbiased sampling. Optionally, the number of the first sample parameters may be appropriately adjusted according to the number of artificial fracture parameters, which is not limited in this embodiment of the present invention.
步骤104,基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数。
由于第一样本参数的不准确性,直接采用第一样本参数来获取人工裂缝参数将会造成结果的误差大,因此本申请实施例在获取的第一样本参数的基础上,结合页岩气井模型以及参考拟合误差来获取更具有代表性以及准确性的第二样本参数。Due to the inaccuracy of the first sample parameters, directly using the first sample parameters to obtain the artificial fracture parameters will result in a large error in the results. The rock and gas well model and the reference fitting error are used to obtain more representative and accurate second sample parameters.
在一种可能的实现方式中,基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数,包括下述几个步骤。In a possible implementation manner, acquiring a plurality of second sample parameters based on a shale gas well model, a plurality of first sample parameters, and a reference fitting error includes the following steps.
1041,基于多个第一样本参数以及页岩气井模型获取多个第一样本模型。1041. Acquire a plurality of first sample models based on the plurality of first sample parameters and the shale gas well model.
在一种可能的实现方式中,基于多个第一样本参数以及页岩气井模型获取多个第一样本模型,包括:将多个第一样本参数输入页岩气井模型,得到多个第一样本参数对应的多个页岩气井模型,将多个第一样本参数对应的多个页岩气井模型作为第一样本模型。其中,第一样本参数与第一样本模型一一对应。In a possible implementation manner, acquiring multiple first sample models based on multiple first sample parameters and the shale gas well model includes: inputting multiple first sample parameters into the shale gas well model to obtain multiple first sample parameters For the multiple shale gas well models corresponding to the first sample parameters, the multiple shale gas well models corresponding to the multiple first sample parameters are used as the first sample models. Wherein, the first sample parameters are in one-to-one correspondence with the first sample models.
例如:将第一样本参数作为油藏模拟器的输入参数,根据页岩气井模型,结合嵌入式离散裂缝预处理器,得到第一样本模型。For example, the first sample parameter is used as the input parameter of the reservoir simulator, and the first sample model is obtained according to the shale gas well model combined with the embedded discrete fracture preprocessor.
1042,基于多个第一样本模型通过历史拟合误差函数获取多个第一拟合误差。1042. Obtain a plurality of first fitting errors by using a history fitting error function based on the plurality of first sample models.
历史拟合误差函数用于评估样本模型的准确性。可选地,按照如下公式定义历史拟合误差函数:The history fit error function is used to evaluate the accuracy of the sample model. Optionally, define the history fitting error function according to the following formula:
其中,i是实际数据点的序列,j是历史拟合目标函数序列,n是实际点的数量,m是历史拟合目标函数数量,xij,model代表模型的模拟结果,即第一样本模型,xij,history是实际生产数据,NFj是归一化数值,定义为模拟结果与实际生产数据的最大差值,wij代表历史拟合数据的权重。Among them, i is the sequence of actual data points, j is the sequence of historical fitting objective functions, n is the number of actual points, m is the number of historical fitting objective functions, x ij, model represents the simulation result of the model, that is, the first sample Model, x ij, history is the actual production data, NF j is the normalized value, defined as the maximum difference between the simulation result and the actual production data, w ij represents the weight of the historical fitting data.
基于多个第一样本模型通过历史拟合误差函数计算获得每个第一样本模型对应的第一拟合误差。由前文可知,第一样本参数与第一样本模型一一对应,因此,第一样本参数与第一拟合误差也一一对应。The first fitting error corresponding to each first sample model is obtained by calculating the historical fitting error function based on the plurality of first sample models. It can be seen from the foregoing that the first sample parameters correspond to the first sample models one-to-one, and therefore, the first sample parameters also correspond to the first fitting errors one-to-one.
1043,基于多个第一样本参数以及多个第一拟合误差建立第一代理模型。1043. Establish a first surrogate model based on the plurality of first sample parameters and the plurality of first fitting errors.
在一种可能的实现方式中,基于多个第一样本参数以及所述多个第一拟合误差建立第一代理模型,包括下述几个步骤。In a possible implementation manner, establishing a first surrogate model based on multiple first sample parameters and the multiple first fitting errors includes the following steps.
10431,基于多个第一样本参数以及多个第一拟合误差通过K最近邻分类KNN算法建立第二代理模型。10431. Establish a second surrogate model by using the K-nearest neighbor classification KNN algorithm based on the plurality of first sample parameters and the plurality of first fitting errors.
可选地,基于多个第一样本参数以及多个第一拟合误差,运用K最近邻分类算法(k-NearestNeighbor,KNN)训练数据,建立表征第一拟合误差和第一样本参数的第二代理模型。其中,第一样本参数作为基于第二代理模型的自变量输入,第一拟合误差作为第二代理模型的因变量输出,以此训练数据,生成第二代理模型。Optionally, based on a plurality of first sample parameters and a plurality of first fitting errors, the K nearest neighbor classification algorithm (k-Nearest Neighbor, KNN) is used to train the data, and the first fitting errors and the first sample parameters that characterize the first fitting error are established. the second agent model. Wherein, the first sample parameter is input as an independent variable based on the second surrogate model, and the first fitting error is output as a dependent variable of the second surrogate model, so as to train the data to generate the second surrogate model.
进一步可选地,K最近邻分类算法的基本概念如下公式所示:Further optionally, the basic concept of the K-nearest neighbor classification algorithm is shown in the following formula:
θi是k个最近观测点的不确定性参数组合,即k个第一样本参数,i表示每一个第一样本参数,y(θi)是k个最近观测点的目标变量值,即k个最近观测点的的第一样本参数对应的第一拟合误差,θ0是不确定性参数组合,即作为自变量的样本参数,y(θ0)是需要进行预测的目标变量值,即作为因变量的拟合误差。θ i is the uncertainty parameter combination of the k nearest observation points, namely k first sample parameters, i represents each first sample parameter, y(θ i ) is the target variable value of the k nearest observation points, That is, the first fitting error corresponding to the first sample parameter of the k nearest observation points, θ 0 is the uncertainty parameter combination, that is, the sample parameter as the independent variable, and y(θ 0 ) is the target variable that needs to be predicted value, which is the fitting error as the dependent variable.
KNN算法可以有效地保证求得的目标变量值在高维空间分布中更具有代表性。同时,不同于多项式算法,KNN算法不存在过拟合的问题。此外,KNN算法可以保证计算的高效,其计算耗时相较于其他算法可提升5-20倍的速度。The KNN algorithm can effectively ensure that the obtained target variable value is more representative in the high-dimensional spatial distribution. At the same time, unlike the polynomial algorithm, the KNN algorithm does not have the problem of overfitting. In addition, the KNN algorithm can ensure the efficiency of calculation, and its calculation time can be increased by 5-20 times compared with other algorithms.
10432,基于第二代理模型通过马尔科夫链蒙特卡洛方法获取多个第三样本参数。10432: Obtain a plurality of third sample parameters through the Markov chain Monte Carlo method based on the second surrogate model.
基于第二代理模型,可以使用马尔科夫链蒙特卡洛方法再生成大量样本参数,将该样本参数作为第三样本参数。Based on the second surrogate model, a Markov chain Monte Carlo method can be used to regenerate a large number of sample parameters, and the sample parameters can be used as the third sample parameters.
10433,基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型。10433. Iterate the second surrogate model based on the plurality of third sample parameters and the history fitting error function to obtain the first surrogate model.
在一种可能的实现方式中,基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型,包括:基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,将达到第一条件的迭代后的第二代理模型作为第一代理模型。第一条件为参考数量个第三样本参数通过历史拟合误差函数得到的拟合误差与通过迭代后的第二代理模型得到的拟合误差的差值小于参考阈值。In a possible implementation manner, iterating the second surrogate model based on the plurality of third sample parameters and the historical fitting error function to obtain the first surrogate model includes: based on the plurality of third sample parameters and the historical fitting error The function iterates the second surrogate model, and takes the iterated second surrogate model that meets the first condition as the first surrogate model. The first condition is that the difference between the fitting error obtained by the historical fitting error function for the reference number of third sample parameters and the fitting error obtained by the iterated second surrogate model is smaller than the reference threshold.
其中,基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,包括:将多个第三样本参数输入第二代理模型,得到第三样本参数通过第二代理模型获得的拟合误差,将第三样本参数通过第二代理模型获得的拟合误差作为第二拟合误差;选取第二拟合误差最小的第三样本参数,基于页岩气井模型获取第三样本模型;基于第三样本模型重复前文1042以及10431的步骤获取迭代后的第二代理模型,若迭代后的第二模型不满足第一条件,则继续按照前文10432的步骤基于迭代后的第二模型获取新的第三样本参数,直至迭代后的第二代理模型满足第一条件,不再获取新的第三样本参数,将此时的迭代后的第二代理模型作为第一代理模型。由此获得的第一代理模型能足够准确描述拟合误差和样本参数的关系。Wherein, iterating the second surrogate model based on the plurality of third sample parameters and the historical fitting error function includes: inputting the plurality of third sample parameters into the second surrogate model, and obtaining the third sample parameter obtained by the second surrogate model Fitting error, taking the fitting error obtained by the third sample parameter through the second proxy model as the second fitting error; selecting the third sample parameter with the smallest second fitting error, and obtaining the third sample model based on the shale gas well model; Repeat the above steps 1042 and 10431 based on the third sample model to obtain the iterated second surrogate model. If the iterative second model does not meet the first condition, continue to follow the steps 10432 above to obtain a new surrogate model based on the iterated second model. until the iterated second surrogate model satisfies the first condition, no new third sample parameters are acquired, and the iterated second surrogate model at this time is used as the first surrogate model. The first surrogate model thus obtained is sufficiently accurate to describe the relationship between the fitting error and the sample parameters.
需要说明的是,第一条件中的第三样本参数通过历史拟合误差函数得到的拟合误差以及第三样本参数通过迭代后的第二代理模型得到的拟合误差按照下述方法获得。It should be noted that the fitting error of the third sample parameter obtained by the historical fitting error function and the fitting error of the third sample parameter obtained by the iterative second surrogate model in the first condition are obtained according to the following methods.
将多个第三样本参数输入页岩气井模型,得到多个第三样本参数对应的多个页岩气井模型,将多个第三样本参数对应的多个页岩气井模型输入历史拟合误差函数,得到第三样本参数通过历史拟合误差函数得到的拟合误差;将多个第三样本参数输入第二代理模型,可以得到第三样本参数通过第二代理模型获得的拟合误差。Inputting multiple third sample parameters into the shale gas well model to obtain multiple shale gas well models corresponding to multiple third sample parameters, and entering multiple shale gas well models corresponding to multiple third sample parameters into the history matching error function , to obtain the fitting error of the third sample parameter obtained through the historical fitting error function; inputting multiple third sample parameters into the second surrogate model can obtain the fitting error of the third sample parameter obtained through the second surrogate model.
1044,基于第一代理模型以及参考拟合误差获取多个第二样本参数。1044. Obtain a plurality of second sample parameters based on the first surrogate model and the reference fitting error.
在一种可能的实现方式中,基于第一代理模型以及参考拟合误差获取多个第二样本参数,包括:基于第一代理模型获取满足参考拟合误差的多个样本参数,将满足参考拟合误差的多个样本参数作为多个第二样本参数。In a possible implementation manner, acquiring a plurality of second sample parameters based on the first surrogate model and the reference fitting error includes: acquiring, based on the first surrogate model, a plurality of sample parameters that satisfy the reference fitting error, which will satisfy the reference fitting error. The multiple sample parameters of the combined error are used as multiple second sample parameters.
可选地,基于第一代理模型获取满足参考拟合误差的多个第二样本模型,将满足参考拟合误差的多个第二样本模型对应的样本参数作为多个第二样本参数。Optionally, a plurality of second sample models that satisfy the reference fitting error are obtained based on the first proxy model, and sample parameters corresponding to the plurality of second sample models that satisfy the reference fitting error are used as the plurality of second sample parameters.
其中,第二样本模型从1043步骤中最后一次生成的第三样本参数对应的页岩气井模型中筛选。第二拟合误差是1043步骤中最后一次生成的第三样本参数通过第二代理模型计算得到的拟合误差。参考拟合误差为一特定的拟合误差阈值,可选地,参考拟合误差可以根据工程经验设定,例如:参考拟合误差可以基于代表性模拟曲线(井底流压曲线、产水曲线)的拟合效果获得。Wherein, the second sample model is selected from the shale gas well model corresponding to the third sample parameter generated last time in step 1043 . The second fitting error is the fitting error calculated by the second surrogate model for the third sample parameter generated last time in step 1043 . The reference fitting error is a specific fitting error threshold. Optionally, the reference fitting error can be set according to engineering experience. For example, the reference fitting error can be based on a representative simulation curve (bottom hole flow pressure curve, water production curve) The fitting effect is obtained.
在筛选出第二样本模型后,统计第二样本模型对应的人工裂缝参数,将第二样本模型对应的人工裂缝参数作为第二样本参数。After the second sample model is selected, the artificial fracture parameters corresponding to the second sample model are counted, and the artificial fracture parameters corresponding to the second sample model are used as the second sample parameters.
可选地,筛选得到的第二样本模型可以包含天然裂缝分布,也可以不包含天然裂缝分布。Optionally, the second sample model obtained by screening may contain the distribution of natural fractures, or may not contain the distribution of natural fractures.
请参考图4-9,图4-9示出了本申请实施例提供的一种第二样本模型筛选结果。其中,图4、图6、图8为不考虑天然裂缝的结果,图5、图7、图9为考虑固定一套天然裂缝参数的结果。Please refer to FIG. 4-9. FIG. 4-9 shows a screening result of a second sample model provided by an embodiment of the present application. Among them, Figure 4, Figure 6, Figure 8 are the results without considering natural fractures, Figure 5, Figure 7, Figure 9 are the results considering a fixed set of natural fracture parameters.
步骤105,基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数。
在一种可能的实现方式中,基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数,包括如下几个步骤。In a possible implementation manner, acquiring target artificial fracture parameters based on multiple second sample parameters and a shale gas well model includes the following steps.
1051、基于多个第二样本参数获取人工裂缝参数的目标概率分布。1051. Obtain a target probability distribution of artificial fracture parameters based on the plurality of second sample parameters.
对多个第二样本参数进行统计,获得人工裂缝参数的目标概率分布。Statistics are performed on a plurality of second sample parameters to obtain a target probability distribution of artificial fracture parameters.
1052、基于目标概率分布以及页岩气井模型对目标人工裂缝参数进行反演,获得目标人工裂缝参数。1052. Perform inversion of the target artificial fracture parameters based on the target probability distribution and the shale gas well model, to obtain the target artificial fracture parameters.
其中,目标人工裂缝参数至少包括人工裂缝的长度、人工裂缝的缝高值、人工裂缝的含水饱和度、人工裂缝的导流系数以及人工裂缝的宽度中的一种。The target artificial fracture parameters include at least one of the length of the artificial fracture, the fracture height of the artificial fracture, the water saturation of the artificial fracture, the conductivity coefficient of the artificial fracture, and the width of the artificial fracture.
人工裂缝参数的反演指的是运用已建立的页岩气井模型,利用计算机程序通过数值模拟计算和生产数据历史拟合,获得人工裂缝几何形态以及导流系数等参数分布规律。The inversion of artificial fracture parameters refers to the use of the established shale gas well model, and the use of computer programs to obtain the geometric shape of artificial fractures and the distribution of parameters such as conductivity coefficients through numerical simulation calculation and historical matching of production data.
其中,生产历史拟合指的是使用录取到的页岩气藏静态参数来计算页岩气开发过程中主要动态指标,把计算的结果与所观测到的气井的主要动态指标例如井口压力、产量等进行对比,若两者之间有差异,则对气藏静态参数进行修改,用修改后的静态参数再次进行计算并进行对比,直到计算结果与实测动态参数相当。在本申请的实施例中,待反演的页岩气井人工裂缝参数相当于上述方法中待修改的静态参数。Among them, production history matching refers to using the recorded static parameters of shale gas reservoirs to calculate the main dynamic indicators in the process of shale gas development, and comparing the calculated results with the observed main dynamic indicators of gas wells, such as wellhead pressure, production If there is a difference between the two, modify the static parameters of the gas reservoir, and use the modified static parameters to calculate and compare again until the calculated results are equivalent to the measured dynamic parameters. In the embodiment of the present application, the artificial fracture parameters of the shale gas well to be inverted are equivalent to the static parameters to be modified in the above method.
可选地,基于目标概率分布以及页岩气井模型,运用统计方法逐步对目标人工裂缝参数进行反演,可以包括下述方法中的任一种或多种,本申请实施例不做限定。Optionally, based on the target probability distribution and the shale gas well model, a statistical method is used to gradually invert the target artificial fracture parameters, which may include any one or more of the following methods, which are not limited in the embodiments of the present application.
方法一、基于目标概率分布以及页岩气井模型,对人工裂缝的长度进行反演。这一参数取决于地质因素和施工效果,人工裂缝的长度的经验值一般在80-120米的范围。Method 1: Invert the length of artificial fractures based on the target probability distribution and the shale gas well model. This parameter depends on geological factors and construction effects. The empirical value of the length of artificial fractures is generally in the range of 80-120 meters.
方法二、基于目标概率分布以及页岩气井模型,对人工裂缝的缝高值进行反演。这一参数取决于具体页岩气藏厚度,人工裂缝的缝高值波动范围较大,其数值最低可达到10米以下,最高到达气藏高度左右。The second method is to invert the fracture height of artificial fractures based on the target probability distribution and the shale gas well model. This parameter depends on the thickness of the specific shale gas reservoir. The fracture height of artificial fractures fluctuates widely.
方法三、基于目标概率分布以及页岩气井模型,对页岩气井人工裂缝的含水饱和度进行反演。由于页岩气开发早期经常会遇到压裂水反排的现象,人工裂缝的含水饱和度一般在0.6%-0.7%的区间波动。不过,不同的储层条件也会造成不同的人工裂缝含水饱和度(有时可降至0.5%以下)。The third method is to invert the water saturation of artificial fractures in shale gas wells based on the target probability distribution and the shale gas well model. Due to the phenomenon of fracturing water backflow often encountered in the early stage of shale gas development, the water saturation of artificial fractures generally fluctuates in the interval of 0.6%-0.7%. However, different reservoir conditions also result in different artificial fracture water saturation (sometimes down to below 0.5%).
方法四、基于目标概率分布以及页岩气井模型,对页岩气井人工裂缝的宽度进行反演。人工裂缝的宽度等效值一般在0.2-0.8米,此参数与水的产量有紧密的关系。Method 4: Invert the width of artificial fractures in shale gas wells based on the target probability distribution and the shale gas well model. The equivalent value of the width of artificial fractures is generally 0.2-0.8 meters, and this parameter is closely related to the production of water.
方法五、基于目标概率分布以及页岩气井模型,对页岩气井人工裂缝的导流系数进行反演。这一参数的数值取决于压裂施工的效果,波动范围较大(10-8毫达西米)。
可选地,在基于目标概率分布以及页岩气井模型对目标人工裂缝参数进行反演之后,还包括:基于反演后的人工裂缝参数生成可视化反演结果。可选地,反演后的人工裂缝参数可以包括反演后的人工裂缝的长度、反演后的页岩气井人工裂缝的缝高值、反演后的页岩气井人工裂缝的含水饱和度、反演后的人工裂缝的宽度以及反演后的页岩气井人工裂缝的导流系数中的一种或多种。Optionally, after inverting the target artificial fracture parameters based on the target probability distribution and the shale gas well model, the method further includes: generating a visualized inversion result based on the inverted artificial fracture parameters. Optionally, the artificial fracture parameters after the inversion may include the length of the artificial fracture after the inversion, the fracture height value of the artificial fracture in the shale gas well after the inversion, the water saturation of the artificial fracture in the shale gas well after the inversion, One or more of the width of the inversion artificial fracture and the conductivity coefficient of the inversion artificial fracture of the shale gas well.
在一种可能的实现方式中,基于反演后的人工裂缝的长度、反演后的人工裂缝的缝高值、反演后的人工裂缝的含水饱和度、反演后的人工裂缝的宽度以及反演后的人工裂缝的导流系数,绘制组合型柱状图和概率分布图。可选地,可视化结果可以包含天然裂缝参数,也可以不包含天然裂缝参数。In a possible implementation, based on the length of the artificial fracture after inversion, the fracture height value of the artificial fracture after inversion, the water saturation of the artificial fracture after inversion, the width of the artificial fracture after inversion, and After inversion of the conductivity coefficient of artificial fractures, a combined histogram and probability distribution diagram are drawn. Optionally, the visualization results may or may not contain natural fracture parameters.
请参考图10-19,其示出了本申请实施例提供的一种可视化反演结果。在图10-19中,采用了组合型柱状图和概率分布图表示反演结果,其中条形图代表此范围对应的人工裂缝参数的出现频率,曲线则代表根据频率条形图进行拟合的概率分布曲线。图10、图12、图14、图16、图18代表不考虑天然裂缝的反演结果,图11、图13、图15、图17、图19代表考虑固定一套天然裂缝参数的反演结果。Please refer to FIGS. 10-19 , which illustrate a visual inversion result provided by an embodiment of the present application. In Fig. 10-19, a combined histogram and probability distribution graph are used to represent the inversion results, where the bar graph represents the frequency of occurrence of artificial fracture parameters corresponding to this range, and the curve represents the fitting based on the frequency bar graph. probability distribution curve. Figure 10, Figure 12, Figure 14, Figure 16, Figure 18 represent the inversion results without considering natural fractures, Figure 11, Figure 13, Figure 15, Figure 17, Figure 19 represent the inversion results considering a fixed set of natural fracture parameters .
在另一种可能的实现方式中,基于反演后的页岩气井人工裂缝的长度、反演后的页岩气井人工裂缝的缝高值、反演后的页岩气井人工裂缝的含水饱和度、反演后的页岩气井人工裂缝的宽度以及反演后的页岩气井人工裂缝的导流系数,生成累计概率分布图。可选地,可视化结果可以包含天然裂缝参数,也可以不包含天然裂缝参数。In another possible implementation, based on the length of artificial fractures in shale gas wells after inversion, the fracture height value of artificial fractures in shale gas wells after inversion, and the water saturation of artificial fractures in shale gas wells after inversion , the width of artificial fractures in shale gas wells after inversion, and the conductivity coefficient of artificial fractures in shale gas wells after inversion, to generate a cumulative probability distribution map. Optionally, the visualization results may or may not contain natural fracture parameters.
其中,累计概率分布图指的是概率为P10,P50以及P90的可视化分布图。P10以及P90的值有助于理解某一人工裂缝参数具有代表性的实际范围,而P50的值可以确定某一人工裂缝参数的平均代表值。累计概率分布图有助于更好地对反演结果进行范围的确定。Among them, the cumulative probability distribution map refers to the visual distribution map with the probabilities of P10, P50 and P90. The values of P10 and P90 help to understand the representative actual range of a certain artificial fracture parameter, and the value of P50 can determine the average representative value of a certain artificial fracture parameter. Cumulative probability distribution maps help to better range the inversion results.
请参考图20-29其示出了本申请实施例提供的一种可视化反演结果。在图20-29中,采用了累计概率分布图表示反演结果,其中图20、图22、图24、图26、图28代表不考虑天然裂缝参数的累积概率分布,图21、图23、图25、图27、图29代表考虑固定一套天然裂缝参数的累积概率分布。Please refer to FIGS. 20-29 , which illustrate a visual inversion result provided by an embodiment of the present application. In Fig. 20-29, the cumulative probability distribution diagram is used to represent the inversion results, in which Fig. 20, Fig. 22, Fig. 24, Fig. 26, Fig. 28 represent the cumulative probability distribution without considering natural fracture parameters, Fig. 21, Fig. 23, Fig. Figures 25, 27, and 29 represent cumulative probability distributions considering a fixed set of natural fracture parameters.
通过上述实施例所提供的人工裂缝参数的获取方法,有效地解决了目前页岩气井人工裂缝参数无法准确获取以及人工工作量大的问题,通过建立页岩气井模型,设置人工裂缝参数的先验概率分布区间,采用“马尔科夫链-蒙特卡洛”算法对页岩气水平井的人工裂缝参数进行迭代优化,获取最具代表性的人工裂缝数值以及尽可能接近真实情况的数值模型,使得页岩气水平井生产动态预测更趋近于实际生产,减少了大量不具代表性的样本带来的不确定性和人为工作量。通过对所有优化的人工裂缝参数进行统计,得到参数的后验概率分布,即目标概率分布,通过这种确定方法得到的人工裂缝几何形态(长度、宽度、缝高值等)及导流系数的分布趋势,是对地下真实情况的一种无限逼近,能够让研究人员和决策者对地下的缝网有一个全新的定量认识,对深层页岩气井压裂效果评估、最终可采储量预测以及合理井距优化具有十分重要的意义。The method for obtaining artificial fracture parameters provided by the above embodiments effectively solves the problems that the current shale gas well artificial fracture parameters cannot be accurately obtained and the manual workload is large. By establishing a shale gas well model, a priori for artificial fracture parameters is set In the probability distribution interval, the "Markov chain-Monte Carlo" algorithm is used to iteratively optimize the artificial fracture parameters of shale gas horizontal wells, and the most representative artificial fracture values and numerical models that are as close to the real situation as possible are obtained. The production performance prediction of shale gas horizontal wells is closer to the actual production, reducing the uncertainty and artificial workload caused by a large number of unrepresentative samples. Through the statistics of all optimized artificial fracture parameters, the posterior probability distribution of the parameters, that is, the target probability distribution, is obtained. The geometric shape of the artificial fracture (length, width, fracture height, etc.) The distribution trend is an infinite approximation to the real situation in the ground, which enables researchers and decision makers to have a new quantitative understanding of the underground fracture network, and to evaluate the fracturing effect of deep shale gas wells, predict the final recoverable reserves and make reasonable Well spacing optimization is of great significance.
基于相同技术构思,请参考图30,其示出了本申请实施例提供的一种人工裂缝参数的获取装置的示意图,该装置包括但不限于如下701-705模块:Based on the same technical concept, please refer to FIG. 30 , which shows a schematic diagram of a device for acquiring artificial fracture parameters provided by an embodiment of the present application. The device includes but is not limited to the following modules 701-705:
第一获取模块701,用于获取页岩气井模型。The
第二获取模块702,用于获取页岩气井模型中人工裂缝参数的初始概率分布。The second obtaining
第三获取模块703,用于基于初始概率分布,获取多个第一样本参数。The third obtaining
在一种可能的实现方式中,第三获取模块703用于在初始概率分布中通过马尔科夫链蒙特卡洛方法进行随机抽样,获得多个第一样本参数。In a possible implementation manner, the third obtaining
第四获取模块704,用于基于页岩气井模型、多个第一样本参数以及参考拟合误差获取多个第二样本参数。The fourth obtaining
在一种可能的实现方式中,第四获取模块704,用于基于多个第一样本参数以及所述页岩气井模型获取多个第一样本模型;基于多个第一样本模型通过历史拟合误差函数获取多个第一拟合误差;基于多个第一样本参数以及多个第一拟合误差建立第一代理模型;基于第一代理模型以及参考拟合误差获取多个第二样本参数。In a possible implementation manner, the fourth obtaining
可选地,第四获取模块704,基于多个第一样本参数以及多个第一拟合误差通过K最近邻分类KNN算法建立第二代理模型;基于第二代理模型通过马尔科夫链蒙特卡洛方法获取多个第三样本参数;基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,获得第一代理模型。Optionally, the
可选地,第四获取模块704,用于基于多个第三样本参数以及历史拟合误差函数对第二代理模型进行迭代,将达到第一条件的迭代后的第二代理模型作为第一代理模型,其中,第一条件为参考数量个第三样本参数通过历史拟合误差函数得到的拟合误差与通过迭代后的第二代理模型得到的拟合误差的差值小于参考阈值。Optionally, the fourth obtaining
可选地,第四获取模块704,用于基于第一代理模型获取满足参考拟合误差的多个样本参数,将满足参考拟合误差的多个样本参数作为多个第二样本参数。Optionally, the fourth obtaining
第五获取模块705,用于基于多个第二样本参数以及页岩气井模型获取目标人工裂缝参数。The fifth obtaining
在一种可能的实现方式中,第五获取模块705,用于基于多个第二样本参数获取人工裂缝参数的目标概率分布;基于目标概率分布以及页岩气井模型对目标人工裂缝参数进行反演,获得目标人工裂缝参数。In a possible implementation manner, the fifth obtaining
其中,目标人工裂缝参数至少包括人工裂缝的长度、人工裂缝的缝高值、人工裂缝的含水饱和度、人工裂缝的宽度以及人工裂缝的导流系数中的一种。The target artificial fracture parameters include at least one of the length of the artificial fracture, the fracture height of the artificial fracture, the water saturation of the artificial fracture, the width of the artificial fracture, and the conductivity of the artificial fracture.
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that, when the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. The internal structure is divided into different functional modules to complete all or part of the functions described above. In addition, the apparatus and method embodiments provided in the above embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.
在示例性实施例中,还提供了一种计算机设备,该计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令。所述至少一条指令经配置以由一个或者一个以上处理器执行,以实现上述任一种人工裂缝参数的获取方法。In an exemplary embodiment, there is also provided a computer device including a processor and a memory having at least one instruction stored in the memory. The at least one instruction is configured to be executed by one or more processors to implement any of the methods for obtaining artificial fracture parameters described above.
在示例性实施例中,还提供了一种存储介质,该存储介质中存储有至少一条程序代码,该至少一条程序代码由处理器加载并执行,以使计算机实现上述任一种人工裂缝参数的获取方法。In an exemplary embodiment, a storage medium is also provided, and the storage medium stores at least one piece of program code, the at least one piece of program code is loaded and executed by the processor, so that the computer can realize any one of the above artificial crack parameters. get method.
可选地,上述存储介质可以是只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、只读光盘(compact disc read-only memory,CD-ROM)、磁带、软盘和光数据存储设备等。Optionally, the above-mentioned storage medium may be read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), compact disc read-only memory (compact disc read-only memory, CD-ROM), magnetic tape , floppy disks and optical data storage devices.
在示例性实施例中,还提供了一种计算机程序或计算机程序产品,该计算机程序或计算机程序产品中存储有至少一条计算机指令,该至少一条计算机指令由处理器加载并执行,以使计算机实现上述任一种人工裂缝参数的获取方法。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。In an exemplary embodiment, there is also provided a computer program or computer program product having stored therein at least one computer instruction that is loaded and executed by a processor to cause a computer to implement The method for obtaining any of the above artificial fracture parameters. The above-mentioned serial numbers of the embodiments of the present application are only for description, and do not represent the advantages or disadvantages of the embodiments.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、设备或模块的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。In the several embodiments provided in this application, it should be understood that the disclosed system and method may be implemented in other manners. For example, the system embodiments described above are only illustrative. For example, the division of the modules is only a logical function division. In actual implementation, there may be other division methods. For example, multiple modules or components may be combined or Integration into another system, or some features can be ignored, or not implemented. In addition, the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may also be electrical, mechanical or other forms of connection.
该作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请实施例方案的目的。The modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以是两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
还应理解,在本申请的各个实施例中,各个过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should also be understood that, in each embodiment of the present application, the size of the sequence number of each process does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not be used in the embodiment of the present application. Implementation constitutes any limitation.
本申请中术语“至少一个”的含义是指一个或多个,本申请中术语“多个”的含义是指两个或两个以上,例如,多个数据是指两个或两个以上的数据。The meaning of the term "at least one" in this application refers to one or more, and the meaning of the term "plurality" in this application refers to two or more, for example, a plurality of data refers to two or more data.
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。It is to be understood that the terminology used in describing the various described examples herein is for the purpose of describing particular examples and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms "a", "an")" and "the" are intended to include the plural forms as well, unless the context dictates otherwise. clearly instructed.
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only exemplary embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application shall be included in the protection of the present application. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110348654.3A CN114718556A (en) | 2021-03-31 | 2021-03-31 | Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110348654.3A CN114718556A (en) | 2021-03-31 | 2021-03-31 | Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114718556A true CN114718556A (en) | 2022-07-08 |
Family
ID=82234408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110348654.3A Pending CN114718556A (en) | 2021-03-31 | 2021-03-31 | Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114718556A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114358427A (en) * | 2022-01-07 | 2022-04-15 | 西南石油大学 | Method for predicting final recoverable reserves of shale gas well |
CN115879344A (en) * | 2022-12-13 | 2023-03-31 | 水利部交通运输部国家能源局南京水利科学研究院 | A random sampling based inversion method for parameters of soil moisture transport model |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110125476A1 (en) * | 2009-11-25 | 2011-05-26 | Halliburton Energy Services, Inc. | Probabilistic Simulation of Subterranean Fracture Propagation |
CN105350960A (en) * | 2015-12-07 | 2016-02-24 | 西南石油大学 | Method of determining fractured horizontal well crack parameters of low-permeability anisotropic gas reservoir |
CN105370268A (en) * | 2015-10-23 | 2016-03-02 | 中国石油天然气集团公司 | Method and device of optimizing staged fracturing parameters of horizontal well |
WO2016041189A1 (en) * | 2014-09-19 | 2016-03-24 | 杨顺伟 | Method for evaluating shale gas reservoir and seeking desert area |
CN107060746A (en) * | 2017-04-27 | 2017-08-18 | 中国石油大学(华东) | A kind of method of complex fracture oil deposit flow simulation |
CN109184676A (en) * | 2018-09-21 | 2019-01-11 | 中国地质大学(武汉) | Volume evaluation method is effectively transformed in a kind of shale gas reservoir |
CN109472037A (en) * | 2017-09-08 | 2019-03-15 | 中国石油化工股份有限公司 | Shale gas reservoir man-made fracture parameter preferred method and system |
CN109594968A (en) * | 2017-09-28 | 2019-04-09 | 中国石油化工股份有限公司 | Fracture parameters evaluation method and system after a kind of shale gas multistage pressure break horizontal well pressure |
CN110454135A (en) * | 2019-07-15 | 2019-11-15 | 中国石油天然气股份有限公司 | Shale oil well spacing method for long horizontal well with small well spacing, multiple strata series and close cutting |
CN110965977A (en) * | 2019-11-20 | 2020-04-07 | 中国石油大学(北京) | Fracturing Construction Analysis Method |
US20200202057A1 (en) * | 2018-12-19 | 2020-06-25 | Lawrence Livermore National Security, Llc | Computational framework for modeling of physical process |
CN111927417A (en) * | 2019-04-28 | 2020-11-13 | 中国石油化工股份有限公司 | Shale gas staged fracturing horizontal well group reserve utilization condition evaluation method |
CN112302607A (en) * | 2020-07-07 | 2021-02-02 | 西南石油大学 | Method for explaining artificial fracture parameters of tight gas reservoir fractured horizontal well |
-
2021
- 2021-03-31 CN CN202110348654.3A patent/CN114718556A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110125476A1 (en) * | 2009-11-25 | 2011-05-26 | Halliburton Energy Services, Inc. | Probabilistic Simulation of Subterranean Fracture Propagation |
WO2016041189A1 (en) * | 2014-09-19 | 2016-03-24 | 杨顺伟 | Method for evaluating shale gas reservoir and seeking desert area |
CN105370268A (en) * | 2015-10-23 | 2016-03-02 | 中国石油天然气集团公司 | Method and device of optimizing staged fracturing parameters of horizontal well |
CN105350960A (en) * | 2015-12-07 | 2016-02-24 | 西南石油大学 | Method of determining fractured horizontal well crack parameters of low-permeability anisotropic gas reservoir |
CN107060746A (en) * | 2017-04-27 | 2017-08-18 | 中国石油大学(华东) | A kind of method of complex fracture oil deposit flow simulation |
CN109472037A (en) * | 2017-09-08 | 2019-03-15 | 中国石油化工股份有限公司 | Shale gas reservoir man-made fracture parameter preferred method and system |
CN109594968A (en) * | 2017-09-28 | 2019-04-09 | 中国石油化工股份有限公司 | Fracture parameters evaluation method and system after a kind of shale gas multistage pressure break horizontal well pressure |
CN109184676A (en) * | 2018-09-21 | 2019-01-11 | 中国地质大学(武汉) | Volume evaluation method is effectively transformed in a kind of shale gas reservoir |
US20200202057A1 (en) * | 2018-12-19 | 2020-06-25 | Lawrence Livermore National Security, Llc | Computational framework for modeling of physical process |
CN111927417A (en) * | 2019-04-28 | 2020-11-13 | 中国石油化工股份有限公司 | Shale gas staged fracturing horizontal well group reserve utilization condition evaluation method |
CN110454135A (en) * | 2019-07-15 | 2019-11-15 | 中国石油天然气股份有限公司 | Shale oil well spacing method for long horizontal well with small well spacing, multiple strata series and close cutting |
CN110965977A (en) * | 2019-11-20 | 2020-04-07 | 中国石油大学(北京) | Fracturing Construction Analysis Method |
CN112302607A (en) * | 2020-07-07 | 2021-02-02 | 西南石油大学 | Method for explaining artificial fracture parameters of tight gas reservoir fractured horizontal well |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114358427A (en) * | 2022-01-07 | 2022-04-15 | 西南石油大学 | Method for predicting final recoverable reserves of shale gas well |
CN115879344A (en) * | 2022-12-13 | 2023-03-31 | 水利部交通运输部国家能源局南京水利科学研究院 | A random sampling based inversion method for parameters of soil moisture transport model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dachanuwattana et al. | Application of proxy-based MCMC and EDFM to history match a Vaca Muerta shale oil well | |
US8805659B2 (en) | System and method for uncertainty quantification in reservoir simulation | |
US10359541B2 (en) | Creating virtual production logging tool profiles for improved history matching | |
RU2573746C2 (en) | Systems and methods for well performance forecasting | |
US8504341B2 (en) | Methods, systems, and computer readable media for fast updating of oil and gas field production models with physical and proxy simulators | |
EP2951720B1 (en) | Production analysis and/or forecasting methods, apparatus, and systems | |
WO2007089829A2 (en) | Methods, systems, and computer-readable media for fast updating of oil and gas field production models with physical and proxy simulators | |
CN106355003B (en) | Markov chain Monte-Carlo automatic history matching method and system based on t distributions | |
WO2015103582A1 (en) | Multistage oilfield design optimization under uncertainty | |
US10626706B2 (en) | Junction models for simulating proppant transport in dynamic fracture networks | |
CN105874466A (en) | History matching multi-porosity solutions | |
CN114718556A (en) | Method, Apparatus and Equipment for Obtaining Artificial Fracture Parameters | |
CN115345378A (en) | A production evaluation method for shale gas wells based on machine learning | |
CN111175817A (en) | A microseismic data-assisted fracture distribution inversion method for tight oil and gas reservoirs | |
CN111159904A (en) | A method for estimation and evaluation of geothermal resources | |
CN116362121A (en) | Method and device for determining crack parameters of horizontal well fracturing | |
US20220245300A1 (en) | Method and system for constructing statistical emulators for reservoir simulation models with uncertain inputs | |
WO2019216892A1 (en) | Optimized methodology for automatic history matching of a petroleum reservoir model with ensemble kalman filter | |
US10294765B2 (en) | Formation fracture flow monitoring | |
CN107989597A (en) | A kind of crack data screening technique, device and storage medium | |
CN115292971B (en) | Bayes-based crack attribute analysis method and device and storage medium | |
CN117875154A (en) | Land natural gas hydrate energy production prediction method, system and electronic equipment | |
WO2023141354A2 (en) | Machine learning based reservoir modeling | |
Gudmundsdottir et al. | Reservoir characterization and prediction modeling using statistical techniques | |
CN109272042B (en) | Small-scale crack modeling method, device, equipment and medium based on PR model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |