CN114717121A - Fusarium genome large fragment knockout method - Google Patents

Fusarium genome large fragment knockout method Download PDF

Info

Publication number
CN114717121A
CN114717121A CN202210410044.6A CN202210410044A CN114717121A CN 114717121 A CN114717121 A CN 114717121A CN 202210410044 A CN202210410044 A CN 202210410044A CN 114717121 A CN114717121 A CN 114717121A
Authority
CN
China
Prior art keywords
sgrna1
seq
sgrna2
nucleotide sequence
pfc334
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210410044.6A
Other languages
Chinese (zh)
Inventor
郭维
唐婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Food Science and Technology of CAAS
Original Assignee
Institute of Food Science and Technology of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Food Science and Technology of CAAS filed Critical Institute of Food Science and Technology of CAAS
Priority to CN202210410044.6A priority Critical patent/CN114717121A/en
Publication of CN114717121A publication Critical patent/CN114717121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The invention discloses a fusarium genome large fragment knockout method, which comprises the steps of determining a target large fragment to be knocked out and selecting a target site, simultaneously expressing the acquisition of CRISPR vectors of two sgRNAs, constructing and acquiring a donor vector, introducing the CRISPR vectors and the donor vector into fusarium, screening transformants step by step and extracting genome DNA, and designing a PCR detection primer and screening to obtain a large fragment knockout mutant; the method has simple technical composition and low cost, and can cause the damage of the thallus genome by shearing the DNA double strand, thereby improving the efficiency of homologous recombination, realizing the purpose of knocking out the large fragment of the Fusarium genome, and promoting the basic research, metabolic engineering and synthetic biology application of the Fusarium.

Description

Fusarium genome large fragment knockout method
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a Fusarium genome large fragment knockout method.
Background
The traditional filamentous fungus genetic transformation mainly realizes the directional modification of a genome by introducing a homologous fragment and then utilizing a DNA repair mechanism of thalli, and because the method does not introduce any DNA damage and directly utilizes a homologous recombination mechanism of thalli to repair, the efficiency is relatively low, and the method is limited to knock out smaller genes, a certain difficulty exists in knocking out large fragments on the genome, and the development of a new genome large fragment knock-out technology has important significance on the basic research, metabolic engineering, synthetic biology research and the like of filamentous fungi, so the invention provides a fusarium genome large fragment knock-out method to solve the problems in the prior art.
Disclosure of Invention
In view of the above problems, the present invention aims to provide a method for knocking out large segments of fusarium genome, which has simple technical composition and low cost, and can improve the efficiency of homologous recombination by shearing double DNA strands to cause damage to the genome of a strain, thereby achieving the purpose of knocking out large segments of fusarium genome, and promoting basic research, metabolic engineering and synthetic biology application of fusarium.
In order to realize the purpose of the invention, the invention is realized by the following technical scheme: a Fusarium genome large fragment knockout method comprises the following steps:
step one, determining a large target segment to be knocked out, and selecting a target site 1 and a target site 2 at two ends of the large segment respectively;
step two, constructing two target site sequences on the same PFC332 carrier framework by a one-step cloning method to obtain a CRISPR carrier for simultaneously expressing two sgRNAs;
respectively selecting sequences without target sites on the left and right sides of the large fragment as homology arms, and constructing the sequences to two sides of the nourseothricin resistance gene to obtain a donor vector;
step four, introducing the CRISPR vector and the donor vector into fusarium through PFG-mediated protoplast transformation;
step five, screening the transformant step by utilizing hygromycin and nourseothricin to preliminarily obtain the transformant and extract genome DNA;
and step six, designing a PCR detection primer, carrying out PCR amplification by using the transformant genome DNA as a template, and screening to obtain a large fragment knockout mutant.
The further improvement lies in that: the length of the large fragment sequence in the first step is more than 15kb, and the fusarium in the fourth step is fusarium verticillioides but is not limited to the fusarium verticillioides.
The further improvement lies in that: the CRISPR vector for simultaneously expressing two sgRNAs in the second step is constructed by the following steps
S1, amplifying to obtain sgRNA1-1 and sgRNA1-2 fragments by using a PFC334 carrier as a template and PFC334_ PacI _ F/sgRNA1_ R, sgRNA1_ F/PFC334_ PacI _ R as a primer pair;
s2, performing fusion PCR amplification by using sgRNA1-1 and sgRNA1-2 as templates and PFC334_ PacI _ F/PFC334_ PacI _ R as a primer pair to obtain a sgRNA1 fragment;
s3, connecting a sgRNA1 fragment to a PFC332 vector PacI enzyme digestion site by a restriction enzyme PacI single enzyme digestion PFC332 vector through a one-step cloning method to obtain a PFC332_ sgRNA1 vector;
s4, amplifying to obtain sgRNA2-1 and sgRNA2-2 fragments by using a PFC334 carrier as a template and PFC334_ MauBI _ F/sgRNA2_ R, sgRNA2_ F/PFC334_ MauBI _ R as a primer pair;
s5, performing fusion PCR amplification by using sgRNA2-1 and sgRNA2-2 as templates and PFC334_ MauBI _ F/PFC334_ MauBI _ R as a primer pair to obtain a sgRNA2 fragment;
s6, a PFC332_ sgRNA1 vector is subjected to single enzyme digestion by a restriction endonuclease MauBI, and a sgRNA2 fragment is connected to a MauBI enzyme digestion site of a PFC332_ sgRNA1 vector in S3 by a one-step cloning method, so that a CRISPR vector PFC332_ sgRNA1+2 capable of expressing sgRNA1 and sgRNA2 simultaneously is obtained.
The further improvement lies in that: the nucleotide sequences of the primers PFC334_ PacI _ F in S1 and S2 are shown in SEQ ID NO. 1; the nucleotide sequence of the primer PFC334_ PacI _ R is shown in SEQ ID NO. 2; the nucleotide sequence of the primer sgRNA1_ F is shown in SEQ ID NO. 3; the nucleotide sequence of the primer sgRNA1_ R is shown in SEQ ID NO. 4; the sgRNA1-1 has a nucleotide sequence shown in SEQ ID NO. 27; the sgRNA1-2 has a nucleotide sequence shown in SEQ ID NO. 28; the sgRNA1 has the nucleotide sequence shown in SEQ ID NO. 29.
The further improvement lies in that: the nucleotide sequence of the primer PFC334_ MauBI _ F in the steps S4 and S5 is shown as SEQ ID NO. 5; the nucleotide sequence of the primer PFC334_ MauBI _ R is shown in SEQ ID NO. 6; the nucleotide sequence of the primer sgRNA2_ F is shown in SEQ ID NO. 7; the nucleotide sequence of the primer sgRNA2_ R is shown in SEQ ID NO. 8; the sgRNA2-1 has a nucleotide sequence shown as SEQ ID NO. 30; the sgRNA2-2 has a nucleotide sequence shown in SEQ ID NO. 31; the sgRNA2 has the nucleotide sequence shown in SEQ ID NO. 32.
The Fusarium genome large fragment knocking-out method is applied to gene large fragment knocking-out.
The invention has the beneficial effects that: the method has simple technical composition and low cost, and can cause the damage of the thallus genome by shearing the DNA double strand, thereby improving the efficiency of homologous recombination, realizing the purpose of knocking out the large fragment of the Fusarium genome, and promoting the basic research, metabolic engineering and synthetic biology application of the Fusarium.
Drawings
FIG. 1 is a flow chart of a method according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating a second application of the present invention.
Fig. 3 is a construction diagram of the CRISPR vector of the present invention.
FIG. 4 is a diagram showing the construction of the donor vector of the present invention.
FIG. 5 is a PCR assay of Fusarium genomic large fragment knockout mutants based on CRISPR/Cas9 technology of the invention.
Detailed Description
In order to further understand the present invention, the following detailed description will be made with reference to the following examples, which are only used for explaining the present invention and are not to be construed as limiting the scope of the present invention.
Example one
According to FIG. 1, the present embodiment provides a Fusarium genome large fragment knockout method, comprising the following steps:
step one, determining a target large fragment to be knocked out, wherein the sequence length of the target large fragment is larger than 15kb, and selecting a target site 1 and a target site 2 at two ends of the large fragment respectively;
step two, constructing two target site sequences on the same PFC332 carrier framework by a one-step cloning method to obtain a CRISPR carrier for simultaneously expressing two sgRNAs;
the CRISPR vector for simultaneously expressing two sgRNAs is constructed by the following steps
S1, amplifying to obtain sgRNA1-1 and sgRNA1-2 fragments by using a PFC334 carrier as a template and PFC334_ PacI _ F/sgRNA1_ R, sgRNA1_ F/PFC334_ PacI _ R as a primer pair;
the nucleotide sequence of the primer PFC334_ PacI _ F is shown in SEQ ID NO. 1; the nucleotide sequence of the primer PFC334_ PacI _ R is shown in SEQ ID NO. 2; the nucleotide sequence of the primer sgRNA1_ F is shown in SEQ ID NO. 3; the nucleotide sequence of the primer sgRNA1_ R is shown in SEQ ID NO. 4; the sgRNA1-1 has a nucleotide sequence shown in SEQ ID NO. 27; the sgRNA1-2 has a nucleotide sequence shown in SEQ ID NO. 28;
s2, performing fusion PCR amplification by using sgRNA1-1 and sgRNA1-2 as templates and PFC334_ PacI _ F/PFC334_ PacI _ R as a primer pair to obtain a sgRNA1 fragment; the sgRNA1 has a nucleotide sequence shown in SEQ ID NO. 29;
s3, connecting a sgRNA1 fragment to a PFC332 vector PacI enzyme digestion site by a restriction enzyme PacI single enzyme digestion PFC332 vector through a one-step cloning method to obtain a PFC332_ sgRNA1 vector;
s4, amplifying to obtain sgRNA2-1 and sgRNA2-2 fragments by using a PFC334 carrier as a template and PFC334_ MauBI _ F/sgRNA2_ R, sgRNA2_ F/PFC334_ MauBI _ R as a primer pair;
the nucleotide sequence of the primer PFC334_ MauBI _ F is shown in SEQ ID NO. 5; the nucleotide sequence of the primer PFC334_ MauBI _ R is shown in SEQ ID NO. 6; the nucleotide sequence of the primer sgRNA2_ F is shown in SEQ ID NO.7, and the nucleotide sequence of the primer sgRNA2_ R is shown in SEQ ID NO. 8; the sgRNA2-1 has a nucleotide sequence shown as SEQ ID NO. 30; the sgRNA2-2 has a nucleotide sequence shown in SEQ ID NO. 31;
s5, performing fusion PCR amplification by using sgRNA2-1 and sgRNA2-2 as templates and PFC334_ MauBI _ F/PFC334_ MauBI _ R as a primer pair to obtain a sgRNA2 fragment; the sgRNA2 has a nucleotide sequence shown in SEQ ID NO. 32;
s6, performing single enzyme digestion on a PFC332_ sgRNA1 vector by using a restriction endonuclease MauBI, and connecting a sgRNA2 fragment to a MauBI enzyme digestion site of a PFC332_ sgRNA1 vector in S3 by using a one-step cloning method to obtain a CRISPR vector PFC332_ sgRNA1+2 capable of simultaneously expressing sgRNA1 and sgRNA 2;
respectively selecting sequences without target sites on the left and right sides of the large fragment as homology arms, and constructing the sequences to two sides of the nourseothricin resistance gene to obtain a donor vector;
step four, introducing the CRISPR vector and the donor vector into Fusarium through PFG-mediated protoplast transformation, wherein the Fusarium is Fusarium verticillium but is not limited to Fusarium verticillium;
step five, screening the transformant step by utilizing hygromycin and nourseothricin to preliminarily obtain the transformant and extract genome DNA;
and step six, designing a PCR detection primer, carrying out PCR amplification by using the transformant genome DNA as a template, and screening to obtain a large fragment knockout mutant.
Example two
According to the illustration in fig. 2, the embodiment provides an application of a fusarium genome large fragment knockout method in gene large fragment knockout, firstly, according to an experimental purpose, a target large fragment to be knocked out is determined through bioinformatics analysis, two target sites are respectively designed at two ends of the large fragment, the two target sites are jointly constructed on the same PFC332 vector to form a CRISPR vector capable of releasing two sgrnas simultaneously, meanwhile, a homology arm is respectively designed at the left side and the right side of the large fragment and is respectively constructed at two sides of a nourseothricin gene to form a donor vector containing a large fragment knockout homology arm, the CRISPR vector and the donor vector are simultaneously introduced into a protoplast, and a large fragment knockout mutant is obtained through stepwise screening and PCR detection of hygromycin and nourseothricin. The specific experimental protocol is as follows:
determining large segments of a target
With the aim of researching the biosynthesis of Fusarium verticillium fumonisin, determining a 38604bp sequence in an FUM gene cluster as a target large fragment through bioinformatics analysis;
designing target sites
Selecting a 20bp sequence adjacent to the 5 ' end of the ' NGG ' PAM site from the left end of the target large fragment as a target site 1; on the right end of the target large fragment, a 20bp sequence close to the 5 ' end of the ' NGG ' PAM site is also selected as a target site 2; and (3) performing bioinformatics analysis on the two selected target sites, comparing the specificity of the two selected target sites in the fusarium verticillioides genome, and ensuring that the number of homologous bases of the two selected target sites and other sites cannot exceed 15 bp. The specific nucleotide sequence is as follows:
the nucleotide sequence of the target site 1 is shown as SEQ ID NO. 21;
the nucleotide sequence of the target site 2 is shown as SEQ ID NO. 22.
Construction of CRISPR vectors
Designing a primer according to the specific conditions of a target site and a carrier:
the nucleotide sequence of the primer PFC334_ PacI _ F is shown in SEQ ID NO. 1;
the nucleotide sequence of the primer PFC334_ PacI _ R is shown in SEQ ID NO. 2;
the nucleotide sequence of the primer FUM _ sgRNA1_ F is shown in SEQ ID NO. 23;
the nucleotide sequence of the primer FUM _ sgRNA1_ R is shown in SEQ ID NO. 24;
the nucleotide sequence of the primer PFC334_ MauBI _ F is shown in SEQ ID NO. 5;
the nucleotide sequence of the primer PFC334_ MauBI _ R is shown in SEQ ID NO. 6;
the nucleotide sequence of the primer FUM _ sgRNA2_ F is shown in SEQ ID NO. 25;
the nucleotide sequence of the primer FUM _ sgRNA2_ R is shown in SEQ ID NO. 26;
using a PFC334 carrier as a template and PFC334_ PacI _ F/FUM _ sgRNA1_ R, FUM _ sgRNA1_ F/PFC334_ PacI _ R as a primer pair, and performing PCR by using PrimeSTAR Max Premix (2X) to obtain FUM _ sgRNA1-1 and FUM _ sgRNA1-2 fragments through amplification; then, FUM _ sgRNA1-1 and FUM _ sgRNA1-2 are used as templates, PFC334_ PacI _ F/PFC334_ PacI _ R is used as a primer pair, fusion PCR is carried out by using PrimeSTAR Max Premix (2X), and a FUM _ sgRNA1 fragment is obtained through amplification; performing single enzyme digestion on a PFC332 vector by using a restriction enzyme PacI, and connecting a FUM _ sgRNA1 fragment to a PacI enzyme digestion site of the PFC332 vector by one-step cloning to obtain a PFC332_ FUM _ sgRNA1 vector;
taking a PFC334 carrier as a template, taking PFC334_ MauBI _ F/FUM _ sgRNA2_ R, FUM _ sgRNA2_ F/PFC334_ MauBI _ R as a primer pair, and carrying out PCR by using PrimeSTAR Max Premix (2X) to obtain FUM _ sgRNA2-1 and FUM _ sgRNA2-2 fragments through amplification; then, FUM _ sgRNA2-1 and FUM _ sgRNA2-2 are used as templates, PFC334_ MauBI _ F/PFC334_ MauBI _ R is used as a primer pair, and fusion PCR is carried out by using PrimeSTAR Max Premix (2X), so that a FUM _ sgRNA2 fragment is obtained through amplification; the vector PFC332_ FUM _ sgRNA1 is subjected to single enzyme digestion by a restriction enzyme MauBI, and a FUM _ sgRNA2 fragment is connected to the enzyme digestion site of the vector PFC332_ FUM _ sgRNA1 by one-step cloning, so that the vector PFC332_ FUM _ sgRNA1+2 for target large fragment knockout is obtained.
The nucleotide sequence of FUM _ sgRNA1-1 obtained by PCR amplification is shown in SEQ ID NO. 33; the nucleotide sequence of FUM _ sgRNA1-2 is shown in SEQ ID NO. 34; the nucleotide sequence of FUM _ sgRNA1 is shown in SEQ ID NO. 35; the nucleotide sequence of FUM _ sgRNA2-1 is shown in SEQ ID NO. 36; the nucleotide sequence of FUM _ sgRNA2-2 is shown in SEQ ID NO. 37; the nucleotide sequence of FUM _ sgRNA2 is shown in SEQ ID NO. 38.
Construction of the Donor vector
Selecting 3500bp sequences on the left side and the right side of a large fragment of the FUM gene cluster as homologous arms, and designing primers:
the nucleotide sequence of the primer L-SalI-F is shown as SEQ ID NO. 9;
the nucleotide sequence of the primer L-SalI-R is shown as SEQ ID NO. 10;
the nucleotide sequence of the primer R-EcoRI-F is shown in SEQ ID NO. 11;
the nucleotide sequence of the primer R-EcoRI-R is shown in SEQ ID NO. 12;
taking the genome DNA of fusarium verticillioides as a template, taking L-SalI-F/L-SalI-R as a primer pair, carrying out PCR by using PrimeSTAR Max Premix (2X), and amplifying to obtain an L-SalI fragment, wherein the obtained L-SalI nucleotide sequence is shown as SEQ ID NO. 39;
the pNrsR vector is singly cut by restriction endonuclease SalI, and an L-SalI fragment is connected to the SalI cutting site of the pNrsR vector through one-step cloning to obtain the pNrsR-L vector;
PCR is carried out by taking genome DNA of fusarium verticillioides as a template and R-EcoRI-F/R-EcoRI-R as a primer pair and using PrimeSTAR Max Premix (2X) to obtain an R-EcoRI fragment through amplification, and the obtained R-EcoRI nucleotide sequence is shown as SEQ ID NO. 40;
the method comprises the following steps of (1) singly cutting a pNrsR-L vector by restriction endonuclease EcoRI, connecting an R-EcoRI fragment to an EcoRI cutting site of the pNrsR-L vector through one-step cloning, and obtaining a pNrsR-L + R vector for target large fragment knockout;
PEG-mediated protoplast transformation
Fusarium verticillium was activated in advance on PDA plates and cultured at 25 ℃ for 7 days.
Collecting spores, placing in 150ml YEPD liquid culture medium, and shaking at 25 deg.C and 150rpm overnight for 10 h; collecting young plants, adding into 0.7MNaCl containing 0.1g of lysine enzymes and 0.05g of driselase to prepare 20ml of mixed solution, and shaking at 28 ℃ and 100rpm for 3h for enzymolysis; protoplasts were collected and adjusted to a concentration of 108One per ml. Mixing 10 μ g PFC332_ FUM _ sgRNA1+2 vector and 10 μ g pNrsR-L + R vector, adding into 100 μ L protoplast, mixing, and standing on ice for 20 min; adding 100 μ l of 40% PEG3350 solution dropwise, mixing, and standing on ice for 30 min; adding 800 μ l FRB solution, shaking at 25 deg.C and 150rpm overnight for 12h to double wall; pouring the mixed solution after wall covering into an FRA plate containing hygromycin, and culturing at 25 ℃;
after a single transformant grows out, screening twice by using a PDA (personal digital assistant) plate containing nourseothricin, transferring the screened transformant to a nonreactive single PDA plate for amplification culture, preserving glycerol bacteria, and extracting genome DNA (deoxyribonucleic acid) from residual hyphae;
4 pairs of PCR detection primers are designed, and wild type Fusarium verticillium and transformant genome DNA are used as templates for amplification, and the mutant is obtained through identification.
The primer pair 1 is an internal primer of the FUM gene cluster and is used for detecting whether the FUM gene cluster still exists in a genome, and the nucleotide sequence of the specific primer is as follows:
the nucleotide sequence of the primer FUM-in-F is shown as SEQ ID NO. 13;
the nucleotide sequence of the primer FUM-in-R is shown as SEQ ID NO. 14.
The 2 nd pair of primers are internal primers of the nourseothricin screening marker and are used for detecting whether the nourseothricin screening marker enters the interior of a genome, and the nucleotide sequences of the specific primers are as follows:
the nucleotide sequence of the primer NrsR-in-F is shown as SEQ ID NO. 15;
the nucleotide sequence of the primer NrsR-in-R is shown as SEQ ID NO. 16.
The 3 rd pair of primers is a primer pair formed by building the front end of an upstream homologous arm and the interior of a nourseothricin screening marker and used for detecting whether a donor fragment correctly replaces the FUM gene cluster, and the specific primer nucleotide sequences are as follows:
the nucleotide sequence of the primer UP-F is shown as SEQ ID NO. 17;
the nucleotide sequence of the primer NrsR-R is shown as SEQ ID NO. 18.
The 4 th pair of primers is a primer pair built with the interior of the nourseothricin screening marker and the rear end of the downstream homology arm, and is used for detecting whether the doror fragment correctly replaces the FUM gene cluster, and the specific primer nucleotide sequences are as follows:
the nucleotide sequence of the primer NrsR-F is shown as SEQ ID NO. 19;
the nucleotide sequence of the primer DOWN-R is shown in SEQ ID NO. 20.
Through the steps, large fragment knockout mutants of the FUM gene cluster are obtained successfully, and a molecular biology technical basis is laid for functional research of the FUM gene cluster.
Target site sequence Listing
Target sites Site nucleotide sequence SEQ ID NO.
1 5’-GGATCCATTGCCATGCGTCA-3’ 21
2 5’-GGACCTTTCTATATCCGAGG-3’ 22
Primer sequence Listing
Figure BDA0003603800010000111
Figure BDA0003603800010000121
The nucleotide sequence of the target site 1 is 'NNNNNNNNNNNNNNNNNNNN' in the nucleotide sequence of the sgRNA1_ F shown in the SEQ ID No.3, and 'NNNNNN' in the nucleotide sequence of the sgRNA1_ R shown in the SEQ ID No.4 is the first 6 bases of the target site 1.
The nucleotide sequence of target site 2 is 'nnnnnnnnnnnnnnnnnnnnnnnnnnnnn' in the nucleotide sequence of primer sgRNA2_ F shown in SEQ ID NO.7, and the nucleotide sequence of target site 2 is 'nnnnnnnnnnnnn' in the nucleotide sequence of primer sgRNA1_ R shown in SEQ ID NO. 8.
Figure 3 of the accompanying drawings is a construction diagram of a CRISPR vector, wherein
A is a fusion amplification graph of an sgRNA1 fragment and an sgRNA2 fragment, wherein 1 corresponds to an sgRNA1 fragment, and 2 corresponds to an sgRNA2 fragment;
b is a colony PCR screening chart constructed by a PFC332_ sgRNA1 vector, and 1/3/5/6/7 is a positive clone;
c is a colony PCR spot screening diagram constructed by a PFC332_ sgRNA1+2 vector, and 2/8 is a positive clone; m is 1kb DNA ladder.
FIG. 4 is a drawing of the construction of the donor vector, in which
A is a colony PCR screening chart constructed by a pNrsR-L vector, and 1-9 are positive clones;
b is a colony PCR screening picture constructed by a pNrsR-L + R vector, and 1/2/3/5/6/7 is a positive clone; m is 1kb DNA ladder.
FIG. 5 is a PCR assay of Fusarium genomic large fragment knockout mutants based on CRISPR/Cas9 technology, in which
A is a PCR screening picture of the 1 st pair of primers, which is a large-fragment inner primer;
b is a PCR screening chart of the 2 nd pair of primers, and is an internal primer of a screening marker nourseothricin resistance gene;
c is a PCR screening picture of the 3 rd pair of primers, which is a primer pair built by the front end of the upstream homologous arm and the interior of the nourseothricin screening marker;
d is a PCR screening chart of the 4 th pair of primers, and is a primer pair formed by building the interior of the nourseothricin screening marker and the rear end of a downstream homologous arm;
4 detection results are integrated, and 2-9/12-17 is a large fragment knockout mutant; 1: a wild-type control; 2-17: knocking out transformants from large fragments of FUM gene cluster; m is 1kb DNA ladder.
The foregoing illustrates and describes the principles, general features, and advantages of the present invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the specification and illustrated only to illustrate the principle of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the present invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.
SEQUENCE LISTING
<110> institute for agricultural product processing of Chinese academy of agricultural sciences
<120> Fusarium genome large fragment knockout method
<130> 000001
<160> 40
<170> PatentIn version 3.3
<210> 1
<211> 45
<212> DNA
<213> PFC334_PacI_F
<400> 1
tagctgtttc cgctgagggt ttaatgcgta agctccctaa ttggc 45
<210> 2
<211> 45
<212> DNA
<213> PFC334_PacI_R
<400> 2
ctgctgtctc ggctgaggtc ttaatgagcc aagagcggat tcctc 45
<210> 3
<211> 55
<212> DNA
<213> sgRNA1_F
<220>
<221> misc_feature
<222> (26)..(45)
<223> n is a, c, g, or t
<400> 3
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagc 55
<210> 4
<211> 52
<212> DNA
<213> sgRNA1_R
<220>
<221> misc_feature
<222> (38)..(43)
<223> n is a, c, g, or t
<400> 4
gacgagctta ctcgtttcgt cctcacggac tcatcagnnn nnncggtgat gt 52
<210> 5
<211> 45
<212> DNA
<213> PFC334_MauBI_F
<400> 5
cggggtctga cgctcagtgg aacgagcgta agctccctaa ttggc 45
<210> 6
<211> 45
<212> DNA
<213> PFC334_MauBI_R
<400> 6
gaccaaaatc ccttaacgtg agttagagcc aagagcggat tcctc 45
<210> 7
<211> 55
<212> DNA
<213> sgRNA2_F
<220>
<221> misc_feature
<222> (26)..(45)
<223> n is a, c, g, or t
<400> 7
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagc 55
<210> 8
<211> 52
<212> DNA
<213> sgRNA2_R
<220>
<221> misc_feature
<222> (38)..(43)
<223> n is a, c, g, or t
<400> 8
gacgagctta ctcgtttcgt cctcacggac tcatcagnnn nnncggtgat gt 52
<210> 9
<211> 45
<212> DNA
<213> L-SalI-F
<400> 9
caagcttgca tgcctgcagg tcgactcaac ttttgcgatg gcggg 45
<210> 10
<211> 46
<212> DNA
<213> L-SalI-R
<400> 10
tcatcttctg ttctagacta gaatcctgtg gaacccatca actgag 46
<210> 11
<211> 45
<212> DNA
<213> R-EcoRI-F
<400> 11
tagaggatcc ccgggtaccg agctccaggt cggcatcgca ttcat 45
<210> 12
<211> 47
<212> DNA
<213> R-EcoRI-R
<400> 12
cagctatgac catgattacg aattcttaga ctcttgacgc ctcccag 47
<210> 13
<211> 22
<212> DNA
<213> FUM-in-F
<400> 13
cgaccatgtt ttggcagaag ac 22
<210> 14
<211> 22
<212> DNA
<213> FUM-in-R
<400> 14
gcctgcatgc tatatcagct ac 22
<210> 15
<211> 21
<212> DNA
<213> NrsR-in-F
<400> 15
cactcttgac gacacggctt a 21
<210> 16
<211> 19
<212> DNA
<213> NrsR-in-R
<400> 16
gcagggcatg ctcatgtag 19
<210> 17
<211> 23
<212> DNA
<213> UP-F
<400> 17
acttgctggg ttgtatcttg aag 23
<210> 18
<211> 23
<212> DNA
<213> NrsR-R
<400> 18
gtcgttcact taccttgctt gac 23
<210> 19
<211> 25
<212> DNA
<213> NrsR-F
<400> 19
ttgtactttg acatgctcct cttct 25
<210> 20
<211> 22
<212> DNA
<213> DOWN-R
<400> 20
tcatggaaac ctcggctagg at 22
<210> 21
<211> 20
<212> DNA
<213> target site 1
<400> 21
ggatccattg ccatgcgtca 20
<210> 22
<211> 20
<212> DNA
<213> target site 2
<400> 22
ggacctttct atatccgagg 20
<210> 23
<211> 55
<212> DNA
<213> FUM_sgRNA1_F
<400> 23
tgaggacgaa acgagtaagc tcgtcggatc cattgccatg cgtcagtttt agagc 55
<210> 24
<211> 52
<212> DNA
<213> FUM_sgRNA1_R
<400> 24
gacgagctta ctcgtttcgt cctcacggac tcatcaggga tcccggtgat gt 52
<210> 25
<211> 55
<212> DNA
<213> FUM_sgRNA2_F
<400> 25
tgaggacgaa acgagtaagc tcgtcggacc tttctatatc cgagggtttt agagc 55
<210> 26
<211> 52
<212> DNA
<213> FUM_sgRNA2_R
<400> 26
gacgagctta ctcgtttcgt cctcacggac tcatcaggga cctcggtgat gt 52
<210> 27
<211> 565
<212> DNA
<213> sgRNA1-1
<220>
<221> misc_feature
<222> (523)..(528)
<223> n is a, c, g, or t
<400> 27
tagctgtttc cgctgagggt ttaatgcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgnnnnnnct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtc 565
<210> 28
<211> 453
<212> DNA
<213> sgRNA1-2
<220>
<221> misc_feature
<222> (26)..(45)
<223> n is a, c, g, or t
<400> 28
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagctagaa 60
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 120
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 180
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 240
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 300
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 360
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 420
cttggctcat taagacctca gccgagacag cag 453
<210> 29
<211> 993
<212> DNA
<213> sgRNA1
<220>
<221> misc_feature
<222> (523)..(528)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (566)..(585)
<223> n is a, c, g, or t
<400> 29
tagctgtttc cgctgagggt ttaatgcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgnnnnnnct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagctagaa 600
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 660
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 720
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 780
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 840
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 900
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 960
cttggctcat taagacctca gccgagacag cag 993
<210> 30
<211> 565
<212> DNA
<213> sgRNA2-1
<220>
<221> misc_feature
<222> (523)..(528)
<223> n is a, c, g, or t
<400> 30
cggggtctga cgctcagtgg aacgagcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgnnnnnnct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtc 565
<210> 31
<211> 453
<212> DNA
<213> sgRNA2-2
<220>
<221> misc_feature
<222> (26)..(45)
<223> n is a, c, g, or t
<400> 31
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagctagaa 60
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 120
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 180
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 240
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 300
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 360
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 420
cttggctcta actcacgtta agggattttg gtc 453
<210> 32
<211> 993
<212> DNA
<213> sgRNA2
<220>
<221> misc_feature
<222> (523)..(528)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (566)..(585)
<223> n is a, c, g, or t
<400> 32
cggggtctga cgctcagtgg aacgagcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgnnnnnnct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtcnnnnn nnnnnnnnnn nnnnngtttt agagctagaa 600
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 660
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 720
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 780
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 840
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 900
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 960
cttggctcta actcacgtta agggattttg gtc 993
<210> 33
<211> 565
<212> DNA
<213> FUM_sgRNA1-1
<400> 33
tagctgtttc cgctgagggt ttaatgcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgggatccct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtc 565
<210> 34
<211> 453
<212> DNA
<213> FUM_sgRNA1-2
<400> 34
tgaggacgaa acgagtaagc tcgtcggatc cattgccatg cgtcagtttt agagctagaa 60
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 120
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 180
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 240
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 300
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 360
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 420
cttggctcat taagacctca gccgagacag cag 453
<210> 35
<211> 993
<212> DNA
<213> FUM_sgRNA1
<400> 35
tagctgtttc cgctgagggt ttaatgcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgggatccct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtcggatc cattgccatg cgtcagtttt agagctagaa 600
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 660
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 720
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 780
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 840
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 900
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 960
cttggctcat taagacctca gccgagacag cag 993
<210> 36
<211> 565
<212> DNA
<213> FUM_sgRNA2-1
<400> 36
cggggtctga cgctcagtgg aacgagcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgaggtccct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtc 565
<210> 37
<211> 453
<212> DNA
<213> FUM_sgRNA2-2
<400> 37
tgaggacgaa acgagtaagc tcgtcggacc tttctatatc cgagggtttt agagctagaa 60
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 120
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 180
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 240
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 300
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 360
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 420
cttggctcta actcacgtta agggattttggtc 453
<210> 38
<211> 993
<212> DNA
<213> FUM_sgRNA2
<400> 38
cggggtctga cgctcagtgg aacgagcgta agctccctaa ttggcccatc cggcatctgt 60
agggcgtcca aatatcgtgc ctctcctgct ttgcccggtg tatgaaaccg gaaaggccgc 120
tcaggagctg gccagcggcg cagaccggga acacaagctg gcagtcgacc catccggtgc 180
tctacactcg acctgctgag gtccctcagt ccctggtagg cagctttgcc ccgtctgtcc 240
gcccggtgtg tcggcggggt tgacaaggtc gttgcgtcag tccaacattt gttgccatat 300
tttcctgctc tccccaccag ctgctctttt cttttctctt tcttttccca tcttcagtat 360
attcatcttc ccatccaaga acctttattt cccctaagta agtactttgc tacatccata 420
ctccatcctt cccatccctt attcctttga acctttcagt tcgagctttc ccacttcatc 480
gcagcttgac taacagctac cccgcttgag cagacatcac cgaggtccct gatgagtccg 540
tgaggacgaa acgagtaagc tcgtcggacc tttctatatc cgagggtttt agagctagaa 600
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 660
cttttggccg gcatggtccc agcctcctcg ctggcgccgg ctgggcaaca tgcttcggca 720
tggcgaatgg gactgattta atagctccat gtcaacaaga ataaaacgcg tttcgggttt 780
acctcttcca gatacagctc atctgcaatg cattaatgca ttggacctcg caaccctagt 840
acgcccttca ggctccggcg aagcagaaga atagcttagc agagtctatt ttcattttcg 900
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 960
cttggctcta actcacgtta agggattttg gtc 993
<210> 39
<211> 3550
<212> DNA
<213> L-SalI
<400> 39
caagcttgca tgcctgcagg tcgactcaac ttttgcgatg gcggggtcca ttgtgtttgt 60
gacagataat cagattagcg caaattcgag acacaagcca cgatttagac gacgtcgtgg 120
cgcgtgtgag tcgtgtaagc gtcgtaaagt ccggtgtaag ttgcttggcc tcctccactg 180
ctttgtactg tacctagctt atggttctta tgactactag gtaatggcac aaacccttgc 240
aatcaatgcc aagtcagatt cccgtcaaga tggtacatag tcatctcagc ccgagctaac 300
cagaagagca gaaatcgtcg atagaatgct tatatagcag ctcaagctgg aaagctaacg 360
acggagatac agagcgtgga ccatcaggat cgccggtgca acatacaagg gggagtttga 420
cgcctcctca aacgagccca tatggtggaa tggcttgtaa tggatcagcg gaagagtctt 480
cgagatttga tggctcggat gcacacagcc ttttgatgag cctcagcaat actgactgta 540
cgactaatac tgaggcaaca gagatgtcgc agtggcagaa ttggttcgtt agcgacctac 600
ctctagggag cgatgtgcaa cttacaggga catctgatga gtctttgacc gactggttgg 660
acccccagct tgtcaaccca gcagataccg cggccattat gcaaaccctt tcgggggagg 720
atctatttaa atcatccggc ccaagttatg gcatgtctga gcctccatcg cgggacagtg 780
atcccggctt caacacggcg agaaatgaac aaatcgccgg ttttattcag aagcttcgct 840
cccagagacc attcgttttg cgcgatgaaa atcccgaggc accaccaggt aacatcaggg 900
gcttttatga tgcaaagttt atctctcaat gtttcgacgg tacgtaaggg tttaatcaca 960
cagcatatca ggtagaactg accttattcc cacccgaaag cgtgcgatgc agatccggaa 1020
gggtatatat atttcctcca agatttccgt actagcggca ctactctaac acaataacag 1080
tgttcgagta ttattggaga gaaaaagcat ggatttgatt gcagacgaga ttacaaaata 1140
tgccctggct gttgacacag aaacctctgt tttattccac tccttgatgg ctattggatg 1200
ccattctttg aatcttgacc aaggccatcg agcaattggc aaggggaaat atcctgcctc 1260
gaagtttttc aaagaagctt taaatgcgag acagcatttg cgggacagcc ctagtcttgg 1320
aggacttcag gtatgttgta catgtcgaga aactaaactc aaagtgatga gggattcctc 1380
aaactgattg tacgtactgt tgtaggctat tttgactatg gtaattccct caccagatat 1440
ctacctactt gctagtaagt tcttacacgc gcacaaggca tacttctccg ctcgagtcgg 1500
ggacgattcc acttcgagct tcctcgccga tgccgccttt tgcgtccaga cgttgcaact 1560
acacaacgcg ggtgcaattg aacagaaata caacagcttc ctagaacaac aagtggccaa 1620
acgtgccctt tggttcttat attcccttga gaagcctcgc tgcctcgccc aaggcttatt 1680
accggtttgt agcgctcgac attcccttat agcagcaagc agccttttct tgcctgtaca 1740
ctgtgtctga ttcttgcgac gcatagttga tccacgacga cttcgtcgac tacgatcctc 1800
cgccgtccgc aaactattcg actagtgagg ttgactggtt cgctatcaac gcccggtttg 1860
cgaggatctg ttcttctatc ataaaggagc gacttggatg caaattgggt cgcacaccat 1920
cacgacgcgg aaaagaccgt gcctctgagt atagcgcaag ctcggtaata aagaggcttg 1980
aatctctttt ggaggagtgg agagatgatc tcccctttgc cggcgatttt gacgcaaccc 2040
ggtctgacga atttgcggcg tcaacgtgtg cagagagacg tcacaggatt aagtgcctga 2100
acaaatactg gtccgccatc attgcaacac attcaggaca ggcgcgtggt gtagccgaag 2160
atggcggtgc aggtgtccga ttgagtaggg caagatgcat tgacgccgcc caagcaattt 2220
tgcagaatag ccactacgtc acctcgaccg acattttatc tgatatgtac gttctgggga 2280
gaccaagtgt gtcattatca actgcatagg ccatttcatc tttcctatcc tttcgatctc 2340
acttctgtac tgttgcctgc ttgtttatac taaccaagtg tttagctcac tttactacta 2400
catcaccgtt gcaacacggg tcatcatgac tgtggtgatc cgtgacagat ttgccagcga 2460
tatcacaggg gatcctgttc agaagaatac agccacacgc aaaagagaaa ctacgcatgg 2520
caggtcaata atgtcctatg tgggaattgc gattggtctc tttagtcgtc tttctttaga 2580
tatagacgtt cctgtagatg aggttactga gttgggaaaa ttaggaagat agataataaa 2640
acatatctat ccgtgtgttt tagccaactg tagttatata cgagagggtc caacttcact 2700
acgaccataa tccacccacc tctatgccag ccctgactca atggcacagc acgcacacca 2760
tcactaacgg taaactcaaa acgacagccg cttgcattga ggctaaagca cggttccggc 2820
ttatacgaac agaagtctga catctttcat gataagaaga agaagaagaa gctgtcggaa 2880
tgatacagac ccaaatcaga tatccgaccg gctcctggtc ccattccatt atgagccaat 2940
ggggcaattg ccccctttcc ctacccgagt gttttcggac gttactgtcc ctcacccggg 3000
aactctagca aactattggg atgtaggata ataatagtaa ccttcctact ggttgccgaa 3060
tttccgggtc tcttactcgt ctttgaggat actgacaatt gcgcttcgga gtattgcgtg 3120
tcctctcgga tgggagacta aatcgtatac aacaaccgga atttcgatgc tgattgcaat 3180
gatagagacg agacagatat ataaccatga aatacagtgt tattggagac tctgtatttg 3240
atccatcgca accttattat cgttttaaac gctactgata tcatcaacgt tcgacatggg 3300
agtaatcgaa tcaccctcaa gcaccacttc aggctctgcc gaagagatgg ctcaagccat 3360
caccggtcat gaggattcag ttttgcccgt tgctattgtt ggcatgggta tgaggctgcc 3420
gggtgggatc catactcctg atgaactttg gggcatgctt gtggagaagc gttccacccg 3480
atgtgagatc cccccaactc gattctcagt tgatgggttc cacaggattc tagtctagaa 3540
cagaagatga 3550
<210> 40
<211> 3550
<212> DNA
<213> R-EcoRI
<400> 40
tagaggatcc ccgggtaccg agctccaggt cggcatcgca ttcatagcac cgattgggct 60
tgtattgctc tccttcctgg gcgtctctat tgtggggaat tatgtcgggc tctatcaaaa 120
agcgtggatg ggcaaaatac agaaccgcgt ggctataact gccaacgtga tatccaacat 180
caaacacctc aaagtctccg ggatgactcg accagttgaa tccatcatcc aaaacactcg 240
agaatctgaa ctacgagcta gtcgtgggac tcgcaggctc cagattgcgt cgctcatcat 300
cgcctttgcg cccgatttga ctgcaccggg cattatgctc gcagccacca agtcgcagga 360
tttcagctct cataaggtct atactgcgat tgcccttctc acattgttga ctgtgccgct 420
tggcagtatc ttccgctctg tctcaccctt gatgtcggcg tttgcatgtc tagagcgtat 480
tcaagcattt cttgaacttg atacgcggaa ggaccctcgc ctgattacac attcgacgcc 540
agatacttca tcggcctcag gcgatgaaaa ggtctacgct gatccattgc ctatgtctag 600
aagctcagca gtcaaagtta ttcaagcaag ctttgggtgg cagggtaaag agcaggcatg 660
tttaaagaac atcaacttga ctgtcaacta ttctgccttg actgctatta ttgggcctgt 720
tggatcagga aagtcgacgt tgtgcaaagc cttgctcggt gaaacgccat tctcggctgg 780
caaggtcgtt ctggaacgcg atgctagctg taaagttggc tattgcgatc aaacaccctt 840
tatacgaaac tgcagcatca aggagaacat agttggcttc tctaaatgga acccagtccg 900
ctatcttgag gtggttgaag cgtcgatgct ctcatacgac ctcagggaat tacctgaggg 960
tgatgcaacg atagtgggaa gcggaggcat gactttgagc ggtggtcaaa aacagcgcat 1020
cgctattgct agatccctct atcttgacac aaggctcctg atattggatg atattctgag 1080
tggtcttgat actcagacgg aacaccatct tttccaacat gttcttagtc cgaatggcct 1140
cctgaagaag agagaaaacg cgccagccat tgtcttttcc actcattcgg tcaagtacgc 1200
ccggtgggct gatcacatct ttctactgaa tgaaaaaggc gagatgatcg agcaaggtag 1260
ctgggaggag ttgtcaacat atcaaagcca tttgcaaagc ctgtgcattc aggagaaagt 1320
acaaatgacg gatctgaagc agctcgaacc tgtggaaagc gagcagccac tggatgtcac 1380
tatgtcagag attgagcaaa ctcgttccag ccgccgtggt gctgataacc aagaaactat 1440
cgctagtggt gcggatagtt ctgcacgtca aaacggcgat cttggcgtct accgacacta 1500
ttttcgagct gttcctcctg tagccattat ttccttcgtc acgtcctcct tgtcctacgg 1560
attcctttac agctttccta acatttggtt aaaatggtgg ctattagacg ccgattcaac 1620
cagaccacat catcccaagg ccttttggaa tggtatttat gccatgttcc aaatactagc 1680
tcttctcagc gaactgctga ccatgtatct ggcgctcacc tacttcgctc tgatatctgg 1740
agcaacagtg cactcatcag cattgcgggc catcacacga gcaccactat acttctttgc 1800
cagtgtagac ctgggaacaa tcacgaatta tttctcacag gacatgactc tggtggatgg 1860
cgccctccct gcctcactaa ttcagtttgc tagcgatgta gcagcttctc ttgggatggc 1920
cggtaacctg gcagcgtcat ccccatacct agccgcctcg tatcctctct gctttttctt 1980
actttacttc gtcacaaagt actatttacg gacatctcgt cagcttcgcc tcctggatct 2040
tgaggccaag agtcctcttt agtaggttca tgtttgttgt tgactcatgt cgcacttgat 2100
ctgacttgaa tctcgcagtg cacacttcct cgagttggag aatggaatcg ctactatacg 2160
tgcagctgac tggacaggag aatatctcgt acaaagccgg ctgttgctcg acgtctccca 2220
acgccctgcc tatctcttgg ccatggttca acgctggctt ctatttattc tcaacacatt 2280
tgtttcgtta ctggccctct ttaccgttgc gcttgtcacg cagctcaaca atcacggaac 2340
agggttcgcc ggggcaggct taatatctct aatgcaaatt ggccagtttc tcaccaatgt 2400
cgtgagaagt tatgcgactc tggaagtttc aatgggtgcg gtcagtcgac taaaagctct 2460
gactgaaagc ccacatcgcg agtgtattga gggccaggag gttgtgccac ctcaggaatg 2520
gccttgcaga ggctccatca agattgatgg ggtttctgca tcctacgagt aagtctccca 2580
ccctcttcca agtctggcag tcggtacaat tctcacgccc taaacagcag ccaaaacgat 2640
caagtaaatg aaaagtcctt ttcactcagg gaattgaatc ttcatatcga ggctggtcag 2700
aaagtggcca tatgtggccg tacaggaagg tgtgtataac catcaagata tttacttggc 2760
atgcacaatc ctgtcgataa gaggtcatga actaagcaat cactaacata atgcttctca 2820
tattctagtg ggaaatcttc catcatacta cttcttcttc atatgctcag accgctgcgc 2880
aatactcgag aggatgctat caccatcgat ggcatttcca ttcaaaatgt tgatcccccg 2940
atcttgcgcg agagaatatt cgctgtgcca caagatacaa tattccttcc ccaaggctcg 3000
tcatggctgg agaatatgga gccttttgcg accaatgctg ctgagtgcag gtccgtctta 3060
gaggacgtca atctttggga tgtggttatt gcacaagggg gagatttgac cgcggctctg 3120
gactcagata ctcttagcca aggtcagagg cagctttttg gtctcgctcg tgctgtcttg 3180
agaaagagag caaaggcgca atccatgtca gaaccagcgc cccaaggtgg gcttctccta 3240
ctcgatgagc ctagttctgc tgtcgatttt gagacagaag ggttgatgca cagggttatc 3300
caacgtgagt tctgcgagta cacggtcatc atggttactc acagacttga atttatcact 3360
caaatacaca gcgtagggca ggttagcgta gatacccagc aaggactttt cgaccgggtg 3420
cttgtggttg atgccgggac tatagttgaa gatggccatc cagctcagct tctggaatcg 3480
aaagagggaa aatttagagc actctgggag gcgtcaagag tctaagaatt cgtaatcatg 3540
gtcatagctg 3550

Claims (6)

1. A Fusarium genome large fragment knockout method is characterized by comprising the following steps:
step one, determining a large target segment to be knocked out, and selecting a target site 1 and a target site 2 at two ends of the large segment respectively;
step two, constructing two target site sequences on the same PFC332 carrier framework by a one-step cloning method to obtain a CRISPR carrier for simultaneously expressing two sgRNAs;
respectively selecting sequences without target sites on the left and right sides of the large fragment as homology arms, and constructing the sequences to two sides of the nourseothricin resistance gene to obtain a donor vector;
step four, introducing the CRISPR vector and the donor vector into fusarium through PFG-mediated protoplast transformation;
step five, screening the transformant step by utilizing hygromycin and nourseothricin to preliminarily obtain the transformant and extract genome DNA;
and step six, designing a PCR detection primer, carrying out PCR amplification by using the transformant genome DNA as a template, and screening to obtain a large fragment knockout mutant.
2. The method of claim 1, wherein the knockout of the large fragment of fusarium genome is performed by: the length of the large fragment sequence in the first step is more than 15kb, and the fusarium in the fourth step is fusarium verticillioides but is not limited to the fusarium verticillioides.
3. The method of claim 1, wherein the knockout of the large fragment of fusarium genome is performed by: the CRISPR vector for simultaneously expressing two sgRNAs in the second step is constructed by the following steps
S1, amplifying to obtain sgRNA1-1 and sgRNA1-2 fragments by using a PFC334 carrier as a template and PFC334_ PacI _ F/sgRNA1_ R, sgRNA1_ F/PFC334_ PacI _ R as a primer pair;
s2, performing fusion PCR amplification by using sgRNA1-1 and sgRNA1-2 as templates and PFC334_ PacI _ F/PFC334_ PacI _ R as a primer pair to obtain a sgRNA1 fragment;
s3, performing single enzyme digestion on the PFC332 vector by using a restriction enzyme PacI, and connecting a sgRNA1 fragment to the PacI enzyme digestion site of the PFC332 vector by using a one-step cloning method to obtain a PFC332_ sgRNA1 vector;
s4, amplifying to obtain sgRNA2-1 and sgRNA2-2 fragments by using a PFC334 carrier as a template and PFC334_ MauBI _ F/sgRNA2_ R, sgRNA2_ F/PFC334_ MauBI _ R as a primer pair;
s5, performing fusion PCR amplification by using sgRNA2-1 and sgRNA2-2 as templates and PFC334_ MauBI _ F/PFC334_ MauBI _ R as a primer pair to obtain a sgRNA2 fragment;
s6, a PFC332_ sgRNA1 vector is subjected to single enzyme digestion by a restriction endonuclease MauBI, and a sgRNA2 fragment is connected to a MauBI enzyme digestion site of a PFC332_ sgRNA1 vector in S3 by a one-step cloning method, so that a CRISPR vector PFC332_ sgRNA1+2 capable of expressing sgRNA1 and sgRNA2 simultaneously is obtained.
4. The method of claim 3, wherein the knockout of the large genomic fragment of Fusarium is carried out by: the nucleotide sequences of the primers PFC334_ PacI _ F in S1 and S2 are shown in SEQ ID NO. 1; the nucleotide sequence of the primer PFC334_ PacI _ R is shown in SEQ ID NO. 2; the nucleotide sequence of the primer sgRNA1_ F is shown in SEQ ID NO. 3; the nucleotide sequence of the primer sgRNA1_ R is shown in SEQ ID NO. 4; the sgRNA1-1 has a nucleotide sequence shown in SEQ ID NO. 27; the sgRNA1-2 has a nucleotide sequence shown in SEQ ID NO. 28; the sgRNA1 has the nucleotide sequence shown in SEQ ID NO. 29.
5. The method of claim 3, wherein the knockout of the large fragment of Fusarium genome is carried out by: the nucleotide sequence of the primer PFC334_ MauBI _ F in the steps S4 and S5 is shown as SEQ ID NO. 5; the nucleotide sequence of the primer PFC334_ MauBI _ R is shown in SEQ ID NO. 6; the nucleotide sequence of the primer sgRNA2_ F is shown as SEQ ID NO. 7; the nucleotide sequence of the primer sgRNA2_ R is shown in SEQ ID NO. 8; the sgRNA2-1 has a nucleotide sequence shown as SEQ ID NO. 30; the sgRNA2-2 has a nucleotide sequence shown in SEQ ID NO. 31; the sgRNA2 has the nucleotide sequence shown in SEQ ID NO. 32.
6. Use of the Fusarium genomic large fragment knock-out method of any one of claims 1-5 for large fragment knock-out of genes.
CN202210410044.6A 2022-04-19 2022-04-19 Fusarium genome large fragment knockout method Pending CN114717121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210410044.6A CN114717121A (en) 2022-04-19 2022-04-19 Fusarium genome large fragment knockout method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210410044.6A CN114717121A (en) 2022-04-19 2022-04-19 Fusarium genome large fragment knockout method

Publications (1)

Publication Number Publication Date
CN114717121A true CN114717121A (en) 2022-07-08

Family

ID=82244620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210410044.6A Pending CN114717121A (en) 2022-04-19 2022-04-19 Fusarium genome large fragment knockout method

Country Status (1)

Country Link
CN (1) CN114717121A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893486A (en) * 2018-08-01 2018-11-27 四川省农业科学院经济作物育种栽培研究所 A kind of carrier can be used for filamentous fungi gene knockout and application
CN111057713A (en) * 2019-12-18 2020-04-24 广东省微生物研究所(广东省微生物分析检测中心) CRISPR/Cas9 vector applicable to erwinia bacterium FS110 and construction method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893486A (en) * 2018-08-01 2018-11-27 四川省农业科学院经济作物育种栽培研究所 A kind of carrier can be used for filamentous fungi gene knockout and application
CN111057713A (en) * 2019-12-18 2020-04-24 广东省微生物研究所(广东省微生物分析检测中心) CRISPR/Cas9 vector applicable to erwinia bacterium FS110 and construction method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAFIZ ABDUL HASEEB: ""影响玉米-拟轮枝镰孢菌互作的环境因子以及两者互作中质外体蛋白的分析"", 《中国博士学位论文全文数据库 农业科技辑》, no. 1, pages 60 - 62 *
JENNIFER PETSCHE ET AL.: ""Construction of a target-specifi CRISPR-Cas9 vector for the purpose of introducing mutations into the FUM1 gene of Fusarium verticillioides"", 《UNI SCHOLARWORKS:HONORS PROGRAM THESES》, pages 1 - 24 *
MASSIMO FERRARA ET AL.: ""A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum"", 《SCIENTIFIC REPORTS 》, vol. 9, pages 119 - 132 *

Similar Documents

Publication Publication Date Title
CN107858346B (en) Method for knocking out saccharomyces cerevisiae chromosome
AU2004217613B2 (en) Screening method for genes of brewing yeast
US20170088845A1 (en) Vectors and methods for fungal genome engineering by crispr-cas9
CN110846239B (en) Recombinant yarrowia lipolytica with high homologous recombination efficiency as well as construction method and application thereof
CN111057654B (en) Cas9 gene knockout vector applicable to morinda officinalis endophytic fungus A761 and construction method and application thereof
Chen et al. Characterization of two polyketide synthases involved in sorbicillinoid biosynthesis by Acremonium chrysogenum using the CRISPR/Cas9 system
US9850502B2 (en) Mutant yeast strain with decreased glycerol production
Naumova et al. Molecular polymorphism of β-fructosidase SUC genes in the Saccharomyces yeasts
CN107338256B (en) Method for expressing azotase gene in eukaryotic cell
CN114717121A (en) Fusarium genome large fragment knockout method
CN114540356B (en) Rhodosporidium toruloides promoter and application thereof
CN112553090B (en) Trichoderma reesei engineering bacterium capable of highly yielding sorbiciliniids as well as construction method and application thereof
CN106119137B (en) Method for improving protein secretion capacity of filamentous fungi
CN114085784A (en) Recombinant yeast with high cytochrome P450 expression and application thereof
CN106929495A (en) Improve than alpha amylase BasAmy mutant living and its encoding gene and application
CN113684191A (en) Pear head mould steroid 11 beta-hydroxylase CYP5311B2 mutant construction and application thereof
CN112921041B (en) Hypsizygus marmoreus strong promoter and application thereof
CN113106126B (en) Method and kit for improving protoplast transformation efficiency or gene editing efficiency of fungi
Lou et al. Screening and Functional Verification of Selectable Marker Genes for Cordyceps militaris
CN113621634B (en) Base editing system and base editing method for increasing mutation rate of genome
CN112111415B (en) Method for recycling pyrG screening marker and application
WO2024004983A1 (en) Erythritol utilization-deficient mutant trichoderma spp. and method for producing target substance using same
CN112481235B (en) Application of Trdrs2 protein and related biological material thereof in regulation of protein synthesis and secretion capacity of Trichoderma reesei
Ghadmagahi et al. Agrobacterium tumefaciens-mediated transformation of Trichoderma viridescens
CN117946883A (en) Genetically engineered bacterium for high-throughput genome editing and library construction and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination