CN114717590A - 一种钴基析氯催化剂电极制备方法 - Google Patents

一种钴基析氯催化剂电极制备方法 Download PDF

Info

Publication number
CN114717590A
CN114717590A CN202210236393.0A CN202210236393A CN114717590A CN 114717590 A CN114717590 A CN 114717590A CN 202210236393 A CN202210236393 A CN 202210236393A CN 114717590 A CN114717590 A CN 114717590A
Authority
CN
China
Prior art keywords
electrode
catalyst
solution
glassy carbon
chlorine evolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210236393.0A
Other languages
English (en)
Other versions
CN114717590B (zh
Inventor
王鹏
彭雅婷
张盾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN202210236393.0A priority Critical patent/CN114717590B/zh
Publication of CN114717590A publication Critical patent/CN114717590A/zh
Application granted granted Critical
Publication of CN114717590B publication Critical patent/CN114717590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钴基析氯催化剂电极制备方法,包括以下步骤S1.将CoCl2·6H2O、NaCl和六亚甲基四胺溶解在乙醇水溶液中,置于油浴或水浴中,采用均相沉淀,得到催化剂粉末;S2.对玻碳电极进行预处理,将得到的催化剂粉末和炭黑、Nafion溶液混在乙醇水溶液中配置成墨水,取一定量的墨水滴在玻碳电极上等待成膜,形成催化剂电极;S3.将催化剂电极、碳棒和饱和甘汞电极放入NaCl溶液中,在室温下进行线性扫描,取出电极室温下干燥,完成催化剂电极活化。其优点在于,开发低成本、高活性的电解海水析氯催化剂有助于进一步推动电解海水析氯技术在海洋防污方向的应用。

Description

一种钴基析氯催化剂电极制备方法
技术领域
本发明属于海洋污损防护技术领域,具体涉及一种钴基析氯催化剂电极的制备方法。
背景技术
在开发利用海洋资源的过程中,船舶、采油平台等设施却不可避免地遭遇到海洋生物污损问题。海洋生物污损严重阻碍海洋经济的发展,全世界每年由生物污损造成的损失难以估算,因此,海洋防污已逐渐引起世界各国的重视。这也刺激了人们对海洋设备的防污损技术的开发。目前,市场上用于防污的手段主要有以下三种:(1)机械清除;(2)涂装防污涂料,包括自抛光防污涂料、低表面能防污涂料、天然产物防污涂料以及仿生防污涂料;(3)基于局部电解海水活性氯生成的生物杀灭剂生成系统。缺陷在于成本较高,效率较低。涂料在海水中的降解缓慢且不可控,抗污的广谱性差,目前还在不断地研发当中。电化学氯化局部生成生物杀灭剂因其操作简单、可控性强成为最有前景的海洋防污技术。目前成熟的商业级析氯电极-DSA电极仅仅解决了电解高浓度氯离子的问题,对于电解海水还存在低选择性和低稳定性等问题。此外,目前针对电解海水析氯的催化剂大多都还是基于贵金属及其氧化物的研究,由于高成本使得其应用受限。
发明内容
技术上述问题,本发明旨在开发一种低成本、高活性的电解海水析氯催化剂,其技术方案为,
一种钴基析氯催化剂电极制备方法,包括以下步骤:
S1.将CoCl2·6H2O、NaCl和六亚甲基四胺溶解在乙醇水溶液中,置于油浴或水浴中,采用均相沉淀,得到催化剂粉末;
S2.对玻碳电极进行预处理,将得到的催化剂粉末和炭黑、Nafion溶液混在乙醇水溶液中配置成墨水,取一定量的墨水滴在玻碳电极上等待成膜,形成催化剂电极;
S3.将催化剂电极、碳棒和饱和甘汞电极放入NaCl溶液中,在室温下进行线性扫描,取出电极室温下干燥,完成催化剂电极活化。
进一步优选的,步骤S1中,CoCl2·6H2O浓度为20mM,NaCl浓度为100mM,六亚甲基四胺浓度为60mM,乙醇与去离子水的体积比为1:9,油浴或水浴加热温度为60℃-100℃。
进一步优选的,步骤S2中,催化剂粉末50-100mg,炭黑粉末20-50mg, Nafion溶液80-120μL,混在乙醇水溶液中,乙醇水溶液配置为乙醇溶液250-350 μL,超纯水250-350μL。
进一步优选的,步骤S2中,玻碳电极需进行预处理,具体步骤为:在麂皮上撒上少量半径为0.5μm的三氧化二铝抛光粉,然后滴加少量去离子水,用玻碳电极稍微搅匀,然后竖直地将玻碳电极在上面均匀画“8”字形进行研磨,接着用去离子水冲洗表面,擦拭或吹干,预处理后取1μL混匀的墨水滴在表面,红外灯照射30秒,形成催化剂电极。
进一步优选的,步骤S3中,将玻碳电极、碳棒和饱和甘汞电极放入60mL 3.5%NaCl溶液中,在室温下进行线性扫描,扫描速率为10mV/s,从0.5V开始扫到 1.5V停止。
进一步优选的,所述催化剂电极作为阳极,其作为催化剂阳极电解海水制氯,用于水下光学窗口防污。
有益效果
1)本发明负载电解海水析氯的非贵金属催化剂的电极可以显著提高电解海水的效率,并且可以在短时间、小电压的通电情况下产生足量且可控制的具有生物杀灭作用的有效氯,从而达到防污的效果。
2)本发明的非贵金属析氯催化剂电极的制备过程简单,并且通过对催化剂的活化处理,提高其电催化活性,制备方法所使用的实验的仪器和药品也容易获得,对环境无危害。
附图说明
图1为实例方法制备的钴基粉末催化剂的X射线衍射图(XRD)。
图2为实例方法制备的粉末催化剂的扫描电镜图(SEM)。
图3为实例方法制备的钴基催化剂电极和商用析氯电极DSA在3.5%NaCl 溶液中的线性扫描曲线,扫描速率10mV/s。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例的目的是使对本发明公开内容的理解更加透彻全面。
本实施例的非贵金属析氯催化剂电极,采用均相沉淀法制备,具体包括以下步骤:
S1.所述浓度为20mM的CoCl2·6H2O,浓度为100mM的NaCl,浓度为60mM 的HMT溶解在乙醇水溶液中,在乙醇水溶液中,乙醇与去离子水的体积比为1:9,将配置好的溶液置于油浴或水浴中,加热温度为90℃,采用均相沉淀,得到催化剂粉末。
S2.玻碳电极需进行预处理,具体步骤为:在麂皮上撒上少量半径为0.5μm 的三氧化二铝抛光粉,然后滴加少量去离子水,用玻碳电极稍微搅匀,然后竖直地将玻碳电极在上面均匀画“8”字形进行研磨,接着用去离子水冲洗表面,擦拭或吹干,
将催化剂粉末70mg,炭黑粉末30mg,Nafion溶液100μL混在乙醇水溶液 (乙醇溶液300μL,超纯水300μL)中,配置成墨水,
将1μL混匀的墨水滴在预处理后的玻碳电极上,红外灯照射30秒,待玻碳电极和墨水成膜后形成催化剂电极;
S3.将处理好的玻碳电极作为工作电极,碳棒和饱和甘汞电极分别作为对电极和参比电极;将玻碳电极、碳棒和饱和甘汞电极放入60mL 3.5%NaCl溶液中,在室温下进行线性扫描,扫描速率为10mV/s,从0.5V开始扫到1.5V停止,取出电极室温下干燥,完成催化剂电极活化。
所述催化剂电极作为阳极,其作为催化剂阳极电解海水制氯,用于水下光学窗口防污。
对本实施例制备的催化剂电极进行X射线衍射测定,如图1所示,根据XRD 图可以确定所制备的析氯催化剂的主要成分是Co(OH)2-Cl(Co(OH)2-Cl在最初的合成方法中叫α-Co(OH)2,属于Co(OH)2其中一种晶型,由于此处和已知材料 Co(OH)2-Cl的PDF卡片相对应,故后续都称为Co(OH)2-Cl)。
图2为本实施例制备的Co(OH)2-Cl电解海水析氯催化剂的SEM图。根据 SEM图可以清楚的看出,Co(OH)2-Cl析氯催化剂样品团聚现象很明显,由多个表面光滑的多边形薄片插在一起,形成球状(图2a、b),单个六边形的横向尺寸为2μm到8μm不等,相邻边缘角度为120°,而无氯插层的样品呈较厚的六边形片状结构,单个六边形的横向尺寸为5-7μm,且具有良好的分散性(图2c、d)。片层结构形成的球状比分散的六边形片层有明显较大的反应比表面积,使材料得以充分利用,进而提高材料的电化学性能。
本对实施例制备的催化剂电极的电催化活性进行测试:
图3为本实施例制备的Co(OH)2电解海水析氯催化剂阳极和商用析氯电极 DSA在3.5%NaCl溶液中的线性扫描曲线,可以看出本实施例所制备Co(OH)2薄膜催化剂电极电解海水析氯性能优于商用DSA电极。

Claims (6)

1.一种钴基析氯催化剂电极制备方法,其特征在于,包括以下步骤:
S1.将CoCl2·6H2O、NaCl和六亚甲基四胺溶解在乙醇水溶液中,置于油浴或水浴中,采用均相沉淀,得到催化剂粉末;
S2.对玻碳电极进行预处理,将得到的催化剂粉末和炭黑、Nafion溶液混在乙醇水溶液中配置成墨水,取一定量的墨水滴在玻碳电极上,进行红外灯照射,玻碳电极和墨水成膜后形成催化剂电极;
S3.将催化剂电极、碳棒和饱和甘汞电极放入NaCl溶液中,在室温下进行线性扫描,取出电极室温下干燥,完成催化剂电极活化。
2.根据权利要求1所述的一种钴基析氯催化剂电极制备方法,其特征在于,步骤S1中,CoCl2·6H2O浓度为20mM,NaCl浓度为100mM,六亚甲基四胺浓度为60mM,乙醇与去离子水的体积比为1:9,油浴或水浴加热温度为60℃-100℃。
3.根据权利要求1所述的一种钴基析氯催化剂电极制备方法,其特征在于,步骤S2中,催化剂粉末50-100mg,炭黑粉末20-50mg,Nafion溶液80-120μL,混在乙醇水溶液中,乙醇水溶液配置为乙醇溶液250-350μL,超纯水250-350μL。
4.根据权利要求1所述的一种钴基析氯催化剂电极制备方法,其特征在于,步骤S2中,玻碳电极需进行预处理,具体步骤为:在麂皮上撒上少量半径为0.5μm的三氧化二铝抛光粉,然后滴加少量去离子水,用玻碳电极稍微搅匀,然后竖直地将玻碳电极在上面均匀画“8”字形进行研磨,接着用去离子水冲洗表面,擦拭或吹干,预处理后取1μL混匀的墨水滴在表面,红外灯照射30秒,形成催化剂电极。
5.根据权利要求1所述的一种钴基析氯催化剂电极制备方法,其特征在于,步骤S3中,将玻碳电极、碳棒和饱和甘汞电极放入60mL 3.5%NaCl溶液中,在室温下进行线性扫描,扫描速率为10mV/s,从0.5V开始扫到1.5V停止。
6.根据权利要求1所述的一种钴基析氯催化剂电极制备方法,其特征在于,所述催化剂电极作为阳极,其作为催化剂阳极电解海水制氯,用于水下光学窗口防污。
CN202210236393.0A 2022-03-10 2022-03-10 一种钴基析氯催化剂电极制备方法 Active CN114717590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210236393.0A CN114717590B (zh) 2022-03-10 2022-03-10 一种钴基析氯催化剂电极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210236393.0A CN114717590B (zh) 2022-03-10 2022-03-10 一种钴基析氯催化剂电极制备方法

Publications (2)

Publication Number Publication Date
CN114717590A true CN114717590A (zh) 2022-07-08
CN114717590B CN114717590B (zh) 2023-08-08

Family

ID=82238091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210236393.0A Active CN114717590B (zh) 2022-03-10 2022-03-10 一种钴基析氯催化剂电极制备方法

Country Status (1)

Country Link
CN (1) CN114717590B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116378A1 (ja) * 2008-02-29 2009-09-24 国立大学法人東京大学 固体遷移金属水酸化物膜、α型水酸化コバルト膜、固体遷移金属水酸化物製造方法、α型水酸化コバルト製造方法、固体遷移金属水酸化物製造装置、遷移金属酸化物の製造方法、水和リチウムコバルト酸化物の製造方法、遷移金属酸化物膜、コバルト酸化物膜、及び、電極材料
WO2009136711A2 (ko) * 2008-05-06 2009-11-12 한국화학연구원 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법
US20100101955A1 (en) * 2008-06-18 2010-04-29 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
US20140231249A1 (en) * 2011-09-13 2014-08-21 The Doshisha Chlorine evolution anode
CN104005047A (zh) * 2014-06-11 2014-08-27 中国船舶重工集团公司第七二五研究所 新型的电解低温海水防污用混合金属氧化物电极
KR101508756B1 (ko) * 2013-10-01 2015-04-07 재단법인대구경북과학기술원 단분산성 β-수산화코발트 입자의 제조방법 및 이로부터 수득되는 β-수산화코발트 입자
CN113529132A (zh) * 2021-08-09 2021-10-22 中国科学院海洋研究所 一种钴基催化剂电极及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
WO2009116378A1 (ja) * 2008-02-29 2009-09-24 国立大学法人東京大学 固体遷移金属水酸化物膜、α型水酸化コバルト膜、固体遷移金属水酸化物製造方法、α型水酸化コバルト製造方法、固体遷移金属水酸化物製造装置、遷移金属酸化物の製造方法、水和リチウムコバルト酸化物の製造方法、遷移金属酸化物膜、コバルト酸化物膜、及び、電極材料
WO2009136711A2 (ko) * 2008-05-06 2009-11-12 한국화학연구원 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법
US20100101955A1 (en) * 2008-06-18 2010-04-29 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
US20140231249A1 (en) * 2011-09-13 2014-08-21 The Doshisha Chlorine evolution anode
KR101508756B1 (ko) * 2013-10-01 2015-04-07 재단법인대구경북과학기술원 단분산성 β-수산화코발트 입자의 제조방법 및 이로부터 수득되는 β-수산화코발트 입자
CN104005047A (zh) * 2014-06-11 2014-08-27 中国船舶重工集团公司第七二五研究所 新型的电解低温海水防污用混合金属氧化物电极
CN113529132A (zh) * 2021-08-09 2021-10-22 中国科学院海洋研究所 一种钴基催化剂电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张盾: "海洋环境生物腐蚀污损与防护", 装备环境工程, vol. 13, no. 4 *

Also Published As

Publication number Publication date
CN114717590B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
Yang et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol
Feng et al. Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: a review
Wang et al. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam
Recio et al. The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants
Ma et al. Efficient electrochemical flow system with improved anode for the conversion of CO2 to CO
de OS Santos et al. New laser-based method for the synthesis of stable and active Ti/SnO2–Sb anodes
Anusha et al. Application of silver-tin dioxide composite cathode catalyst for enhancing performance of microbial desalination cell
JP2013544957A (ja) 二酸化炭素の電気化学的還元のための方法および装置
Kim et al. Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination
CN102689948A (zh) 一种处理含氟有机污染物的SnO2电极
CN106492846A (zh) 一种高效裂解水产氢低过电位电催化剂及其制备方法
Bharath et al. Fabrication of Ru–CoFe2O4/RGO hierarchical nanostructures for high-performance photoelectrodes to reduce hazards Cr (VI) into Cr (III) coupled with anodic oxidation of phenols
CN102302932B (zh) 海水电解反应阳极Sn-Ru-Ir/TiO2纳米粒子催化剂的制备方法
MX2014002238A (es) Metodo para la fabricacion de electrodos (anodos) dimensionalmente estables de estaño-antimonio-rutenio utiles en el tratamiento de aguas residuales, y productos obtenidos con el mismo.
Jin et al. High-performance Ti/IrO2–RhOx–Ta2O5 electrodes for polarity reversal applications
Protsenko et al. Fabrication and characterization of multifunctional Fe/TiO2 composite coatings
Wang et al. Facile one-step synthesis of a Co3O4-and CNT-doped 3D-Ti/PbO2 electrode with a high surface for zinc electrowinning
Abdoulyousefi et al. Application of a novel Ti/nanoSnO2-α-Fe2O3 anode for the electro-catalytic degradation of dye pollutant: optimization of operational parameters by central composite design
CN111218697A (zh) 一种具有八面体晶面的Pb电极、制备方法及其应用
Eguiluz et al. Template-made tailored mesoporous Ti/SnO2-Sb2O5-IrO2 anodes with enhanced activity towards dye removal
Hasnat et al. Influence of Rh on electrocatalytic reduction of NO3− and NO2− over Pt and Pd films
Dimitrova et al. Photodeposited IrO2 on TiO2 support as a catalyst for oxygen evolution reaction
He et al. Preparation of La-doped Ti/SnO2-Sb2O4 anode and its electrochemical oxidation performance of rhodamine B
CN114717590A (zh) 一种钴基析氯催化剂电极制备方法
El Aggadi et al. Elaboration and characterization of Fe/C-doped lead dioxide-modified anodes for electrocatalytic degradation of Reactive Yellow 14

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant