CN114705831B - Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed - Google Patents
Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed Download PDFInfo
- Publication number
- CN114705831B CN114705831B CN202210284135.XA CN202210284135A CN114705831B CN 114705831 B CN114705831 B CN 114705831B CN 202210284135 A CN202210284135 A CN 202210284135A CN 114705831 B CN114705831 B CN 114705831B
- Authority
- CN
- China
- Prior art keywords
- scheelite
- type
- deposit
- analysis
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 11
- 239000010937 tungsten Substances 0.000 title claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 235000013619 trace mineral Nutrition 0.000 claims abstract description 19
- 239000011573 trace mineral Substances 0.000 claims abstract description 19
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 235000010755 mineral Nutrition 0.000 claims abstract description 10
- 239000011707 mineral Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 10
- 238000005192 partition Methods 0.000 claims abstract description 8
- 239000003822 epoxy resin Substances 0.000 claims abstract description 5
- 238000005498 polishing Methods 0.000 claims abstract description 5
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 5
- 238000000095 laser ablation inductively coupled plasma mass spectrometry Methods 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 12
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 238000000608 laser ablation Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 6
- 230000008025 crystallization Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 238000004949 mass spectrometry Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000012159 carrier gas Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 239000010421 standard material Substances 0.000 claims 1
- 238000000921 elemental analysis Methods 0.000 abstract description 2
- 239000011435 rock Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000013316 zoning Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001350 orogenic effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/626—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明提供了一种精确判别钨多金属矿床类型与剥蚀深度的白钨矿矿物学找矿方法,包括如下步骤:在不同类型的钨矿床中采集白钨矿样品,从样品中分选出白钨矿单颗粒;将白钨矿镶嵌在环氧树脂中,抛光,拍摄CL图像阴极荧光像;对不同CL分区开展LA‑ICP‑MS微量元素分析,并对白钨矿开展溶液法氧同位素分析;通过白钨矿的CL图像与微量元素特征,与数据库进行比对,提取矿床类型与剥蚀深度等信息综合白钨矿的矿物地球化学特征,建立白钨矿类型‑矿床类型‑剥蚀深度综合找矿模型;本发明具有直接获取矿物学信息,消除了元素分析的外界干扰与多解性的优点。
The present invention provides a scheelite mineralogical prospecting method for accurately distinguishing the type of tungsten polymetallic deposit and the denudation depth. Single particle of tungsten ore; embedding scheelite in epoxy resin, polishing, and taking CL images of cathodoluminescent images; carrying out LA-ICP-MS trace element analysis on different CL partitions, and carrying out solution method oxygen isotope analysis on scheelite; By comparing the CL image and trace element characteristics of scheelite with the database, extracting information such as deposit type and denudation depth and integrating the mineral geochemical characteristics of scheelite, establishing a comprehensive prospecting for scheelite type - deposit type - denudation depth Model; the present invention has the advantages of directly obtaining mineralogy information and eliminating external interference and multi-solution of elemental analysis.
Description
技术领域technical field
本发明涉及矿床找矿勘查技术领域,特别涉及一种精确判别钨多金属矿床类型与剥蚀深度的白钨矿矿物学找矿方法。The invention relates to the technical field of mineral deposit prospecting and exploration, in particular to a scheelite mineralogy prospecting method for accurately distinguishing the type of tungsten polymetallic deposit and the denudation depth.
背景技术Background technique
目前矿床找矿勘查首先采用的化探方法,通过岩石地球化学测量、土壤(岩屑、沟系、水化学、深穿透地气等)地球化学测量与水系沉积物测量的方法进行的。这种方法通过成矿有关的元素含量分析,圈定地球化学异常级别与范围,然后开展钻孔验证,但是这种方法需要耗费了大量的人力与资金,并且不能获取直接的矿床信息,例如矿床类型、埋深等,另外化探方法本身也存的多解性与地表污染的干扰性,使得化探方法找矿勘查效果降低。At present, the first method of geochemical prospecting for ore deposit exploration is carried out through rock geochemical measurement, soil (debris, trench system, water chemistry, deep penetrating earth gas, etc.) geochemical measurement and water system sediment measurement. This method delineates the level and scope of geochemical anomalies through the analysis of elemental content related to mineralization, and then conducts drilling verification, but this method consumes a lot of manpower and money, and cannot obtain direct deposit information, such as the type of deposit , buried depth, etc. In addition, the ambiguity of the geochemical prospecting method itself and the interference of surface pollution make the prospecting and exploration effect of the geochemical prospecting method lower.
发明内容Contents of the invention
为了解决现有技术中上述问题,本发明提供了一种精确判别钨多金属矿床类型与剥蚀深度的白钨矿矿物学找矿方法。In order to solve the above-mentioned problems in the prior art, the present invention provides a mineralogical prospecting method for scheelite that accurately distinguishes the type of tungsten polymetallic deposit and the denudation depth.
为了达到上述目的,本发明的实施例提供了一种精确判别钨多金属矿床类型与剥蚀深度的白钨矿矿物学找矿方法,所述方法包括如下步骤:In order to achieve the above purpose, the embodiment of the present invention provides a mineralogy prospecting method for scheelite that accurately distinguishes the type of tungsten-polymetallic deposit and the denudation depth. The method includes the following steps:
S1:在不同类型的钨矿床中采集白钨矿样品,分选出白钨矿单颗粒;S1: Collect scheelite samples from different types of tungsten deposits, and separate scheelite particles;
S2:将获取的白钨矿单颗粒镶嵌在环氧树脂中,抛光,拍摄CL图像阴极荧光像,分析其CL图像特征;S2: Embed the acquired scheelite single particle in epoxy resin, polish it, take a CL image cathodoluminescent image, and analyze its CL image characteristics;
S3:对不同CL分区开展LA-ICP-MS微量元素分析,分析白钨矿的微量元素特征,根据微量元素含量变化、稀土元素分配型式,提取白钨矿结晶生长的环境及剥蚀深度信息;S3: Carry out LA-ICP-MS trace element analysis on different CL partitions, analyze the trace element characteristics of scheelite, and extract the environment and denudation depth information of scheelite crystal growth according to the change of trace element content and the distribution pattern of rare earth elements;
S4:对白钨矿开展溶液法氧同位素分析,获取白钨矿氧同位素含量,与数据库进行比对,提取矿床成因类型与剥蚀深度等信息;S4: Carry out oxygen isotope analysis of scheelite by solution method, obtain the oxygen isotope content of scheelite, compare it with the database, and extract information such as deposit genetic type and denudation depth;
S5:通过对白钨矿的矿物地球化学特征进行研究,探究其结晶时的物理化学特征,获取白钨矿类型-矿床类型-剥蚀深度的综合信息,建立深部综合找矿模型。S5: By studying the mineral geochemical characteristics of scheelite, exploring its physical and chemical characteristics during crystallization, obtaining comprehensive information of scheelite type-ore deposit type-denudation depth, and establishing a deep comprehensive prospecting model.
进一步的,所述步骤S2具体为:将白钨矿镶嵌在环氧树脂中,抛光,抛光后用电子显微镜进行拍摄,获取白钨矿的CL图像,观察白钨矿的CL图像特征,根据其CL图像环带特征,初步判断白钨矿类型。Further, the step S2 specifically includes: embedding scheelite in epoxy resin, polishing, and shooting with an electron microscope after polishing to obtain a CL image of scheelite, and observe the CL image characteristics of scheelite, and according to its CL image ring features, preliminary judgment of scheelite type.
进一步的,所述步骤S3具体为:根据白钨矿的CL图像特征,对不同CL分区用Geolaspro 193nm激光剥蚀系统测定白钨矿颗粒不同分区的微量元素含量(GeolasPro激光剥蚀系统由COMPexPro 102ArF 193nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e),对分析数据进行离线处理,激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置,激光束斑和频率分别为35μm和10Hz,单矿物微量元素含量处理中采用玻璃标准物质BHVO-2G,BCR-2G和BIR-1G进行多外标无内标校正,每个时间分辨分析数据包括大约20-30s空白信号和50s样品信号,获得白钨矿不同区域各种微量元素的含量;所述微量元素包括:23Na、29Si、49Ti、57Fe、65Cu、66Zn、75As、85Rb、88Sr、89Y、91Zr、93Nb、98Mo、118Sn、137Ba、139La、140Ce、141Pr、143Nd、147Sm、153Eu、157Gd、159Tb、163Dy、165Ho、167Er、169Tm、171Yb、175Lu、178Hf、181Ta、182W、202Hg、Pb、232Th、238U。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算)采用软件ICPMSDataCal完成。Further, the step S3 is specifically: according to the CL image characteristics of scheelite, use Geolaspro 193nm laser ablation system for different CL partitions to measure the content of trace elements in different partitions of scheelite particles (GeolasPro laser ablation system is controlled by COMPexPro 102ArF 193nm Composed of a molecular laser and a MicroLas optical system, the ICP-MS model is Agilent 7700e), and the analysis data is processed offline. During the laser ablation process, helium is used as the carrier gas, and argon is used as the compensation gas to adjust the sensitivity. Before entering the ICP Mixed through a T-joint, the laser ablation system is equipped with a signal smoothing device, the laser beam spot and frequency are 35μm and 10Hz, and the single mineral trace element content treatment is carried out with glass standard substances BHVO-2G, BCR-2G and BIR-1G Multiple external standards without internal standard correction, each time-resolved analysis data includes about 20-30s blank signal and 50s sample signal, to obtain the content of various trace elements in different regions of scheelite; the trace elements include: 23 Na, 29 Si , 49 Ti, 57 Fe, 65 Cu, 66 Zn, 75 As, 85 Rb, 88 Sr, 89 Y, 91 Zr, 93 Nb, 98 Mo, 118 Sn, 137 Ba, 139 La, 140 Ce, 141 Pr , 143 Nd, 147 Sm, 153 Eu, 157 Gd, 159 Tb, 163 Dy, 165 Ho , 167 Er, 169 Tm, 171 Yb , 175 Lu, 178 Hf, 181 Ta, 182 W, 202 Hg, Pb, 232 Th, 238 U. The off-line processing of analytical data (including the selection of samples and blank signals, instrument sensitivity drift correction and element content calculation) is completed by software ICPMSDataCal.
进一步的,所述步骤S4具体为:白钨矿的O同位素分析使用溶液法氧同位素分析法,包裹体中的H2O与BrF5在300℃的恒温下反应20分钟,以产生通过冷冻纯化的O2;在Pb催化剂条件下,氧气在700℃下与石墨反应生成CO2,并通过MAT253气体同位素质谱仪分析氧同位素组成;测量结果基于SMOW,记录为δ18OV-SMOW,分析准确度优于±0.2‰,氧同位素参考标准为GBW-04409和GBW-04410石英标准,δ18OH2O值分别为11.11±0.06‰和-1.75±0.08‰;分离纯O2,并通过O2与碳棒反应产生CO2气体,对收集的CO2气体进行质谱测试,单项试验的准确度为0.05‰。Further, the step S4 is specifically: the O isotope analysis of scheelite uses the solution oxygen isotope analysis method, and the H 2 O in the inclusions reacts with BrF 5 at a constant temperature of 300°C for 20 minutes to produce O 2 ; under the condition of Pb catalyst, oxygen reacts with graphite at 700°C to generate CO 2 , and the oxygen isotope composition is analyzed by MAT253 gas isotope mass spectrometer; the measurement result is based on SMOW, recorded as δ 18 OV-SMOW, the analysis accuracy Better than ±0.2‰, oxygen isotope reference standards are GBW-04409 and GBW-04410 quartz standards, δ 18 OH 2 O values are 11.11±0.06‰ and -1.75±0.08‰ respectively; pure O 2 is separated and separated by O 2 and The carbon rod reacts to produce CO 2 gas, mass spectrometry is performed on the collected CO 2 gas, and the accuracy of a single test is 0.05‰.
进一步的,所述步骤S5具体为:通过对白钨矿的矿物地球化学特征进行研究,根据其阴极发光、稀土元素及氧同位素特征,获取其结晶时的物理化学环境信息,探明所选样品中白钨矿类型-矿床类型-剥蚀深度的综合特征,建立深部综合找矿模型。白钨矿是一种重矿物,耐风化,广泛发育在岩浆热液成因的钨矿床中,从样品中能够直接分选出白钨矿单颗粒,白钨矿的矿物地球化学特征能够较好的反应矿床特征:(1)白钨矿的CL图像能够反映白钨矿的生长结晶时的环境特征;(2)白钨矿的微量元素特征能够较好的反应其结晶时的环境、距离岩体的远近等信息;(3)白钨矿的O同位素特征,能够精确的反演矿床类型及白钨矿形成时的剥蚀深度等特征。Further, the step S5 is specifically as follows: by studying the mineral geochemical characteristics of scheelite, according to its cathodoluminescence, rare earth elements and oxygen isotope characteristics, obtaining the physical and chemical environment information when it crystallized, and proving that in the selected sample Based on the comprehensive characteristics of scheelite type-ore deposit type-denudation depth, a deep comprehensive prospecting model is established. Scheelite is a heavy mineral, resistant to weathering, widely developed in tungsten deposits of magmatic hydrothermal origin, single particles of scheelite can be directly separated from samples, and the mineral geochemical characteristics of scheelite can be better Response to ore deposit characteristics: (1) CL images of scheelite can reflect the environmental characteristics of scheelite growth and crystallization; (2) trace element characteristics of scheelite can better reflect its crystallization environment, distance from rock mass (3) The O isotopic characteristics of scheelite can accurately invert the characteristics of deposit type and denudation depth when scheelite was formed.
本发明的上述方案有如下的有益效果:Said scheme of the present invention has following beneficial effect:
1)本发明的上述方案所述方法可直接获取矿物学信息,消除了元素分析的外界干扰与多解性;1) The method described in the above scheme of the present invention can directly obtain mineralogy information, eliminating external interference and multi-solution of elemental analysis;
2)本发明采用化学元素特征对(Y/Ho比值,Eu特征)与稀土配分型式,δ18O值可以定量反应白钨矿结晶环境及深度等信息;2) The present invention adopts chemical element feature pair (Y/Ho ratio, Eu feature) and rare earth distribution type, and the δ 18 O value can quantitatively reflect information such as scheelite crystallization environment and depth;
3)通过白钨矿的矿物地球化学特征直接反演矿床的类型及剥蚀深度等信息,消除其他因素的干扰。3) Through the mineral geochemical characteristics of scheelite, the information such as the type of deposit and the denudation depth can be directly inverted, and the interference of other factors can be eliminated.
附图说明Description of drawings
图1是本发明实施例中不同类型白钨矿的CL图像;Fig. 1 is the CL image of different types of scheelite in the embodiment of the present invention;
图2是本发明实施例中距离岩体不同距离白钨矿的稀土配分型式图;Fig. 2 is the rare earth distribution type diagram of different distances from the rock mass of scheelite in the embodiment of the present invention;
图3是本发明实施例中不同剥蚀深度的白钨矿的稀土元素含量差异图;Fig. 3 is a difference diagram of rare earth element content of scheelite with different denudation depths in the embodiment of the present invention;
图4是本发明实施例中不同类型白钨矿的O同位素特征图。Fig. 4 is a characteristic map of O isotopes of different types of scheelite in the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围;除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。Unless otherwise defined, all technical terms used hereinafter have the same meanings as commonly understood by those skilled in the art. The terminology used herein is only for the purpose of describing specific embodiments, and is not intended to limit the protection scope of the present invention; Unless otherwise specified, various raw materials, reagents, instruments and equipment used in the present invention are all It can be purchased from the market or prepared by existing methods.
本发明针对现有的问题,提供了一种精确判别钨多金属矿床类型与剥蚀深度的白钨矿矿物学找矿方法。Aiming at the existing problems, the present invention provides a mineralogical prospecting method for scheelite that accurately distinguishes the type of tungsten polymetallic deposit and the denudation depth.
本发明实施例所采集的样品主要来源于南岭地区不同类型、成因的钨多金属矿床中,主要为柿竹园、瑶岗仙、魏家、湘西等钨多金属矿床中。The samples collected in the embodiment of the present invention are mainly from tungsten-polymetallic deposits of different types and origins in the Nanling area, mainly tungsten-polymetallic deposits in Shizhuyuan, Yaogangxian, Weijia, and Xiangxi.
实施例1Example 1
S2:将白钨矿镶嵌在环氧树脂中,抛光,抛光后使用Tescan MIRA 3场发射扫描电子显微镜(SEM)(配备Delmic sparc阴极荧光探头。工作电压为0.5-30kV,灯丝发射电流为72μA。能谱分析测试条件加速电压一般为20-30KV,工作距离9.5-10.5mm)进行拍摄,获取白钨矿的CL图像(如图1)。同一颗粒不同区域的微量元素含量导致其阴极发光特征具有显著的差异,通过阴极发光(CL)揭示出显微结构可以揭示矿物质的生长历史并反映结晶环境(图1)。总结前人研究,不同类型钨矿床中的白钨矿CL图像显示了不同的特征:矽卡岩型矿床中白钨矿CL图像一般发育明显的扇形分区(如图1a),斑岩型矿床中的白钨矿的CL图像常显示震荡环带(如图1b),与岩浆热液有关石英脉型白钨矿常常呈现变化的CL发光反应,但无明显的规律特征,常可见较为均一的CL图像特征(如图1c),,云英岩型白钨矿的CL图像可见明显的环带及分区特征(如图1d),角砾岩型白钨矿的CL图像可见明显的分带特征(如图1e),通过白钨矿的CL图像特征,能够较为清楚的判断白钨矿所对应的矿床的类型。S2: Embed scheelite in epoxy resin, polish, and use Tescan MIRA 3 field emission scanning electron microscope (SEM) after polishing (equipped with Delmic sparc cathodoluminescence probe. The working voltage is 0.5-30kV, and the filament emission current is 72μA. Energy Spectrum Analysis Test Conditions The acceleration voltage is generally 20-30KV, and the working distance is 9.5-10.5mm) to obtain the CL image of scheelite (as shown in Figure 1). The trace element content in different regions of the same particle leads to significant differences in its CL characteristics, and the microstructure revealed by CL can reveal the growth history of minerals and reflect the crystallization environment (Fig. 1). Summarizing previous studies, the CL images of scheelite in different types of tungsten deposits show different characteristics: in skarn deposits, the CL images of scheelite generally develop obvious fan-shaped partitions (as shown in Figure 1a), in porphyry deposits The CL images of scheelite often show oscillation rings (as shown in Figure 1b). Quartz vein-type scheelites often show changing CL luminescence reactions related to magmatic hydrothermal fluids, but there is no obvious regular feature, and relatively uniform CL can often be seen. Image features (as shown in Figure 1c), the CL image of greisenite-type scheelite shows obvious zoning and zoning features (as shown in Figure 1d), and the CL image of breccia-type scheelite shows obvious zoning features ( As shown in Figure 1e), the type of deposit corresponding to scheelite can be clearly judged through the CL image features of scheelite.
实施例2Example 2
S2与实施例2步骤相同,此处具体阐述S3:根据白钨矿的CL图像特征,对不同CL分区使用Geolaspro 193nm激光剥蚀系统测定白钨矿颗粒不同分区的微量元素含量(激光束斑和频率分别为35μm和10Hz),采用软件ICPMSDataCal软件对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算),获得白钨矿不同区域各种微量元素的含量。白钨矿的稀土配分型式对于判断白钨矿的类型及特征具有重要的参考意义,距离岩体不同距离,白钨矿的稀土配分型式可见明显的差异,(如图2),通过稀土配分型式的差异,能够较好的判断白钨矿结晶时距离岩体的距离,对于指示矿床的位置与深度具有重要的参考价值;同时,白钨矿的稀土元素含量也能够较好的指示其与岩体的距离,在同一矿床中,距离岩体的位置越远,白钨矿的稀土元素含量可见明显的降低(如图3),且两者之间可见满足明显的线性关系,线性关系为Y=-4.9598x+1777.5(R2=0.7548),根据线性关系,可以通过测得的白钨矿的稀土元素含量,反演白钨矿颗粒与岩体之间的距离,综合白钨矿的稀土元素含量与稀土配分型式,对于判断白钨矿类型、矿床类型及矿床剥蚀深度具有重要的指示意义。S2 is the same as in Example 2, and S3 is specifically described here: according to the CL image characteristics of scheelite, the Geolaspro 193nm laser ablation system is used to measure the trace element content (laser beam spot and frequency) of scheelite particles in different CL subregions. 35 μm and 10 Hz respectively), using the software ICPMSDataCal software to process the analytical data offline (including the selection of samples and blank signals, instrument sensitivity drift correction, and element content calculation), to obtain the contents of various trace elements in different regions of scheelite. The rare earth distribution pattern of scheelite has important reference significance for judging the type and characteristics of scheelite. There are obvious differences in the rare earth distribution pattern of scheelite at different distances from the rock mass (as shown in Figure 2). The difference between the scheelite and the rock mass can be better judged, which has important reference value for indicating the position and depth of the deposit; at the same time, the rare earth element content of the scheelite can also better indicate its relationship with the rock mass. In the same ore deposit, the farther away from the rock mass, the rare earth element content of scheelite can be significantly reduced (as shown in Figure 3), and there is an obvious linear relationship between the two, and the linear relationship is Y =-4.9598x+1777.5 (R 2 =0.7548), according to the linear relationship, the distance between scheelite particles and rock mass can be inverted through the measured rare earth element content of scheelite, and the rare earth content of scheelite can be integrated The content of elements and the distribution pattern of rare earths have important indicating significance for judging the type of scheelite, the type of deposit and the depth of denudation of the deposit.
实施例3Example 3
S2-S3与实施例2步骤相同,此处具体阐述S4:S2-S3 is the same as
S4:白钨矿的O同位素分析使用溶液法氧同位素分析法,在Thermo-FinniganDeltaPlus XP Isotope-Ratio Mass Spectrometer(IRMS)仪器上进行,包裹体中的H2O与BrF5在300℃的恒温下反应20分钟,以产生通过冷冻纯化的O2。在Pb催化剂条件下,氧气在700℃下与石墨反应生成CO2,并通过MAT253气体同位素质谱仪分析氧同位素组成。测量结果基于SMOW,记录为δ18OV-SMOW,分析准确度优于±0.2‰。氧同位素参考标准为GBW-04409和GBW-04410石英标准,δ18OH2O值分别为11.11±0.06‰和-1.75±0.08‰。分离纯O2,并通过O2与碳棒反应产生CO2气体。对收集的CO2气体进行质谱测试。单项试验的准确度为0.05‰。不同类型白钨矿的O同位素可见明显的差异(图4),斑岩型白钨矿的O同位素值及温度无明显的变化,均集中变质岩区域;矽卡岩型白钨矿的O同位素值无明显的变化,温度可见明显的变化,在岩浆岩、变质岩、大气水区域均可见;云英岩型白钨矿的O同位素值可见明显的差异,主要位于变质岩及大气水区域,温度的值未见明显的变化,与热液有关石英脉型白钨矿的O同位素值及温度均可见明显的变化,但集中集中在较小的范围内,主要位于岩浆岩及大气水区域;造山角砾岩型白钨矿的氧同位素值以及温度均可见明显的变化,变化较为连续,主要集中于变质岩及大气水区域,总体上O同位素值与温度之间显示正相关的关系(如图4)通多白钨矿的O同位素含量与温度的关系图解,能够较好的获取白钨矿的类型等信息,同时,白钨矿的O同位素对于判断形成白钨矿的流体来源具有重要的意义,根据其流体来源特征,能够较好的判断白钨矿的类型及环境特征,能够很好的指示矿床的剥蚀深度。S4: The O isotope analysis of scheelite uses the solution method of oxygen isotope analysis on a Thermo-FinniganDeltaPlus XP Isotope-Ratio Mass Spectrometer (IRMS) instrument, and the H 2 O and BrF 5 in the inclusions are kept at a constant temperature of 300°C React for 20 minutes to generate O2 purified by freezing. Under the condition of Pb catalyst, oxygen reacted with graphite at 700℃ to generate CO 2 , and the oxygen isotope composition was analyzed by MAT253 gas isotope mass spectrometer. The measurement results are based on SMOW, recorded as δ18OV-SMOW, and the analysis accuracy is better than ±0.2‰. The oxygen isotope reference standards are GBW-04409 and GBW-04410 quartz standards, and the values of δ18OH 2 O are 11.11±0.06‰ and -1.75±0.08‰, respectively. Pure O 2 is separated, and CO 2 gas is produced by reacting O 2 with carbon rods. Mass spectrometry was performed on the collected CO2 gas. The accuracy of single test is 0.05‰. The O isotopes of different types of scheelites have obvious differences (Figure 4). The O isotopes and temperature of porphyry-type scheelites have no obvious changes, and they are all concentrated in metamorphic rock areas; the O isotopes of skarn-type scheelites There is no obvious change in the value, but obvious changes can be seen in the temperature, which can be seen in the magmatic rock, metamorphic rock and atmospheric water area; the O isotope value of greisen type scheelite has obvious difference, mainly located in the metamorphic rock and atmospheric water area. There is no obvious change in the value of temperature, and the O isotope value and temperature of quartz vein type scheelite related to hydrothermal fluids have obvious changes, but they are concentrated in a small range, mainly in magmatic rocks and atmospheric water areas; Oxygen isotope values and temperature of orogenic breccia-type scheelite deposits have obvious changes, and the changes are relatively continuous, mainly concentrated in metamorphic rocks and atmospheric water areas. Generally, there is a positive correlation between O isotope values and temperature (such as Figure 4) Diagram of the relationship between O isotope content and temperature of Tongduo scheelite, which can better obtain information such as the type of scheelite. At the same time, the O isotope of scheelite is important for judging the source of fluid that forms scheelite According to the characteristics of its fluid source, the type and environmental characteristics of scheelite can be better judged, and the denudation depth of the deposit can be well indicated.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210284135.XA CN114705831B (en) | 2022-03-22 | 2022-03-22 | Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210284135.XA CN114705831B (en) | 2022-03-22 | 2022-03-22 | Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114705831A CN114705831A (en) | 2022-07-05 |
CN114705831B true CN114705831B (en) | 2023-04-18 |
Family
ID=82168869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210284135.XA Active CN114705831B (en) | 2022-03-22 | 2022-03-22 | Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114705831B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115148299B (en) * | 2022-07-15 | 2024-09-06 | 中国地质大学(北京) | A method and system for identifying mineral deposit types based on XGBoost |
CN115375680B (en) * | 2022-10-24 | 2023-02-03 | 中国煤炭地质总局勘查研究总院 | Mineral intelligent identification method, device and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103723749A (en) * | 2013-12-26 | 2014-04-16 | 深圳大学 | Ternary inorganic compound |
EP2944930A2 (en) * | 2014-05-16 | 2015-11-18 | Cubert GmbH | Hyperspectral camera with spatial and spectral resolution and method |
CN107632035A (en) * | 2017-09-11 | 2018-01-26 | 中国地质大学(武汉) | Method of discrimination based on the BIFhosted gold deposit oxidation-reduction quality of scheelite cathodoluminescence feature in Quartz Vein Type mineral deposit |
RU2651353C1 (en) * | 2017-05-17 | 2018-04-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) | Geochemical method for mineral deposit field search |
CN111505005A (en) * | 2020-04-25 | 2020-08-07 | 中南大学 | Mineral exploration method for rapidly judging mineral potential of vein-like mineral deposit by using zircon |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111189785A (en) * | 2020-01-10 | 2020-05-22 | 云南大学 | Ore finding method for Carlin type gold deposit |
CN111398571B (en) * | 2020-05-19 | 2021-04-20 | 中南大学 | A mineral exploration method for quickly judging the metallogenic potential of skarn deposits by using zircon |
-
2022
- 2022-03-22 CN CN202210284135.XA patent/CN114705831B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103723749A (en) * | 2013-12-26 | 2014-04-16 | 深圳大学 | Ternary inorganic compound |
EP2944930A2 (en) * | 2014-05-16 | 2015-11-18 | Cubert GmbH | Hyperspectral camera with spatial and spectral resolution and method |
RU2651353C1 (en) * | 2017-05-17 | 2018-04-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) | Geochemical method for mineral deposit field search |
CN107632035A (en) * | 2017-09-11 | 2018-01-26 | 中国地质大学(武汉) | Method of discrimination based on the BIFhosted gold deposit oxidation-reduction quality of scheelite cathodoluminescence feature in Quartz Vein Type mineral deposit |
CN111505005A (en) * | 2020-04-25 | 2020-08-07 | 中南大学 | Mineral exploration method for rapidly judging mineral potential of vein-like mineral deposit by using zircon |
Non-Patent Citations (4)
Title |
---|
Jiangkeng Zhang等.Resarch and realiztion of mineral resources and reserves dynamic calculation module based on mapgis.《Applied mechanics and maternals》.2013,第 602-607页. * |
梁硬干.用矿物中杂质元素的比值判断剥蚀深度.《地质与勘探》.1977,第5页. * |
闫巧娟 ; 魏小燕 ; 叶美芳 ; 赵慧博 ; 周宁超 ; .激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分.岩矿测试.2020,(第06期),第124-126页. * |
马传明等.《同位素水文学新科技新方法》.2010,第36-38页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114705831A (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chapman et al. | Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies | |
CN114705831B (en) | Scheelite mineralogy prospecting method for accurately judging type and denudation depth of tungsten polymetallic ore bed | |
US20130037707A1 (en) | Measurement of isotope ratios in complex matrices | |
CN115078520B (en) | Mineral geochemistry-based method for evaluating mineral content of porphyry system | |
CN110530960B (en) | Chronology method for pyrite rubidium-strontium isotope in carbonate rock oil and gas reservoir | |
Pollington et al. | Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250° C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths | |
CN114646682B (en) | A prospecting method based on epidote trace elements | |
CN111983189A (en) | A method to quantitatively analyze the coupling mechanism of ultra-deep gypsum-salt rock and dolomite | |
CN115684550B (en) | A method for quickly delineating porphyry deposit ore bodies using trace element content of chlorite | |
CN116297798B (en) | A method for efficiently judging the mineralization prospects of ore-bearing porphyry using the accessory mineral tourmaline | |
Baele et al. | Cathodoluminescence applied to ore geology and exploration | |
CN114720547A (en) | Method for rapidly delineating low-temperature hydrothermal type Ag-Au deposit hydrothermal mineralization center | |
Castillo-Oliver et al. | New constraints on the source, composition, and post-emplacement modification of kimberlites from in situ C–O–Sr-isotope analyses of carbonates from the Benfontein sills (South Africa) | |
Maltsev et al. | New prospects to the multi-elemental analysis of single microcrystal of apatite by total-reflection X-ray fluorescence spectrometry | |
CN114577833B (en) | Method for rapidly and quantitatively analyzing clay minerals in glutenite detritus matrix and application | |
Pasteris et al. | Applications of the laser Raman microprobe RAMANOR U-1000 to hydrothermal ore deposits; Carlin as an example | |
Halicz et al. | Direct REE determination in fresh waters using ultrasonic nebulization ICP-MS | |
CN112763568B (en) | Rapid estimation method for zircon uranium contribution rate in invasive rock type uranium deposit | |
CN111458363A (en) | A method for rapid delineation of titanium deposits based on a handheld X-ray fluorescence analyzer | |
CN115856064A (en) | Method for rapidly judging tin deposit type by using cassiterite | |
CN114720235A (en) | A method for reconstruction of paleo-seawater properties based on carbonate fabric and geochemical analysis | |
CN118817755B (en) | Antimony ore mineralization potential discriminating method based on quartz | |
CN120102674A (en) | A calcite deposit prospecting prediction method and system based on dolomite geochemical analysis | |
CN117491296B (en) | Method for evaluating rare earth ore-forming potential in carbonate rock | |
CN115963553A (en) | Method for determining origin of siliceous filling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |