CN114713228A - 一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用 - Google Patents

一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用 Download PDF

Info

Publication number
CN114713228A
CN114713228A CN202210502388.XA CN202210502388A CN114713228A CN 114713228 A CN114713228 A CN 114713228A CN 202210502388 A CN202210502388 A CN 202210502388A CN 114713228 A CN114713228 A CN 114713228A
Authority
CN
China
Prior art keywords
cufe
cnts
tio
water
pms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210502388.XA
Other languages
English (en)
Inventor
陈波
冯翔
潘学军
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210502388.XA priority Critical patent/CN114713228A/zh
Publication of CN114713228A publication Critical patent/CN114713228A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/33
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公开了一种新型材料CNTs‑TiO2@CuFe2O4的制备方法及其应用,本发明构建CNTs‑TiO2@CuFe2O4/light/PMS新型高级氧化体系,通过光催化协同活化PMS产生寿命长且氧化性更强的硫酸根自由基和羟基自由基,从而实现抗生素污染物的完全矿化。本发明的材料制备方法简单,氧化体系构建容易,且绿色环保,对处理水中抗生素提供了一个新的指导方向。

Description

一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用
技术领域
本发明属于环境功能纳米材料,具体涉及到一种日光辅助类芬顿活化过硫酸盐的光催化材料CNTs-TiO2@CuFe2O4的制备方法及其应用。
背景技术
环丙沙星 (CIP),作为第三代喹诺酮类抗菌类药物,具有广谱抗菌活性,广泛应用于医疗、畜牧业和水产养殖业。我国作为世界上最大的抗生素生产国和消费国,随着抗生素使用量的增加,抗生素废水的产生和排放量越来越大,且抗生素在环境中很难被生物降解,残留的抗生素会导致“抗性基因”和“超级细菌”的产生,给人类健康和生态环境安全造成极大的威胁。传统的水处理技术对于去除CIP都存在不同程度的弊端,无法满足其深度处理的需求。因此,迫切需开发一种绿色、高效的方法来去除水环境中的抗生素。
最近,基于硫酸根 (SO·- 4) 的高级氧化工艺 (SR-AOPs)已成为处理水中有机污染物的热点。与常规的光催化产生的·OH相比,SO·- 4具有以下优势:SO·- 4的氧化还原电位(E0=2.5-3.1V)强于·OH(E0=1.8-2.7V);活化PMS产生SO·- 4降解污染物受pH影响更小,具有较宽泛的使用范围;SO·- 4在水中的半衰期(30-40 us)远高于·OH(10-3 us),因而,SO·- 4拥有更多的时间接触污染物来使污染物彻底矿化。目前活化过一硫酸盐(PMS)主要方式有:光和热活化法、过渡金属活化法 、非金属活化法等。最近有些研究报道了光催化协同活化PMS降解有机污染物的方案是可行的。
CuFe2O4属于过渡态金属,是一种理想的PMS活化剂,可利用Cu2+和Fe3+与 PMS 之间的氧化还原及电子转移反应活化分解PMS 产生SO·- 4和·OH 以此去氧化分解抗生素有机物。CuFe2O4还具有磁性,利于催化剂在水中的分离回收,减少二次污染,增加催化剂利用率。
TiO2因其具有低成本、安全无毒、光化学稳定性好等优势,是光催化氧化中最常见的半导体光催化剂,但是电子-空穴对表面复合严重,易团聚,回收性差限制了其应用。在过去的几十年里,使用磁性纳米粒子对光催化剂进行磁化已经成为一种方便地分离和重复使用光催化剂的新方法。并且 CuFe2O4 是一种 p-型半导体,可以与n型的TiO2组成 p-n 型异质结光催化剂,显著降低其带隙能,进一步增强可见光响应能力。引入的 CuFe2O4可以解决TiO2基光催化剂回收困难、二次污染以及重复利用性差等问题。
碳纳米管(CNTs)是石墨烯片层卷曲而成,具有巨大的比表面、良好的化学稳定性、优异的导电性等优点,是一种优秀的吸附剂和催化剂载体。将TiO2@ CuFe2O4纳米异质结材料负载到CNTs表面,可以增加催化剂的吸附效果,把污染物吸附到催化剂上集中进行光催化降解。其优异导电性还可以加快催化剂的电子转移,减少电子-空穴复合速率,增加氧化降解有机污染物的效率。因此,制备稳定的CNTs-TiO2@CuFe2O4复合材料,在光助条件下活化PMS,让SO·- 4和·OH原位藕合,以此达到难降解有机污染物的去除。
发明内容
本发明的第一目的在于提供一种简单易行的CNTs-TiO2@CuFe2O4材料制备方法,第二目的在于提供CNTs-TiO2@CuFe2O4材料的应用,第三目的在于提供CNTs-TiO2@CuFe2O4材料的应用方法。在光诱导下活化PMS,构建CNTs-TiO2@CuFe2O4/light/PMS体系后生成SO·- 4和·OH有效处理废水中的有机污染物。该发明所用原料常见易得、工艺操作简单、易于实现工业化生产。
为实现本发明,本发明第一目的采用如下技术方案:
S1、先将Cu( NO3)2·3H2O和Fe( NO3)3·9H2O溶于装有超纯水的烧瓶中,随后60-65℃水浴中搅1-1.5h;在溶液中加入柠檬酸粉末,混合溶液继续在55-65℃水浴中搅拌3-3.5h,得到透明溶胶;
S2、将得到的透明溶胶转入烘箱中干燥得到凝胶; 将凝胶转入马弗炉中焙烧;
S3、把焙烧后的样品研磨并用超纯水漂洗至溶液呈中性,再转入烘箱中干燥即得到纳米颗粒 CuFe2O4
S4、称取CNTs加入水中,超声分散10-15min,加入TiO2并超声处理25-35min;接着加入S3制备的纳米材料CuFe2O4后,再次超声10-15min,然后搅拌2-2.5h。
S5、将得到的样品转入烘箱中干燥待水蒸发后,转入马弗炉中焙烧,即可得到CNTs-TiO2@CuFe2O4材料。
进一步的, S1所述的Cu( NO3)2·3H2O与Fe( NO3)3·9H2O的摩尔比为1:2。
进一步的,S1所述的加入柠檬酸的量与Fe( NO3)3·9H2O的摩尔比为3:1。
进一步的,S2所述的马弗炉焙烧温度为400℃,时间为2h。
进一步的,S4所述的CNTs:TiO2:CuFe2O4的质量比为0.02:0.4:1。
进一步的,S5所述的马弗炉焙烧温度为400℃,时间为2h。
本发明的第二目的是这样实现的,所得CNTs-TiO2@CuFe2O4的应用,所述应用为在光诱导下活化PMS, 并用于水中抗生素有机物的降解。
本发明的第三目的是这样实现的,所得CNTs-TiO2@CuFe2O4的应用方法,具体包括如下步骤:
S1、在待处理废水环丙沙星溶液中加入CNTs-TiO2@CuFe2O4材料形成悬浮物,避光搅拌25-30min,使材料表面对水中污染物达到吸附平衡;
S2、向上述悬浮物中加入PMS后,采用汞灯和290nm滤光片,保留波长290nm以上光源进行照射,照射参数为290nm-750nm,即可;
进一步的,所述待处理废水中的环丙沙星的浓度是20mg/L,体积为100ml。
进一步的,CNTs-TiO2@CuFe2O4材料与模拟废水的比例为1 g/L, PMS的投加量为1mM。
本发明机理及优点简述如下:
当使用光进行照射CNTs-TiO2@CuFe2O4材料时,因其具有光响应,便发生了电子跃迁,产生的电子又与溶液中的水和氧气进一步反应生成·OH和·O2 -,这些电子也可以破坏PMS的O=O起到活化PMS的作用,产生SO·- 4和OH-, CuFe2O4表面变价金属(Cu2+和Fe 3+)催化活化 PMS 分解也会产生SO4 ·-和 ·OH。
本发明涉及到的机理化学式主要有如下:
CNTs-TiO2@CuFe2O4+ hν → e +h +
O2 + e → ·O 2
·O 2 + H + → HO·
H2O + h + → HO·
HSO5 + e →SO4 ·−+ OH
Cu2+ + HSO5 → Cu3+ + SO4 ·−+ OH
Fe3+ + HSO5 → Fe 2+ + SO5 ·−+ H +
Cu3+ + HSO5 → Cu2+ + SO5 ·− + H2O
Fe2+ + HSO5 → Fe3+ + SO4 ·− + OH
Cu3+ +Fe2+ → Cu2+ + Fe3+
SO4 ·− + H2O →HSO5 + HO· + H+
HO· + CIP → 降解产物
SO4 ·− + CIP → 降解产物
本发明的有益效果如下:
1、本发明采用简单易行的超声浸渍法制得可有效活化PMS的CNTs-TiO2@CuFe2O4材料
2、巧妙利用 CuFe2O4的多功能性。既可以活化PMS又参与TiO2@CuFe2O4异质结的形成;同时,CuFe2O4的磁性可实现反应后催化剂的快速磁分离,简化分离过程,避免二次污染。
3、本发明所制备CNTs-TiO2@CuFe2O4材料在日光照射下活化PMS产生了了寿命更长、氧化性更强的SO4 ·−和·OH去降解污染物。
附图说明
图1为本发明制备的CNTs-TiO2@CuFe2O4材料的扫描电镜图;
图2为本发明制备的CNTs-TiO2@CuFe2O4材料的UV-Vis DRS图;
图3为本发明制备的CNTs-TiO2@CuFe2O4材料的磁滞回线;
图4为不同条件下对水中环丙沙星的去除情况对比图;
图5为本发明CNTs-TiO2@CuFe2O4/PMS/light体系,进行的自由基猝灭实验;
图6为本发明CNTs-TiO2@CuFe2O4/PMS/light体系,进行的材料循环实验。
具体实施方式
下面结合实施例对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
实施例1
本实施例使用的CNTs-TiO2@CuFe2O4纳米颗粒是按下述步骤进行的:先将Cu( NO3)2·3H2O和Fe( NO3)3·9H2O溶于装有超纯水的烧瓶中,随后在60 ℃水浴中搅拌1 h;在溶液中加入柠檬酸粉末,混合溶液继续在60 ℃水浴中搅拌3 h。将得到的透明溶胶转入烘箱中干燥数小时得到凝胶; 将凝胶转入马弗炉中焙烧。把焙烧后的样品研磨并用超纯水漂洗多次至溶液呈中性,再转入烘箱中干燥数小时即得到纳米颗粒 CuFe2O4。称取CNTs加入30ml的水中,超声分散10min,加入商品化TiO2并超声处理30min。接着加入上述所制备的CuFe2O4纳米颗粒再次超声10min,然后搅拌2h。最终将得到的样品转入烘箱中干燥数小时待水蒸发后;转入马弗炉焙烧,即可得到CNTs-TiO2@CuFe2O4材料。
如图1所示,所制备材料使用扫描电镜SEM对其形貌进行表征,发现碳纳米管穿梭在TiO2@CuFe2O4颗粒之间,既增加了比表面积,加大材料的吸附性,又为TiO2@CuFe2O4颗粒增加电子转移,减小TiO2@CuFe2O4的电子-空穴复合,进而加强降解污染物的能力。
图2是材料的UV-Vis DRS表征,,由图可知CuFe2O4的引入,大大增强了TiO2材料对可见光的响应, 增加其日光利用率。
此外,CNTs-TiO2@CuFe2O4材料的磁滞回线测试结果如图3所示,CuFe2O4 (Ms =21.58 emu/g) 的铁磁性能优于CNTs-TiO2@CuFe2O4 (Ms =17.02 emu/g) 纳米粒子,因为非磁性TiO2涂层和CNTs的引入降低了CuFe2O4纳米颗粒的磁性,即使材料磁性有所降低,但也具有良好的磁学性能,可通过外加磁铁,将材料从水体中快速分离,提高了催化剂材料的重复利用价值。
本发明实施例分别研究了不同条件下对水中环丙沙星的去除情况对比,最终构成CNTs-TiO2@CuFe2O4/PMS/light体系,具体为:
称取50mg CNTs-TiO2@CuFe2O4催化剂加入到100mL环丙沙星溶液(20 mg/L)中,避光搅拌30min,使环丙沙星在催化剂表面达到吸脱附平衡。加入 1mM PMS后采用汞灯和290nm滤光片,保留波长290nm以上光源进行照射;分别在0min 3min 5min 7min 10min15min 20min 30min取样分析,用紫外-可见分光光度仪在277nm波长下测量环丙沙星的含量。在不同条件下环丙沙星降解的对比情况如图4所示。由图4可知,在模拟日光照射下,CNTs-TiO2@CuFe2O4材料活化PMS的体系在30min时环丙沙星的降解率可达95%以上,说明本发明中的方法表现出对水中有机污染物的高效去除能力。
实施例2
对于实施例1中的CNTs-TiO2@CuFe2O4/PMS/light体系,我们进行了自由基猝灭实验。具体为:
称取50mg CNTs-TiO2@CuFe2O4催化剂加入到100mL环丙沙星溶液(20 mg/L)中里面分别有3M的乙醇,3M的叔丁醇,避光搅拌30min,使环丙沙星在催化剂表面达到吸脱附平衡。加入1mM PMS 后采用汞灯和290nm滤光片,保留波长290nm以上光源进行照射;分别在0min3min 5min 7min 10min 15min 20min 30min取样分析,用紫外-可见分光光度仪在277nm波长下测量环丙沙星的含量。观察在不同条件下环丙沙星降解。
乙醇可以猝灭SO4 ·−和·OH,叔丁醇可以去除体系的·OH,在加入乙醇后,如图5所示,30min环丙沙星的降解从96%降低到了58%;加入叔丁醇,30min环丙沙星的降解从96%降低到了72%,说明在降解体系中SO4 ·−与·OH都起到至关重要的作用。
实施例3
对于实施例1中的CNTs-TiO2@CuFe2O4/PMS/light体系,我们进行了材料循环实验。具体为:
称取50mg CNTs-TiO2@CuFe2O4催化剂加入到100mL环丙沙星溶液(20 mg/L)中里面,避光搅拌30min,使环丙沙星在催化剂表面达到吸脱附平衡。加入 1mM PMS 后采用汞灯和290nm滤光片,保留波长290nm以上光源进行照射;分别在0min 3min 5min 7min 10min15min 20min 30min取样分析,用紫外-可见分光光度仪在277nm波长下测量环丙沙星的含量。观察在不同时间下环丙沙星降解。溶液中的材料使用永磁体进行分离后,用乙醇和水进行清洗脱附,放入烘箱中干燥待用。材料重复使用催化5次性能如图6所示,即使在5次循环之后,在光照射30min对于环丙沙星的降解也能到78%以上。我们所制备的CNTs-TiO2@CuFe2O4材料具有良好的稳定性,可以进行多次循环使用。
本发明制备的催化复合材料CNTs-TiO2@CuFe2O4可广泛应用于环境污染治理和催化等领域。

Claims (10)

1.一种新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于包括如下步骤:
S1、先将Cu( NO3)2·3H2O和Fe( NO3)3·9H2O溶于装有超纯水的烧瓶中,随后在60-65℃水浴中搅1-1.5h;在溶液中加入柠檬酸粉末,混合溶液继续在55-65℃水浴中搅拌3-3.5 h,得到透明溶胶;
S2、将得到的透明溶胶转入烘箱中干燥得到凝胶; 将凝胶转入马弗炉中焙烧;
S3、把焙烧后的样品研磨并用超纯水漂洗至溶液呈中性,再转入烘箱中干燥即得到纳米颗粒 CuFe2O4
S4、称取CNTs加入水中,超声分散10-15min,加入TiO2并超声处理25-35min;接着加入S3制备的纳米材料CuFe2O4后,再次超声10-15min,然后搅拌2-2.5h;
S5、将得到的样品转入烘箱中干燥待水蒸发后,转入马弗炉中焙烧,即可得到CNTs-TiO2@CuFe2O4材料。
2.根据权利要求1所述的新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于S1所述的Cu( NO3)2·3H2O与Fe( NO3)3·9H2O的摩尔比为1:2。
3.根据权利要求1所述的新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于S1所述的加入柠檬酸的量与Fe( NO3)3·9H2O的摩尔比为3:1。
4.根据权利要求1所述的新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于S2所述的马弗炉焙烧温度为400℃,时间为2h。
5.根据权利要求1所述的新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于S4所述的CNTs:TiO2:CuFe2O4的质量比为0.02:0.4:1。
6.根据权利要求1所述的新型材料CNTs-TiO2@CuFe2O4的制备方法,其特征在于S5所述的马弗炉焙烧温度为400℃,时间为2h。
7.一种根据权利要求1-6任一所述的制备方法所得CNTs-TiO2@CuFe2O4的应用,其特征在于所述应用为在光诱导下活化PMS, 并用于水中抗生素有机物的降解。
8.一种根据权利要求1-6任一所述的制备方法所得CNTs-TiO2@CuFe2O4的应用方法,其特征在于具体包括如下步骤:
S1、在待处理废水中加入CNTs-TiO2@CuFe2O4材料形成悬浮物,避光搅拌25-30min,使材料表面对水中污染物达到吸附平衡;
S2、向上述悬浮物中加入PMS后,采用汞灯和290nm滤光片,保留波长290nm以上光源进行照射,照射参数为290nm-750nm,即可。
9.根据权利要求8所述的应用方法,其特征在于:所述待处理废水为环丙沙星溶液,所述环丙沙星的浓度是20mg/L,体积为100ml。
10.根据权利要求8所述的应用方法,其特征在于:CNTs-TiO2@CuFe2O4材料与待处理废水的比例为1g/L, PMS的投加量为1 mM。
CN202210502388.XA 2022-05-10 2022-05-10 一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用 Pending CN114713228A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210502388.XA CN114713228A (zh) 2022-05-10 2022-05-10 一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210502388.XA CN114713228A (zh) 2022-05-10 2022-05-10 一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114713228A true CN114713228A (zh) 2022-07-08

Family

ID=82232153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210502388.XA Pending CN114713228A (zh) 2022-05-10 2022-05-10 一种新型材料CNTs-TiO2@CuFe2O4的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114713228A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030208A (zh) * 2013-01-08 2013-04-10 哈尔滨工业大学 尖晶石铁氧体类催化剂的应用及用于促进过硫酸盐产生自由基催化降解有机物的方法
CN113877581A (zh) * 2021-09-27 2022-01-04 中国地质大学(武汉) 一种铁酸铜尖晶石材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030208A (zh) * 2013-01-08 2013-04-10 哈尔滨工业大学 尖晶石铁氧体类催化剂的应用及用于促进过硫酸盐产生自由基催化降解有机物的方法
CN113877581A (zh) * 2021-09-27 2022-01-04 中国地质大学(武汉) 一种铁酸铜尖晶石材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAFEEZ YUSUF HAFEEZ ET AL.: ""Facile construction of ternary CuFe2O4-TiO2 Nanocomposite Supported Reduced Graphene Oxide (rGO) photocatalysts for the efficient Hydrogen Production"" *

Similar Documents

Publication Publication Date Title
Zhang et al. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts
Shi et al. Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Viet et al. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light
Wu et al. Facile in-situ construction of highly dispersed nano zero-valent iron modified black TiO2 Z-scheme recyclable heterojunction with highly efficient visible-light-driven photocatalytic activity
Wang et al. Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline
He et al. Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P–N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin
Cheng et al. Biochar loaded on MnFe2O4 as Fenton catalyst for Rhodamine B removal: Characterizations, catalytic performance, process optimization and mechanism
Gao et al. Construction of α-Fe2O3 and Fe/Co-N4 structures with faceted TiO2 nanocrystals for highly efficient degradation of sulfathiazole in water
Shokri et al. Photocatalytic degradation of ceftriaxone in aqueous solutions by immobilized TiO2 and ZnO nanoparticles: investigating operational parameters
CN108579786A (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
Zhu et al. 3D hierarchical Fe-doped Bi4O5I2 microflowers as an efficient Fenton photocatalyst for tetracycline degradation over a wide pH range
Cheng et al. Adsorption and photocatalytic degradation process of oxytetracycline using mesoporous Fe-TiO2 based on high-resolution mass spectrometry
Sun et al. High-efficient degradation of oxytetracycline by visible photo-Fenton process using MnFe2O4/g-C3N4: Performance and mechanisms
CN113244962A (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
Tang et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
Wang et al. Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system
Hu et al. Activation of Na2S2O8 by MIL-101 (Fe)/Co3O4 composite for degrading tetracycline with visible light assistance
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
CN105597793B (zh) 一种光催化剂及其制备方法和应用
Meng et al. Rational construction of α-Fe2O3/g-C3N4 heterojunction for effective photo-Fenton-like degradation of tetracycline
Yuan et al. Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101 (Fe) octahedrons
CN104368338A (zh) 一种具有氨基修饰的Pd/TiO2光催化剂的制备方法
Miao et al. Accelerated Fenton degradation of azo dye wastewater via a novel Z-scheme CoFeN-gC 3 N 4 heterojunction photocatalyst with excellent charge transfer under visible light irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination