CN114700096B - 一种Mo@Mo2C纳米复合材料的合成方法 - Google Patents

一种Mo@Mo2C纳米复合材料的合成方法 Download PDF

Info

Publication number
CN114700096B
CN114700096B CN202210390801.8A CN202210390801A CN114700096B CN 114700096 B CN114700096 B CN 114700096B CN 202210390801 A CN202210390801 A CN 202210390801A CN 114700096 B CN114700096 B CN 114700096B
Authority
CN
China
Prior art keywords
composite material
composite
salt
use according
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210390801.8A
Other languages
English (en)
Other versions
CN114700096A (zh
Inventor
乔秀清
王紫昭
李晨
侯东芳
李东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202210390801.8A priority Critical patent/CN114700096B/zh
Publication of CN114700096A publication Critical patent/CN114700096A/zh
Application granted granted Critical
Publication of CN114700096B publication Critical patent/CN114700096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Mo@Mo2C纳米复合材料的合成方法,属于纳米材料制备领域。本发明采用一步合成法,将无机Mo盐及有机碳源球磨混合,通过调节两者的比例,在特定的梯度下高温热解还原得到Mo@Mo2C复合材料。本发明采用一步合成法制备Mo@Mo2C复合材料,比现有的水热法及高温熔炼法工艺简单、经济环保,适用于批量生产。同时,制备的Mo@Mo2C复合材料具有较好的分散性及较大的比表面积,在催化领域具有很好的应用前景。

Description

一种Mo@Mo2C纳米复合材料的合成方法
技术领域
本发明涉及一种Mo@Mo2C复合纳米材料制备方法及其应用,属于纳米材料制备领域。
背景技术
碳化钼是C原子掺入金属Mo的晶格后形成的一种间隙型合金化合物,C原子的掺入使得母体金属Mo的原子晶格扩展,d带收缩,费米能级态密度升高,从而使其具有类VIII族贵金属的特性。目前,碳化钼材料在电催化析氢、催化加氢脱氢、电池及超级电容器等领域均表现出类接近于贵金属材料,甚至优于贵金属材料的性能。此外,碳化钼具有稳定性好、成本低,抗中毒等能力,在催化领域具有巨大的应用前景。
目前,碳化钼的合成方法主要有程序升温还原法、碳热氢还原法、单源前驱体法、化学气相沉积法等方法。这些方法制备碳化钼工艺流程比较复杂、生产成本高,且大部分都会用到易燃易爆的还原性气体,得到的碳化钼的组成、结构受合成路线的影响较大。因此,寻找简单的、容易控制的Mo2C合成方法对于促进Mo2C纳米的应用是非常有必要的。
碳化钼作为催化活性材料的报道目前已有数十篇,但其作为活性载体的报道却较少。如Fabio研究团队采用原位浸渍法制备了不同金属(Pt、Au、Pd、Ni、Cu、Ag)改性的碳化钼催化剂,利用响应金属盐的硝酸盐溶液逐滴加入到含有碳化钼的水溶液中,然后将得到的混合溶液干燥过夜,得到的粉体在H2气氛下还原450℃还原3h并钝化得到最终的复合材料。很明显,该方法只能用于易被还原的可溶性硝酸盐金属,而对难溶金属盐、难还原金属不适用。且该方法制备的第二相金属与碳化钼载体之间的结合力较弱,不利于催化反应材料的稳定性。
发明内容
针对现有技术的不足,本发明的目的在于提供一种Mo@Mo2C复合纳米材料制备方法,通过简单的一步反应法,无需任何添加剂及多余工艺,即可实现Mo金属原位负载在Mo2C载体的复合纳米材料的制备。
本发明制备的Mo@Mo2C复合纳米材料中Mo金属由Mo2C原位生成,两者之间具有较强的界面接触。Mo金属纳米颗粒均匀分散在Mo2C表面,二者的相对含量可以通过改变盐与有机碳源的比例进行控制。
一种Mo@Mo2C复合纳米材料的制备方法采用的是一步合成法,包含以下步骤:
将一定量的无机Mo盐与有机碳源按照比例球磨混合均匀,然后将得到的混合物在惰性气氛中进行梯度高温热解还原反应,得到Mo@Mo2C复合材料。
如上所述的方法,优选地,所述有机碳源主要是柠檬酸,葡萄糖、双氰胺、三聚氰胺中的任意一种或者多种组合。
优选地,所述无机Mo盐主要是钼酸铵及钼酸钠中的任意一种。
优选地,无机Mo盐与有机碳源的质量比为1:1~1:2。
优选地,惰性气氛为氩气。
优选地,所述球磨混合的条件是:球料质量比为10~300∶1;球磨转速为200~800rpm;球磨时间为1~5h。
优选地,梯度高温热解还原反应步骤为:先在低温下预分解混合粉体,然后在高温下进行热分解还原反应。低温温度为150℃~200℃,保温时间为1~2h,高温温度为700℃~900℃,反应时间为1~4h。
本发明制备的高熔点金属-碳化物-氧化物复合纳米材料,与现有的技术相比有益效果是:
得到的Mo@Mo2C复合纳米材料具有紧密接触的界面结构,颗粒尺寸细小、分布均匀。采用的工艺流程简单、成本低、设备要求低、易于实现产业化。本发明得到的纳米颗粒活性位点多、界面接触强,用于催化、超级电容器、锂离子电池等领域均具有较大的优势。
附图说明
图1为实施例2制得的Mo@Mo2C复合纳米材料的XRD图谱。
图2为实施例2制得的Mo@Mo2C复合纳米材料的扫描电镜图片。
图3为实施例2制得的Mo@Mo2C-ZnIn2S4复合纳米材料的SEM图。
图4为实施例2制得的Mo@Mo2C-ZnIn2S4复合纳米材料(MMZ-x)的光催化分解水产氢图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
称取1g的钼酸铵与0.5g的柠檬酸放入球磨机中,然后加入250g的磨球,密封后分别在200 rpm,400 rpm,600 rpm,800 rpm及1000 rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体先在Ar气氛下175℃温度下保温1h,然后加热到800℃保温2h,得到Mo@Mo2C复合纳米材料,命名分别为Mo@Mo2C-2、Mo@Mo2C-4、Mo@Mo2C-6、Mo@Mo2C-8、Mo@Mo2C-10。
将16.2 mmol的硝酸镉,48.6 mmol的硫脲溶于80 ml的乙二胺中,搅拌得到清澈的浅绿色溶液。然后将溶液置于50ml的聚四氟乙烯的内衬中,密封,160℃烘箱中加热24 h,自然冷却后离心、去离子水冲洗,80℃真空烘箱中干燥12 h。最后,收集得到亮黄色的CdS光催化材料。
取80 mg的制备好的CdS光催化材料,然后与20 mg的上述不同球磨转速下制备的Mo@Mo2C复合纳米材料(分别为Mo@Mo2C-2、Mo@Mo2C-4、Mo@Mo2C-6、Mo@Mo2C-8、Mo@Mo2C-10)在40 ml的甲醇溶液中超声30 min得到复合光催化材料。取20 mg的复合好的材料置于反应容器中,反应容器中加入8 ml的乳酸及80 ml的水溶液,在配备了420 nm滤光片的氙灯光源下进行光催化产氢测试。200 rpm,400 rpm,600 rpm,800 rpm及1000 rpm的转速下制备的Mo@Mo2C修饰CdS光催化复合材料的光催化产氢活性分别为4.3 mmol·h−1g−1,5.6 mmol·h−1g−1,15.7 mmol·h−1g−1,10.7 mmol·h−1g−1及8.6 mmol·h−1g−1,纯的CdS的产氢活性仅仅为3.5 mmol·h−1g−1
实施例2
称取1g的钼酸铵与1g的柠檬酸放入球磨机中,然后加入500g的磨球,密封后在600rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体先在Ar气氛下175℃温度下保温1h,然后加热到800℃保温2h,得到Mo@Mo2C复合纳米材料。Mo@Mo2C复合纳米材料的XRD衍射图(图1)证实了制备的复合纳米材料中含有金属Mo及Mo2C两种材料。扫描电镜如图2 所示,从图可以看出,复合材料为纳米级。
取2 ml的0.5 mol/L的 ZnCl2溶液,4 ml的0.5 mol/L的 InCl3溶液混合加入14ml的乙醇溶液中,搅拌加入0.3g的硫代乙酰胺,然后将混合溶液置于反应釜中在120 °C反应12h.最后得到淡黄色的ZnIn2S4催化材料。
取80 mg的ZnIn2S4光催化材料与一定量的Mo@Mo2C复合纳米材料超声分散在40 ml的甲醇溶液中,超声30 min得到复合材料。Mo@Mo2C复合纳米材料的质量百分数分别为10%,15%,20%和25%,记为MMZ-x(x=0.1,0.15,0.2和0.25)。复合材料MMZ-0.2的SEM图片如图3所示,可以看出,复合材料是球状的,各元素均匀分布。取20 mg的复合好的材料置于反应容器中,反应容器中加入8 ml的乳酸及80 ml的水溶液,在配备了420 nm滤光片的氙灯光源下进行光催化产氢测试。产氢性能如图4所示。可以看出,Mo@Mo2C复合纳米材料的质量不同时,光催化产氢活性不同,当质量百分数为20%时,复合材料的光催化产氢活性达到最高值,为1031.07 μmol·h−1g−1,是纯的ZnIn2S4的41倍多。
实施例3
称取1g的钼酸铵与1g的柠檬酸放入球磨机中,然后加入500g的磨球,密封后在600rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体先在Ar气氛下150℃温度下保温1h,然后加热到850℃保温2h,得到Mo@Mo2C复合纳米材料。
将得到的Mo@Mo2C复合纳米材料与实施例2中得到的ZnIn2S4光催化材料按照Mo@Mo2C质量百分数为20%的比例混合并用于光催化产氢性能测试,混合过程及光催化产氢过程与实施例2相同。复合材料的光催化产氢活性为986.2 μmol·h−1g−1,是纯的ZnIn2S4的39倍多。
实施例4
称取1g的钼酸铵与1g的柠檬酸放入球磨机中,然后加入500g的磨球,密封后在600rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体先在Ar气氛下200℃温度下保温1h,然后加热到900℃保温2h,得到Mo@Mo2C复合纳米材料。
将得到的Mo@Mo2C复合纳米材料与实施例2中得到的ZnIn2S4光催化材料按照Mo@Mo2C质量百分数为20%的比例混合并用于光催化产氢性能测试,混合过程及光催化产氢过程与实施例2相同。复合材料的光催化产氢活性为875.6 μmol·h−1g−1
实施例5
称取1g的钼酸铵与1g的柠檬酸放入球磨机中,然后加入500g的磨球,密封后在600rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体先在Ar气氛下200℃温度下保温1h,然后加热到700℃保温2h,得到Mo@Mo2C复合纳米材料。
将得到的Mo@Mo2C复合纳米材料与实施例2中得到的ZnIn2S4光催化材料按照Mo@Mo2C质量百分数为20%的比例混合并用于光催化产氢性能测试,混合过程及光催化产氢过程与实施例2相同。复合材料的光催化产氢活性为863.8 μmol·h−1g−1
实施例6
称取1g的钼酸铵与1g的柠檬酸放入球磨机中,然后加入500g的磨球,密封后在600rpm的转速下球磨3h,得到混合均匀的混合物。然后将混合好的粉体在空气气氛下烧结800°C保温2h,得到MoO3纳米材料。
将得到的MoO3纳米材料与实施例2中得到的ZnIn2S4光催化材料按照质量百分数为20%的比例混合并用于光催化产氢性能测试,混合过程及光催化产氢过程与实施例2相同。得到的复合材料的光催化产氢活性仅为75.2 μmol/h*g。
实施例7
将实施例2制备得到的Mo@Mo2C复合纳米材料用于电催化析氢。电极的制备如下:4mg 的催化剂分散于500 μL 浓度为 0.5 wt %的 Nafion 溶液中,然后超声分散1h,取4 μL的均匀溶液逐滴滴到直径为3mm的铂碳电极上,催化剂的负载量约为0.453 mg cm−2,得到的电极在空气中干燥,得到工作电极,Pt丝作为对电极,饱和甘汞电极作为参比电极。电催化析氢在0.5M的H2SO4 溶液中进行。测试结果表明,该纳米复合材料用于电催化析氢时具有较低的起始过电位(η10=80 mV)及小的塔菲尔斜率(46 mV dec−1)。
实施例8
将实施例2制备得到的Mo@Mo2C复合纳米材料用于锂离子电池材料。电极的制备如下:纳米复合材料与炭黑及聚(乙烯基二氟化物)按照质量比为80:10:10的比例混合,然后贴在铜箔上,厚度约为50um。纯的锂箔作为对电极,聚丙烯膜作为分离,电解液为1 M 的LiPF6溶解在碳酸亚乙酯/碳酸二甲酯(体积比为1:1)中,电池在手套箱中组装,然后进行充放电测试。在100 mA/g的电流密度下循环100次,库伦效率可达95%。

Claims (6)

1.一种Mo@Mo2C复合材料在促进光催化材料ZnIn2S4分解水产氢上的应用,其特征在于,
取80 mg的ZnIn2S4光催化材料与一定量的Mo@Mo2C复合纳米材料超声分散在40 ml的甲醇溶液中,超声30 min得到复合材料,Mo@Mo2C复合纳米材料的质量百分数分别为20%;
Mo@Mo2C复合材料的合成方法,包括以下步骤:将一定量的无机Mo盐与有机碳源按照比例球磨混合均匀,然后将得到混合粉体在惰性气氛中进行梯度高温热解还原反应,得到Mo@Mo2C复合材料。
2.根据权利要求1所述的应用,其特征在于,所述有机碳源是柠檬酸,葡萄糖、双氰胺、三聚氰胺中的任意一种或者多种组合。
3.根据权利要求1所述的应用,其特征在于,所述无机Mo盐是钼酸铵及钼酸钠中的任意一种。
4.根据权利要求1所述的应用,其特征在于,无机Mo盐与有机碳源的质量比为1:1~1:2。
5.根据权利要求1所述的应用,其特征在于,所述球磨混合的条件是:球料质量比为100~300∶1;球磨转速为200~800 rpm;球磨时间为1~5h。
6.根据权利要求1所述的应用,其特征在于,所得混合粉体在惰性气氛中进行梯度高温热解还原反应,惰性气氛为氩气,先在低温下预分解混合粉体,然后在高温下进行热分解还原反应;预分解温度为150℃~200℃,保温时间为1~2h,高温温度为700℃~900℃,反应时间为1~4h。
CN202210390801.8A 2022-04-14 2022-04-14 一种Mo@Mo2C纳米复合材料的合成方法 Active CN114700096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210390801.8A CN114700096B (zh) 2022-04-14 2022-04-14 一种Mo@Mo2C纳米复合材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210390801.8A CN114700096B (zh) 2022-04-14 2022-04-14 一种Mo@Mo2C纳米复合材料的合成方法

Publications (2)

Publication Number Publication Date
CN114700096A CN114700096A (zh) 2022-07-05
CN114700096B true CN114700096B (zh) 2023-10-27

Family

ID=82175455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210390801.8A Active CN114700096B (zh) 2022-04-14 2022-04-14 一种Mo@Mo2C纳米复合材料的合成方法

Country Status (1)

Country Link
CN (1) CN114700096B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845885B (zh) * 2022-10-20 2024-05-10 江苏大学 一种CdS/WC1-x@C复合光催化剂及其制备方法和应用
CN115779951A (zh) * 2022-12-02 2023-03-14 江苏大学 一种复合光催化剂C-MoO2/C3N4及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732103A (zh) * 2020-06-10 2020-10-02 中国科学技术大学 无氟Mo2CTx MXenes材料、其制备方法及应用
CN112246264A (zh) * 2020-10-25 2021-01-22 福州大学 一种碳化钼金属钼碳化硅三元复合材料、及其制备方法以及在光催化产氢上的作用
WO2021253714A1 (zh) * 2020-06-15 2021-12-23 宁波锋成先进能源材料研究院有限公司 一种碳/磷酸钛盐复合材料及其制备方法与应用
WO2022016554A1 (zh) * 2020-07-24 2022-01-27 苏州大学 金属碳化物催化剂及其制备方法与在锂氧气电池中的应用
CN114023934A (zh) * 2021-10-09 2022-02-08 三峡大学 金属/碳化物/氧化物复合纳米材料的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090460A1 (en) * 2020-01-15 2022-11-23 Council Of Scientific & Industrial Research A highly active and durable non-noble metal-sulphide based her catalyst and the preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732103A (zh) * 2020-06-10 2020-10-02 中国科学技术大学 无氟Mo2CTx MXenes材料、其制备方法及应用
WO2021253714A1 (zh) * 2020-06-15 2021-12-23 宁波锋成先进能源材料研究院有限公司 一种碳/磷酸钛盐复合材料及其制备方法与应用
WO2022016554A1 (zh) * 2020-07-24 2022-01-27 苏州大学 金属碳化物催化剂及其制备方法与在锂氧气电池中的应用
CN112246264A (zh) * 2020-10-25 2021-01-22 福州大学 一种碳化钼金属钼碳化硅三元复合材料、及其制备方法以及在光催化产氢上的作用
CN114023934A (zh) * 2021-10-09 2022-02-08 三峡大学 金属/碳化物/氧化物复合纳米材料的制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bingcheng Ge et al.Heterojunction-Composited Architecture for Li−O2 Batteries with Low Overpotential and Long-Term Cyclability.ACS Appl. Energy Mater..2020,第3卷3789-3797. *
Jie Dong et al.Cost effective Mo rich Mo2C electrocatalysts for the hydrogen evolution reaction.Journal of Materials Chemistry A.2018,10028-10035. *
MoS_2/核桃壳活性炭复合纳米材料的制备及其电催化析氢性能研究;李凯迪;王思佳;朱鑫瑞;袁思杰;程雪纯;吴浩然;高阳光;徐书珏;杜记民;;化工新型材料(第04期);全文 *
Yaru Zheng et al.Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution.Applied Catalysis B: Environmental.2019,1-9. *

Also Published As

Publication number Publication date
CN114700096A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Sriphathoorat et al. Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation
CN114700096B (zh) 一种Mo@Mo2C纳米复合材料的合成方法
Du et al. NiSe 2/FeSe 2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction
CN111584889B (zh) 一种含锌单原子催化剂及其制备方法与应用
CN110102331B (zh) 一种高性能析氧二硒化钴/四硒化三镍@nc/c复合催化剂及其制备方法和应用
US20210316286A1 (en) Core-shell structured nise2@nc electrocatalytic material and preparation method and use thereof
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
WO2018179006A1 (en) Palladium based selenides as highly stable and durable cathode materials in fuel cell for green energy production
CN113373471B (zh) 一种用于电催化还原co2制低碳醇的铟基催化剂的制备方法及应用
CN111921551A (zh) 一种包覆铁钴镍三元合金的氮掺杂碳框架材料的制备方法
CN111871427A (zh) 贵金属/钼镍类复合材料及其制备方法和应用
CN111490256B (zh) 一种双功能钼掺杂硫化钴/氮碳阵列电极的制备方法
CN112421062A (zh) 一种单原子铁分散/银纳米颗粒复合结构催化剂的制备方法
CN113745549A (zh) 一种负载Mn单原子的N掺杂碳多面体催化剂的制备方法
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Guo et al. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications
CN115896848A (zh) 一种氮/硫共掺杂多孔碳负载锌单原子/金属铜串联催化剂及其制备方法和应用
CN111729680A (zh) 一种具有异质结构的高效双功能氧电催化剂及其制备和应用
CN115954493A (zh) 一种提高负载型铂基催化剂活性和稳定性的方法
WO2018179005A1 (en) Shape tailored ordered pdcu3 nanoparticle surpassing the activity of state-of-the-art fuel cell catalyst
Sun et al. Combination of ZIF-67 derived hollow porous Co9S8 nanocages and MWCNTs for electrochemical hydrogen storage applications
Yang et al. FeOOH-carbon nanotube-FeCo/nitrogen-doped porous carbon as an excellent bifunctional catalyst for achieving high power performance in rechargeable zinc-air batteries
Xu et al. MOF-derived PdNiCo alloys encapsulated in nitrogen-doped graphene for robust hydrogen evolution reactions
CN111495413B (zh) 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用
US20220416260A1 (en) Hybrid catalyst suitable for use in proton exchange membrane fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant