CN114699372B - 靶向铁死亡的纳米药在治疗急性肾损伤中的应用 - Google Patents

靶向铁死亡的纳米药在治疗急性肾损伤中的应用 Download PDF

Info

Publication number
CN114699372B
CN114699372B CN202210179787.7A CN202210179787A CN114699372B CN 114699372 B CN114699372 B CN 114699372B CN 202210179787 A CN202210179787 A CN 202210179787A CN 114699372 B CN114699372 B CN 114699372B
Authority
CN
China
Prior art keywords
ggp
nps
gallium
gallate
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210179787.7A
Other languages
English (en)
Other versions
CN114699372A (zh
Inventor
林伟强
李杨杨
张云敬
谢锡绍
苏心婉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yiwu Affiliated Hospital of Zhejiang University School of Medicine
Original Assignee
Yiwu Affiliated Hospital of Zhejiang University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yiwu Affiliated Hospital of Zhejiang University School of Medicine filed Critical Yiwu Affiliated Hospital of Zhejiang University School of Medicine
Publication of CN114699372A publication Critical patent/CN114699372A/zh
Application granted granted Critical
Publication of CN114699372B publication Critical patent/CN114699372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了靶向铁死亡的纳米药在治疗急性肾损伤中的应用。本发明合成了没食子酸镓聚乙烯吡咯烷酮纳米粒(GGP NPs),该纳米粒具有强稳定性、优异的生物相容性和有效的铁替代能力。GGP NPs通过减少细胞内游离铁的积累和线粒体功能障碍,并抑制铁死亡介导的表型,包括脂质过氧化、NADPH和谷胱甘肽水平、谷胱甘肽过氧化物酶4活性,因而达到显著抑制顺铂诱导的HK‑2细胞铁死亡。GGP NPs治疗可显著改善顺铂处理或缺血再灌注损伤引起的肾小管损伤和线粒体损伤。本发明合成的GGP NPs可能是AKI治疗的有效和有希望的候选药物。

Description

靶向铁死亡的纳米药在治疗急性肾损伤中的应用
技术领域
本发明具体涉及靶向铁死亡的纳米药在治疗急性肾损伤中的应用。
背景技术
急性肾损伤(AKI)是一组临床综合征,是指突发(1-7d内)和持续(>24h)的肾功能突然下降,表现为氮质血症、水电解质和酸碱平衡以及全身各系统症状,可伴有少尿(<400ml/24h或17ml/h)或无尿(<100ml/24h)。
AKI可由多种因素引起,比如肾毒性药物、缺血和尿路梗阻等。虽然在过去几十年中很多专家、学者对AKI进行了研究,但AKI的复杂病理生理学尚未完全了解,也没有确定预防或治疗AKI的确切疗法。多种细胞死亡途径,包括坏死和凋亡,以前曾报道与AKI有关。然而,使用坏死或凋亡特异性抑制剂的临床研究未能完全预防或治疗AKI。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供了靶向铁死亡的纳米药在治疗急性肾损伤中的应用。
为了实现上述目的,本发明提供以下技术方案:
一种用于治疗急性肾损伤的没食子酸镓聚乙烯吡咯烷酮纳米粒,采用以下步骤制得:
(1)将340mg聚乙烯吡咯烷酮添加到45mL超纯水中并搅拌30min;
(2)向步骤(1)得到的溶液中加入10mL Ga(NO3)3超纯水溶液,所述Ga(NO3)3超纯水溶液的浓度为15mg/mL;
(3)搅拌6h后,将5mL没食子酸水溶液逐滴加入到上述混合溶液中,并搅拌反应三天;所述没食子酸水溶液的浓度为10mg/mL;
(4)使用分子量截止值为50000Da的透析袋透析24小时获得没食子酸镓聚乙烯吡咯烷酮纳米粒。
没食子酸镓聚乙烯吡咯烷酮纳米粒(GGP NPs)在制备治疗急性肾损伤的药物中的应用;所述没食子酸镓聚乙烯吡咯烷酮纳米粒为以上所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
没食子酸镓聚乙烯吡咯烷酮纳米粒(GGP NPs)在制备治疗顺铂诱导或缺血性急性肾损伤的药物中的应用;所述没食子酸镓聚乙烯吡咯烷酮纳米粒为以上所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
没食子酸镓聚乙烯吡咯烷酮纳米粒(GGP NPs)在改善顺铂处理或缺血再灌注损伤引起的肾小管损伤和线粒体损伤中的应用;所述没食子酸镓聚乙烯吡咯烷酮纳米粒为以上所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
没食子酸镓聚乙烯吡咯烷酮纳米粒在制备靶向铁死亡的纳米药物中的应用,所述没食子酸镓聚乙烯吡咯烷酮纳米粒为以上所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
靶向铁死亡的纳米药在治疗急性肾损伤中的应用,所述纳米药包括以上所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
本发明的有益效果是:
本发明合成了没食子酸镓聚乙烯吡咯烷酮纳米粒(GGP NPs),该纳米粒具有强稳定性、优异的生物相容性和有效的铁替代能力。GGP NPs通过减少细胞内游离铁的积累和线粒体功能障碍,并抑制铁死亡介导的表型,包括脂质过氧化、NADPH和谷胱甘肽(GSH)水平、谷胱甘肽过氧化物酶4(GPX4)活性,因而达到显著抑制顺铂诱导的HK-2细胞铁死亡。本发明中,GGP NPs治疗可显著改善顺铂处理或缺血再灌注损伤引起的肾小管损伤和线粒体损伤。本发明合成的GGP NPs可能是AKI治疗的有效和有希望的候选药物。
附图说明
图1是GGP NPs的合成与表征示意图;其中(a)为GGP NPs的合成示意图,(b)为GGPNPs的TEM图像,(c)为GGP NPs流体动力学分析结果示意图;(d)为GGP NPs的能量色散x光谱;(e)为GGP NPs的粉末X射线衍射图;(f)为GGP NPs的XPS谱;(g)为(f)中相应的Ga3d轨道的结合能谱以及峰拟合曲线。
图2是GGP NPs的体内生物相容性评价检测结果示意图;(a)是给药24小时后,GGPNPs对主要器官(心、肝、肺和脾)的体内毒性检测结果示意图;比例尺为250μm;(b)是给药24小时后,GGP NPs对肾脏的体内毒性检测结果示意图;比例尺为250μm;(c-g)分别是注射GGPNPs 24h后小鼠血液参数HGB、WBC、PLT、ALT和CRE水平结果示意图;n=4;数据代表平均值±标准差。
图3是GGP NPs的细胞摄取和肾脏分布结果示意图;(a)HK-2细胞培养2,4和6h后,荧光图像显示GGP NPs(绿色信号)的细胞摄取情况示意图;比例尺20μm;(b)是腹腔注射IR-780标记的GGP NPs后0、0.5、1、3、6和24小时捕获健康小鼠主要器官的荧光图像及荧光强度统计图,(n=3);(c-d)分别是在给予IR-780标记的GGP NPs后,0.5、1、3、6、24h捕获肾脏切片的荧光图像及荧光强度统计图;其中红色信号表示IR-780标记GGP NPs,蓝色信号表示DAPI,(n=3);标尺500μm。
图4是GGP NPs保护免受CP诱导的HK-2细胞死亡示意图;(a)是加入或不加入GGPNPs或Fer-1的CP处理HK-2细胞24h后的形态学变化;比例尺100μm;(b)是加或不加GGP NPs或Fer-1的CP处理HK-2细胞后24小时的细胞活力结果示意图;(c、d)是加入或不加入GGPNPs或Fer-1的CP处理HK-2细胞后24h,Ptgs2的代表性图像和荧光强度统计图;比例尺100μm;图(c)中第二排小图分别为第一排小图中方框对应的放大图;(e)是实时荧光定量PCR检测Ptgs2mRNA水平的结果示意图;(f)是加或不加GGP NPs或Fer-1的CP处理HK-2细胞后24小时,Ptgs2的免疫印迹分析结果示意图;(g)是(f)中Ptgs2水平的统计结果图;数据代表平均值±标准差;***P<0.001;##P<0.01,###P<0.001vs.CP组。
图5是GGP NPs对cp诱导的HK-2细胞线粒体功能障碍和ROS积累具有保护作用的示意图;(a)是线粒体膜电位的代表性图像,使用JC-1检测有无GGP NPs或Fer-1的CP处理后,线粒体膜电位;比例尺为40μm;(b)是有无GGP NPs或Fer-1的CP处理后24小时,流式细胞检测结果示意图;(c)有无GGP NPs或Fer-1的CP处理后24小时,JC-1检测结果示意图;(d)是有无GGP NPs或Fer-1的CP处理后24小时,耗氧率(OCR)结果示意图;(e)是在有无GGP NPs或Fer-1的CP处理后24小时,使用MitoSOX测量线粒体ROS的代表性图像,比例尺为40μm;(f和g)分别是使用流式细胞仪和C11-BODIPY测量CP(有无GGP NPs或Fer-1)处理后24小时的脂质ROS生成;数据代表平均值±标准差;***P<0.001;###P<0.001vs.CP组。
图6是GGP NPs可减轻CP处理后HK-2细胞的脂质过氧化,降低GPX4活性、GSH浓度和NADPH水平的示意图;(a和b)是加入或不加入GGPNPs或Fer-1的CP处理后24小时,4-HNE的代表性图像和荧光强度统计图;比例尺100μm;图(a)中第二排小图分别为第一排小图中方框对应的放大图;(c)是加入或不加入GGP NPs或Fer-1的CP处理后24h,细胞内GPX4活性结果示意图;(d)是加入或不加入GGP NPs或Fer-1的CP处理后24h,4-HNE和GPX4的免疫印迹分析结果示意图;(e)是蛋白4-HNE水平统计图,(f)是GPX4水平统计图;(g和h)分别是使用一溴二茂烷(MBB)在加或不加GGP、NPs或Fer-1的CP处理24小时后测量细胞内GSH水平的代表性图像和荧光强度统计图;比例尺100μm;其中(1)、(2)、(3)、(4)分别是图(g)中小方框对应的放大图;(i)是加或不加GGP NPs或Fer-1的CP处理后,细胞内GSH/GSSG比值示意图;(j)是加入或不加入GGP、NPs或Fer-1的CP处理后24h,细胞内NADPH水平统计图;数据代表平均值±标准差;**P<0.01,***P<0.001;#P<0.05,##P<0.01,###P<0.001。
图7是GGP NPs可减轻CP处理后HK-2细胞中游离铁的积累和铁蛋白的吞噬结果示意图;(a和b)分别是CP(加或不加GGP NPs或Fer-1)处理后24小时,使用Phen Green SK探针测量细胞内铁的代表性图像和相对PGSK荧光强度统计结果图;比例尺100μm;图(a)中第二排小图分别为第一排小图中方框对应的放大图;(c)是在CP(加或不加GGP NPs或Fer-1)处理后24小时,使用LIP测定细胞内游离铁浓度示意图;(d-e)分别是CP(加或不加GGP NPs或Fer-1)处理后24h,细胞内FTH1的代表性图像和相对FTH1荧光强度统计结果图;比例尺100μm;图(d)中第二排小图分别为第一排小图中方框对应的放大图;(f-g)分别是CP(加或不加GGP NPs或Fer-1)处理后24h,细胞内NCOA4的代表性图像和相对NCOA4荧光强度统计结果图,比例尺100μm;图(f)中第二排小图分别为第一排小图中方框对应的放大图;(h)是CP(加或不加GGP NPs或Fer-1)处理后24h,FTH1和NCOA4的免疫印迹分析结果图;(i)为图(h)中FTH1水平统计图;(j)为图(h)中NCOA4水平统计图;数据代表平均值±标准差;**P<0.01,***P<0.001;#P<0.05,##P<0.01,###P<0.001。
图8是GGP NPs对CP诱导的AKI小鼠的治疗结果示意图;(a)是CP诱导的AKI小鼠治疗方案示意图;(b)是对照组和CP(加或不加GGP NPs或Fer-1)处理后72h,肾脏组织的TEM、H&E和PAS染色代表性图像;H&E和PAS染色代表性图像中比例尺为100μm,TEM图像中比例尺为2μm;(c)是在CP(加入或不加入GGP NPs或Fer-1)处理后72h的小鼠血清肌酐统计结果示意图;(d)是GGP NPs或Fer-1治疗后72h小鼠肾小管损伤评分结果示意图;(e-g)分别是实时荧光定量PCR检测KIM-1、NAGL和Ptgs2 mRNA水平统计结果示意图;(h)是加入或不加入GGPNPs或Fer-1的CP处理后72小时,小鼠肾脏切片4-HNE和Ptgs2表达的免疫组化代表性图像;比例尺50μm;(i)是在加或不加GGP NPs或Fer-1的CP处理后72h,肾脏组织中4-HNE、Ptgs2、GPX4和NCOA4的免疫印迹分析结果示意图;(j-m)分别是在加或不加GGP NPs或Fer-1的CP处理后72h,肾脏组织中4-HNE、Ptgs2、GPX4和NCOA4水平统计结果图;N=6-8只/组;数据代表平均值±SEM;*P<0.05,**P<0.01,***P<0.001;#P<0.05,##P<0.01,###P<0.001。
图9是GGP NPs对IR(缺血再灌注)诱导AKI小鼠的治疗结果示意图;(a)是IR诱导的AKI小鼠治疗方案示意图;(b)是在有无GGP NPs或Fer-1的情况下,IRI处理后24h肾脏组织的TEM、H&E和PAS染色代表性图像;其中,Sham表示假手术组,作为对照;H&E和PAS染色代表性图像中比例尺为100μm,TEM图像中比例尺为2μm;(c)是加入或不加入GGP NPs或Fer-1的小鼠IRI处理后24小时的血清肌酐统计结果示意图;(d)是加入或不加入GGP NPs或Fer-1的IRI处理后24h,对小鼠肾小管损伤的评分结果示意图;(e-g)分别是实时荧光定量PCR检测KIM-1、NAGL和Ptgs2 mRNA水平示意图;(h)是有或没有GGP NPs或Fer-1时,IRI处理后24小时小鼠肾脏切片4-HNE和Ptgs2表达的免疫组化代表性图像;其中,Sham表示假手术组,作为对照;比例尺50μm;N=6-8只/组;数据代表平均值±标准差;***P<0.001;###P<0.001vs.CP组。
图10是GGP NPs的TG曲线。
图11是GGP NPs或Ca(NO3)3在4种培养基中孵育0~5天后的光学图像。
图12是3天和30天GGP NPs的体内生物相容性评价结果示意图;(a)是给药3天后GGP NPs对主要器官(心、肝、肺和脾)的体内毒性结果示意图;比例尺250μm;(b)是给药30天后GGP NPs对主要器官(心、肝、肺、脾)的体内毒性结果示意图;比例尺250μm。
图13是没食子酸的体内外生物相容性以及对线粒体活性氧的影响结果示意图;(a)是CP(加或不加没食子酸处理)处理24h后,不同浓度没食子酸对HK-2细胞的体外细胞毒性结果示意图;没食子酸1(即Gallic acid 1)的浓度为3.2μg/ml,没食子酸2(即Gallicacid 2)的浓度为6.4μg/ml,数据代表平均值±标准差;***P<0.001;(b)是用流式细胞仪检测线粒体活性氧在CP(加或不加没食子酸处理)处理24h后的变化;(c)是(b)中荧光强度统计结果图,数据代表平均值±标准差;***代表与对照组相比,***P<0.001;(d)是没食子酸对小鼠血清肌酐的影响结果示意图;没食子酸3(即Gallic acid 3)的剂量为1.667mg/kg(动物中的剂量);ns表示无差异,数据代表平均值±标准差;**P<0.01。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。
以下实施例中所有仪器、溶剂等均能够通过商业途径获得,其中,1M=1mol/L。
1.1 GGP NPs的合成
GGP NPs(即没食子酸镓聚乙烯吡咯烷酮纳米粒)的制备,包括以下步骤:
将340mg聚乙烯吡咯烷酮(PVP)分子(Sigma-Aldrich,Cat#9003-39-8)添加到45mL超纯水中并搅拌30min;
随后,添加Ga(NO3)3(Sigma-Aldrich,Cat#289892)超纯水溶液(10mL,15mg/mL);
搅拌6h后,将5mL没食子酸(Alfa Aesar,Cat#149-91-7)水溶液(10mg/mL)逐滴添加到上述混合溶液中,并进一步搅拌反应三天;
最后,使用分子量截止值(MWCO)为50000Da的透析袋透析24小时获得GGP NP。使用ICP-MS测定GGP NP中的Ga(III)浓度。
1.2 GGP NPs的特性
使用TEM(Tecnai TF20,美国)对GGP NP的形态和微观结构特征进行了表征。使用X射线衍射仪(XRD,X’Pert PRO,荷兰)检查相结构和晶体结构特征。使用Escalab 250仪器进行X射线光电子能谱(XPS)分析镓的化学状态。使用动态光散射法测量GGP NPs的流体动力学尺寸(Nano ZSE,英国)。热重扫描量热法(TG-DSC,DSCQ1000,美国)用于测定GGP NPs的无机Ga(III)化合物,在空气中以10℃/min的加热速率从25℃至850℃。
1.3 IR-780或FITC标记GGP NP的合成
将IR-780二甲基亚砜溶液(0.1mL;1mg/mL)添加到10mL上述获得的GGP NPs水溶液中,在室温下搅拌12h。随后,将所得IR-780标记的GGP NP用去离子水透析(MWCO(分子量截止值)1/450000)24小时。使用相同方法获得FITC标记的GGP NP。
1.4细胞培养
从ATCC获得的HK-2细胞在补充有体积分数10%胎牛血清(FBS)和体积分数1%链霉素/青霉素的RPMI1640培养基中培养,并保持在37℃和体积分数5%CO2的湿润环境中。将细胞分为四组:对照组、CP(顺铂)(Selleckchem,Cat#S1166,20μM)组、CP+铁抑素-1(Fer-1;MCE,Cat#HY100579,0.5μM)组和CP+GGP NPs(10μg/ml)。
1.5动物模型
所有动物实验均按照中国浙江大学机构指南进行,并经机构动物实验委员会批准。使用雄性C57BL/6J小鼠(8-10周龄)进行CP-和IRI-诱导的AKI。在CP诱导的AKI实验中,小鼠单次腹腔注射CP(20mg/kg)。GGP NPs(3mg/kg)或Fer-1(5mg/kg)在用药CP前30min和每24h腹腔注射一次,连续三天,72h后处死小鼠。在IRI(缺血-再灌注损伤)诱导的AKI(急性肾损伤)实验中,对小鼠进行单侧肾IRI。简单地说,在麻醉下,右肾被切除,左肾通过左侧小切口暴露。用夹子(FST,Cat#18055-02)在38℃下阻断动脉和静脉30分钟。缺血期结束后,松开夹子以诱导血液再灌注,并缝合切口。在IRI处理前30分钟腹腔注射GGP NP(3mg/kg)或Fer-1(5mg/kg)。24小时后处死小鼠。采集血样进行血清肌酐测定。用冷盐水原位灌注左肾,并采集供进一步分析。
1.6细胞活力测定和细胞形态
HK-2细胞(人肾-2细胞)在6孔或12孔板中用CP,CP+Fer-1,CP+GGP NPs处理24小时。此后,将10μL细胞计数试剂盒8(CCK-8,MCE,Cat#HY-K0301)试剂添加到每个孔中并培养2小时。使用吸光度为490nm的微孔板读取器测量细胞活力。为了分析细胞形态,将细胞培养在玻璃底细胞培养皿(NEST,Cat#80102)中,并用预定试剂处理24小时。然后使用相衬光显微镜对细胞进行评估。
1.7肾损害的评估
肾脏用4%多聚甲醛(PFA)固定,石蜡包埋。肾脏切片(4μm)用苏木精-伊红(H&E)和高碘酸希夫(PAS)染色。形态学损伤由两位经验丰富的病理学家根据以下参数使用光学显微镜进行分级:刷状边缘损伤、近端小管扩张、间质增宽、蛋白管型和坏死(0,无;1,<11%;2,11-25%;3,26-45%;4,46-75%;5,>75%)。
1.8免疫组织化学
肾脏切片(厚度4μm)用抗4-HNE(即4-羟基壬烯醛)(JaICA,Cat#MHN-100P;1:200)和Ptgs2(即前列腺素内过氧化物合酶2)(Cat#12282;1:300)的抗体孵育。与二级抗体(Leica,Cat#DS9800)孵育后。切片用苏木精复染,并用光学显微镜检查。
1.9免疫荧光
PFA(多聚甲醛)固定细胞用以下抗体孵育:抗-4-羟基壬烯醛(Abcam,Cat#ab46545;1:100)、抗核受体辅激活因子4(Santa Cruz Biotechnology,Cat#sc-373739;1:100)、抗FTH1(即铁蛋白重链1)(Abcam,Cat#ab65080;1:100)和抗Ptgs2(细胞信号技术,Cat#12282;1:300),然后用二级抗体孵育。使用Leica DMi8共焦显微镜(德国Wetzlar)检查染色细胞和肾脏切片。
1.10透射电子显微镜
小部分肾组织(1mm×2mm×2mm)用质量分数3%磷酸戊二醛固定,并包埋在环氧树脂中。超薄切片,包括近端管状细胞,使用TEM(Tencnia G2 Spirit T-win,Thermo FisherScientific)进行检查。
1.11实时PCR和western印迹分析
从HK-2细胞或肾组织中提取总RNA,并使用PrimeScript RT试剂盒(VazymeBiotech,Cat#R323-01)合成cDNA。使用2-ΔΔCt方法计算相对mRNA表达水平。表S1列出了所有引物序列。使用BCA蛋白质分析法(Beyotime,Cat#P0006)测量来自HK-2细胞或肾组织的蛋白质裂解物浓度。对每个样品中等量的蛋白质进行SDS-PAGE分析。电泳后,膜在4℃下与以下抗体孵育过夜:抗NCOA4(核受体辅活化子)(Santa Cruz Biotechnology,Cat#sc-373739;1:1000)、抗FTH1(Abcam,Cat#ab65080;1:1000)、抗4-HNE(R&D system,Cat#MAB3249-SP;1:1000)、抗GPX4(GPX4即谷胱甘肽过氧化物酶4)(Cayman Chemical,Cat#10005258;1:200),抗Ptgs2(Cell Signaling Technology,Cat#12282;1:1000)和抗GAPDH(Thermo Fisher,Cat#A5441;1:5000)。然后在室温下将膜与二级HRP结合抗体(Beyotime、Cat#A0239或A0258)孵育2小时。使用ChemiDocTMXRS系统观察蛋白条带(美国Bio-Rad)。
表1引物序列
1.12线粒体膜电位测量
使用JC-1试剂盒(MCE,Cat#HY-K0601)测量HK-2细胞中的线粒体膜电位(Δψm)。将细胞接种在共聚焦培养皿中,并用CP,CP+Fer-1,CP+GGP NPs处理。24小时后,添加JC-1试剂并在37℃下培养30分钟。使用Leica DMi8共焦显微镜(德国Wetzlar)在激发/发射波长为488/535nm(JC-1单体即JC-1 monomer)和550/595nm(JC-1聚集体即JC-1aggregate)下检测荧光强度。
1.13细胞内活性氧测量
使用MitoSOX染色法(Invitrogen,Cat#M36008)评估线粒体ROS水平。HK-2细胞与10μM MitoSOX在37℃的黑暗中孵育30分钟。使用共焦显微镜在510/580nm的激发/发射波长下对染色细胞成像。此外,使用MC11-BODIPY(Thermo Fisher,Cat#D3861)分析脂质ROS水平。简而言之,将0.5μM C11-BODIPY添加到细胞培养基中,并在指定处理后在37℃下培养20分钟。然后将细胞洗涤、胰蛋白酶化并在PBS中的质量分数2%FBS中再悬浮。C11-BODIPY的氧化导致荧光发射峰从590nm变为510nm,并使用流式细胞术进行分析。
1.14线粒体OCR的测量
使用Seahorse XF 96细胞外流量分析仪(Agilent Seahorse Biotech,Cat#103015-100)测量线粒体OCR。简而言之,在37℃下,将处理或对照HK-2细胞在无CO2的海马分析培养基中培养1小时,并在校准后记录基础OCR 20分钟。在连续添加线粒体抑制剂寡霉素(终浓度为1μM)、羰基氰化物4-三氟甲氧基苯腙(0.5μM)和鱼藤酮(0.5μM)与抗霉素a(0.5μM)的混合物后,随时间测量OCR,以确定ATP合成偶联效率、最大呼吸容量、以及非线粒体呼吸频率。
1.15 GPX4活性的测量
在96孔板中用指定的处理刺激24小时后,收集、裂解细胞,并使用谷胱甘肽过氧化物酶检测试剂盒(Beyotime,Cat#S0056)测量。然后使用微孔板读取器在340nm的吸光度下测量该板。GPX4活性计算为谷胱甘肽还原酶氧化NADPH/H+引起的吸光度降低。
1.16 NADPH和GSH水平的测量
使用NADP/NADPH分析试剂盒(Beyotime,Cat#S0179)评估HK-2细胞中的NADPH水平。具体地,在200μL NADP/NADPH提取缓冲液中裂解细胞,并在12000×g下离心10分钟。收集上清液并在60℃下热处理30分钟以进行DADP分解。将50微升样品或标准品与100μLGAPDH反应混合物在37℃的96孔板中孵育10分钟。然后,向每个孔中添加10μL NAPDH显影剂,让反应进行20分钟,并使用微孔板读取器测量450nm处的吸光度。使用GSH/GSSG检测试剂盒(Beyotime,Cat#S0056)评估HK-2细胞中的GSH和谷胱甘肽二硫化物(GSSG)水平。计算GSH/GSSG比率以确定GSH氧化还原比率。为了原位测定GSH,去除培养基后,将处理过的细胞与20μM MBB(MCE,Cat#HY-100041)在室温下孵育15分钟。细胞立即在Leica DMi8共焦显微镜(德国Wetzlar)下检查。
1.17细胞内铁水平的测量
使用不稳定铁池分析(LIP)评估HK-2细胞中的游离铁水平。具体地,细胞被胰蛋白酶化,洗涤,然后与0.05μM钙黄绿素乙酰氧基甲酯(MCE,Cat#HY-D0041)在PBS(0.01M,pH7.2±0.1)中于37℃下培养15分钟。然后清洗细胞,并与(或不与)100μM去铁酮(Sigma-Aldrich,Cat#379409)在37℃下培养1小时。然后使用激发/发射波长为488/525nm的流式细胞仪分析细胞。去铁酮处理和未处理细胞的荧光差异反映了细胞内游离铁的数量。使用Phen Green SK探针(Thermo Fisher,Cat#P14313)测定细胞内铁池。将处理过的细胞与10μM的Phen-green SK孵育30分钟。使用Leica DMi8共焦显微镜(德国Wetzlar)在488/521nm的激发/发射波长下清洗细胞并成像。
1.18统计分析
数据以平均值±SEM值表示。使用两组的非配对双尾t检验和多重比较的单因素方差分析评估P<0.05的显著性。所有统计分析均使用Prism 6.0(GraphPad软件,美国)进行。
2.测定结果
2.1 GGP NPs的合成和表征
在本发明中,聚乙烯吡咯烷酮(PVP)分子螯合Ga(III)和没食子酸配位,GGP NP通过以上所述方法获得(图1a)。Ga(III)与PVP在超纯水溶液中混合后形成Ga(III)-PVP络合物。随后,将没食子酸添加到上述水性络合物中,并可与Ga(III)-PVP反应以形成配位聚合物GGP NP。
通过透射电子显微镜(TEM)检测,制备的GGP NPs呈现出相对均匀的球形形貌,粒径约为20nm(图1b)。同时,GGP NPs的流体动力学直径约为25nm,具有均匀的粒度分布,如图1c所示,这与TEM结果一致。随后,能量色散X射线光谱(EDS)元素分析证明了C、O、N和Ga元素的存在,表明GGP NPs的成功合成(图1d)。此外,GGP NPs的粉末X射线衍射图也显示出非晶态衍射峰(图1e)。X射线光电子能谱(XPS)分析镓元素的元素组成和价态(图1f-g)。观察到O1s、N1s、C1s和Ga3d的代表性峰,这与EDS结果一致,表明成功合成GGP NPs。此外,通过图1g中XPS光谱的峰差分析,获得了20.2和19.35eV处的两个结合能峰,分别属于Ga3+和Gaδ+。GGPNP的热重分析(TG)进一步证实了无机Ga(III)化合物与配位聚合物部分的共轭(图10)。最后,使用不同的生理溶液研究GGP NPs的稳定性能。如图11所示,GGP NPs可以很好地分散在不同的溶液中长达五天。综上所述,上述结果表明GGP NPs已成功获得。
2.2 GGP纳米粒的体内外生物相容性
采用CCK-8法研究GGP纳米粒对HK-2细胞的体外细胞毒性。HK-2细胞暴露于不同浓度的GGP NPs(高达10μg/ml)中24小时表明,经GGP NPs处理的细胞的生存能力与对照组相似,表明具有良好的生物相容性。接下来,研究了GGP纳米粒对健康小鼠主要器官组织病理学和血液化学的影响,以揭示其体内生物相容性。如图2a和图12所示,单剂量腹腔注射GGPNPs后1、3和30天,心脏、肝脏、肺和脾脏未观察到出血、充血或坏死。此外,单剂量腹腔注射GGP NPs一天后,在肾小球、小管和集合管中未观察到明显的组织损伤或炎性病变(图2b)。全血分析和血清生化分析表明,GGP NPs治疗组的血红蛋白、白细胞、血小板、血清丙氨酸转氨酶(ALT)和肌酐(CRE)的血清浓度与对照组相似(图2c-g),结果证实GGP NPs在短期和长期内均无体内毒性。
2.3 GGP NP的细胞摄取和体内生物分布
为了研究GGP纳米粒细胞内化的可行性和有效性,首先用IR-780碘化物或FITC探针标记GGP纳米粒。用FITC标记的GGP NPs孵育2、4和6小时后,在细胞质或膜区附近观察到大量点状GGP NPs信号(图3a)。在体内评估IR-780标记的GGP NPs在肾脏中的生物分布。在腹腔注射IR-780标记的GGP NPs后0、0.5、1、3、6和24小时捕获健康小鼠主要器官的荧光图像。如图3b所示,肾脏IR-780荧光显著增加,并在注射后3小时达到峰值。为了进一步研究GGP NPs在肾脏中的分布,在给予IR-780标记的GGP NPs后,使用荧光显微镜收集并捕获肾脏切片。肾脏中IR-780标记的GGP NPs的荧光主要位于肾小管(图3c),表明GGP NPs优先靶向肾小管能力。
2.4 GGP NP通过抑制铁死亡防止CP诱导的HK-2细胞死亡
在正常培养条件下,HK-2细胞传代24小时后呈现扁平的上皮形态。顺铂处理导致HK-2细胞收缩。通过与GGP NP或ferrostatin-1(Fer-1,一种铁死亡抑制剂)联合治疗,HK-2细胞的形态学变化部分逆转(图4a)。CCK-8分析结果表明,CP处理后细胞活力显著降低,与GGP NP或Fer-1联合处理可改善细胞活力(图4b)。此外,CP处理诱导HK-2细胞中前列腺素内过氧化物合酶2(Ptgs2,也称为COX-2)的表达显著增加,这是铁死亡的一个假定分子标记。用GGP NP或Fer-1处理HK-2细胞可逆转Ptgs2表达的增加(图4c-g)。
脂质过氧化、脂质活性氧(ROS)积累和谷胱甘肽(GSH)耗竭是铁死亡的关键过程。因此,研究了HK-2细胞的线粒体功能、细胞内ROS水平、GSH水平和脂质过氧化标记物4-羟基壬烯醇(4-HNE)。通过测量线粒体膜电位(Δψm,使用JC-1分析评估)和耗氧率(OCR)的变化来检查线粒体功能。如图5a-d所示,与对照组相比,在CP处理的HK-2细胞中观察到明显更多的JC-1单体和OCR降低,表明CP处理诱导的线粒体功能障碍。服用GGP NPs或Fer-1后,Δψm和OCR的下降明显减轻。
MitoSOX染色用于评估线粒体活性氧的产生。顺铂处理24小时后,HK-2细胞的MitoSOX染色显著增加(图5e)。通过GGP NP和Fer-1处理,CP诱导的线粒体ROS增加显著减弱。采用流式细胞术和荧光C11-BODIPY探针测定细胞溶质脂质ROS。结果还表明,与GGP NP或Fer-1联合治疗可抑制CP诱导的脂质ROS积累(图5f-g)。
根据4-HNE的积累评估细胞脂质过氧化。由CP处理诱导的HK-2细胞中4-HNE荧光强度的显著增加,在GGP NPs或Fer-1处理后显著减弱(图6a-b)。免疫印迹分析进一步证实了经GGP NP或Fer-1处理的HK-2细胞中4-HNE蛋白水平的变化(图6d-e)。谷胱甘肽过氧化物酶4(GPX4)是一种重要的GSH依赖性抗氧化酶,可通过减少有毒脂质过氧化物来抑制铁死亡。使用谷胱甘肽过氧化物酶分析试剂盒,观察到暴露于CP后GPX4蛋白水平和活性也显著降低(图6c-d,f)。尽管在GGP NPs或Fer-1处理后未观察到GPX4蛋白水平的显著增加,但在GGPNPs或Fer-1处理后GPX4活性显著逆转。
使用单溴双马烷(MBB)染色和GSH/GSSG分析试剂盒评估HK-2细胞中GSH水平的变化。如图6g-i所示,CP处理后细胞内GSH浓度和GSH/GSSG比率显著降低。此外,经CP处理的HK-2细胞的NADPH水平也显著降低(图6j)。通过GGP NP或Fer-1治疗,GSH和NADPH水平的这些变化显著减弱,表明GGP NP通过抑制铁死亡对CP诱导的细胞死亡具有治疗作用。
2.5 GGP纳米粒在CP处理的HK-2细胞中减弱细胞内游离铁的积累并抑制铁自噬
铁死亡受铁代谢的严格调节,铁是脂质过氧化所必需的。因此,使用不稳定铁池分析(LIP)和酚绿SK荧光探针(铁的荧光猝灭)评估HK-2细胞中的游离铁水平。如图7a-c所示,CP处理导致游离铁浓度显著增加,酚绿SK阳性细胞的荧光强度降低。值得注意的是,给予GGP NP或Fer-1后,CP处理诱导的游离铁过度积累明显逆转。
接下来,研究了铁蛋白重链1(FTH1)和核受体辅活化子4(NCOA4)的降解状态,它们被认为是铁蛋白噬菌体的分子标记。如图7d-g所示,与对照组相比,CP处理后FTH1和NCOA4的表达水平显著降低,表明CP在HK-2细胞中诱导,出现显著的铁自噬。值得注意的是,在GGPNPs或Fer-1治疗后,FTH1和NCOA4的消耗部分逆转。在免疫印迹研究中也观察到类似的结果(图7h-j)。这些结果表明,GGP NP处理可减轻CP诱导的铁蛋白沉积。
2.6 GGP NP通过抑制小鼠铁死亡保护CP诱导的AKI
建立CP诱导的AKI小鼠模型,研究GGP纳米粒的治疗能力。在CP处理前30分钟腹腔注射GGP NP,并每24小时注射,持续三天(图8a)。与CP诱导的AKI小鼠相比,使用GGP NPs或Fer-1治疗的AKI小鼠的血清肌酐水平显著降低(图8c)。此外,通过使用GGP NP或Fer-1治疗,CP引起的严重肾小管损伤(图8b和d),包括肾小管上皮细胞的破坏和细胞碎片和管型的积聚,得到了显著改善。此外,肾小管损伤标志物水平的增加,包括肾损伤分子-1(KIM-1)和中性粒细胞明胶酶相关脂质沉积蛋白(NAGL),在GGP NP治疗后也显著逆转(图8e和f)。这些结果证实了GGP纳米粒治疗CP诱导的AKI的疗效。
用透射电镜观察近端肾小管细胞线粒体的结构损伤。如图8b所示,给予GGP NP或Fer-1后,CP处理小鼠的线粒体形态学损伤,包括线粒体内膜破坏、嵴丢失和膜外破裂,得到显著改善。与健康对照组小鼠相比,注射CP后72小时孵育的小鼠Ptgs2表达水平显著升高(图8g和8h)。用GGP NP或Fer-1治疗小鼠可阻止Ptgs2的表达。如图8h所示,在CP处理后,4-HNE的表达在肾组织中显著增加,在服用GGP NPs或Fer-1后,4-HNE的表达也显著减弱。免疫印迹进一步证实了经GGP NP处理的小鼠Ptgs2和4-HNE蛋白水平的变化(图8i-k)。还测量了GGP NP治疗后GPX4和NCOA4水平的变化。结果表明,CP处理小鼠的GPX4和NCOA4水平显著低于健康对照组。GGP NP和Fer-1治疗均能显著逆转CP处理后小鼠GPX4和NCOA4的表达(图8i,l-m)。综上所述,这些结果表明GGP纳米粒可以通过抑制铁死亡提供保护,以应对CP诱导的肾毒性。
2.7 GGP纳米粒对小鼠肾脏缺血再灌注损伤的保护作用
铁死亡在IRI诱导的AKI的发生发展中起着重要作用。接下来,评估了GGP纳米粒对IRI诱导的AKI的治疗效果。采用30min温性单侧IRI方法建立IRI诱导的AKI模型,并在IRI前30min腹腔注射GGP-NPs或Fer-1。正如预期的那样,24小时后肾脏IRI导致血肌酐水平、肾小管损伤评分、线粒体损伤以及KIM-1、NGAL和Ptgs2表达水平显著升高(图9a-g)。此外,免疫组化染色也显示IRI组的4-HNE和Ptgs2水平高于健康对照组(图9h)。GGP NP和Fer-1预处理均能显著改善肾功能,减少组织损伤。此外,GGP NP和Fer-1预处理均能预防IRI引起的线粒体功能障碍。此外,GGP NP和Fer-1预处理可阻止IRI诱导的Ptgs2和4-HNE水平升高。这些结果也表明GGP NP可以通过抑制铁死亡减轻缺血性AKI。
图13是没食子酸的体内外生物相容性以及对线粒体活性氧的影响结果示意图;(a)是CP(加或不加没食子酸处理)处理24h后,不同浓度没食子酸对HK-2细胞的体外细胞毒性结果示意图;没食子酸1(即Gallic acid 1)的浓度为3.2μg/ml,没食子酸2(即Gallicacid 2)的浓度为6.4μg/ml,数据代表平均值±标准差;***P<0.001;(b)是用流式细胞仪检测线粒体活性氧在CP(加或不加没食子酸处理)处理24h后的变化;(c)是(b)中荧光强度统计结果图,数据代表平均值±标准差;***代表与对照组相比,***P<0.001;(d)是没食子酸对小鼠血清肌酐的影响结果示意图;没食子酸3(即Gallic acid 3)的剂量为1.667mg/kg(动物中的剂量);ns表示无差异,数据代表平均值±标准差;**P<0.01。没食子酸是一种低分子量茶多酚,可以作为配体与Ga3+、PVP反应,形成稳定的金属-有机配位纳米构造。本申请中使用的没食子酸浓度极低,没食子酸在CP处理的HK-2细胞中并不能逆转细胞活力的下降以及CP诱导的线粒体ROS的增加(图13(a)-(c))。体内研究也显示,与没食子酸共处理不能改善CP诱导的AKI(图13(d)),因此,GGP NPs的疗效归因于镓而不是没食子酸。
综上,本发明合成了GGP NPs,并评估了GGP NPs(即GGP纳米粒或者没食子酸镓聚乙烯吡咯烷酮纳米粒)治疗CP或IRI诱导的AKI的可行性和有效性。本发明在体外实验中证明了GGP NPs通过减少细胞内游离铁的积累和抑制铁死亡,对CP诱导的HK-2细胞损伤具有显著的细胞保护作用。在体内实验中,GGP纳米粒表现出良好的生物相容性,并对CP诱导或缺血性AKI具有显著的肾保护作用。本发明为AKI治疗提供了一种有效的纳米治疗策略。
本发明中,通过在PVP纳米颗粒上包覆镓成功地设计和合成了GGP纳米粒,并在体外和体内证明了GGP纳米粒的良好生物相容性。铁稳态的破坏和铁死亡已被证明与CP诱导的AKI有关,Fer-1治疗可显著改善AKI。因此,使用CP诱导的HK-2细胞损伤模型来研究GGPNP作为铁模拟物的保护效率。与Fer-1相似,GGP NPs处理显著减弱CP诱导的细胞死亡。接下来,研究了GGP NP在CP治疗后如何抑制铁死亡并防止HK-2细胞死亡。细胞内游离铁的异常积累是铁死亡的关键触发因素。不稳定铁测定和荧光指示剂Phen-Green-SK的结果表明,经GGP-NPs处理后,CP诱导的细胞内游离铁的过度增加被显著逆转。接下来,研究了NCOA4和FTH1蛋白的表达水平,这两种蛋白被认为是游离铁积累和促进铁蛋白沉积的关键因素。结果表明,GGP NPs处理后,CP处理的HK-2细胞中NCOA4和FTH1表达水平的显著降低部分逆转。在催化铁过载的条件下,随后的线粒体脂质ROS产生和脂质过氧化会破坏质膜或其他亚细胞结构,最终导致大量细胞死亡。本发明中证明了GGP NPs治疗可显著降低CP诱导的脂质ROS和4-HNE水平的升高。给予GGP纳米粒可改善线粒体功能障碍和形态学损伤。GPX4是一种重要的细胞内抗氧化酶,与GSH和NADPH一起催化有害的脂质过氧化物并终止铁死亡过程。本发明中,CP导致GPX4表达和活性显著下调,同时GSH和NADPH消耗。这些GSH和NADPH水平的变化通过GGP NP治疗显著逆转。尽管在体外研究中未观察到GPX4蛋白水平的显著增加,但在GGP NPs或Fer-1治疗后,GPX4活性显著逆转。综上所述,这些数据表明GGP纳米粒可以通过抑制细胞内游离铁的积累和铁死亡来防止CP诱导的HK-2细胞死亡。接下来,建立了两个CP诱导和缺血性AKI模型,以验证GGP纳米颗粒在体内的治疗效果。结果表明,GGP纳米颗粒在两种AKI模型中均显示出显著的治疗效果,包括减轻肾脏形态损伤、恢复肾功能、减轻氧化应激和脂质过氧化以及保护线粒体。此外,铁死亡相关标志物的变化与体外实验一致。本发明的结果表明合成GGP NP具有良好的生物相容性,可用于治疗AKI。
本发明利用传统材料制备了GGP纳米颗粒,该纳米粒具有抑制铁死亡的强大能力,并证明了GGP纳米颗粒作为AKI治疗的潜力。本发明的研究结果将提供新的见解,并促进以铁稳态和铁死亡为靶点的纳米材料在临床AKI治疗中的发展。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (5)

1.一种用于治疗急性肾损伤的没食子酸镓聚乙烯吡咯烷酮纳米粒,其特征是,采用以下步骤制得:
(1)将340mg聚乙烯吡咯烷酮添加到45mL超纯水中并搅拌30min;
(2)向步骤(1)得到的溶液中加入10mL Ga(NO3)3超纯水溶液,所述Ga(NO3)3超纯水溶液的浓度为15mg/mL;
(3)搅拌6h后,将5mL没食子酸水溶液逐滴加入到上述混合溶液中,并搅拌反应三天;所述没食子酸水溶液的浓度为10mg/mL;
(4)使用分子量截止值为50000Da的透析袋透析24小时获得没食子酸镓聚乙烯吡咯烷酮纳米粒。
2.没食子酸镓聚乙烯吡咯烷酮纳米粒在制备治疗急性肾损伤的药物中的应用,其特征是,所述没食子酸镓聚乙烯吡咯烷酮纳米粒为权利要求1所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
3.没食子酸镓聚乙烯吡咯烷酮纳米粒在制备治疗顺铂诱导或缺血性急性肾损伤的药物中的应用,其特征是,所述没食子酸镓聚乙烯吡咯烷酮纳米粒为权利要求1所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
4.没食子酸镓聚乙烯吡咯烷酮纳米粒在制备改善顺铂处理或缺血再灌注损伤引起的肾小管损伤和线粒体损伤的药物中的应用,其特征是,所述没食子酸镓聚乙烯吡咯烷酮纳米粒为权利要求1所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
5.没食子酸镓聚乙烯吡咯烷酮纳米粒在制备靶向铁死亡的纳米药物中的应用,其特征是,所述没食子酸镓聚乙烯吡咯烷酮纳米粒为权利要求1所述的没食子酸镓聚乙烯吡咯烷酮纳米粒。
CN202210179787.7A 2022-02-22 2022-02-25 靶向铁死亡的纳米药在治疗急性肾损伤中的应用 Active CN114699372B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210171109 2022-02-22
CN2022101711096 2022-02-22

Publications (2)

Publication Number Publication Date
CN114699372A CN114699372A (zh) 2022-07-05
CN114699372B true CN114699372B (zh) 2023-11-24

Family

ID=82166864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210179787.7A Active CN114699372B (zh) 2022-02-22 2022-02-25 靶向铁死亡的纳米药在治疗急性肾损伤中的应用

Country Status (1)

Country Link
CN (1) CN114699372B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115531362A (zh) * 2022-09-28 2022-12-30 中南大学湘雅二医院 铁死亡抑制剂Ferrostatin-1在预防碘造影剂急性肾损伤中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538181A (zh) * 2019-08-20 2019-12-06 山东大学 酪氨酸激酶抑制剂作为急性肾损伤治疗药物的应用
CN111407746A (zh) * 2020-04-02 2020-07-14 山东大学齐鲁医院 GA/Fe2+纳米颗粒、其复合纳米颗粒、制备和应用
CN111773246A (zh) * 2020-07-17 2020-10-16 山东大学 一种可调控铁凋亡和免疫治疗的纳米复合物及其制备与应用
CN113521098A (zh) * 2021-07-29 2021-10-22 山东大学齐鲁医院 铂(Ⅳ)及cRGD修饰的GA/Fe纳米颗粒搭载多柔比星及其靶向治疗肿瘤的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538181A (zh) * 2019-08-20 2019-12-06 山东大学 酪氨酸激酶抑制剂作为急性肾损伤治疗药物的应用
CN111407746A (zh) * 2020-04-02 2020-07-14 山东大学齐鲁医院 GA/Fe2+纳米颗粒、其复合纳米颗粒、制备和应用
CN111773246A (zh) * 2020-07-17 2020-10-16 山东大学 一种可调控铁凋亡和免疫治疗的纳米复合物及其制备与应用
CN113521098A (zh) * 2021-07-29 2021-10-22 山东大学齐鲁医院 铂(Ⅳ)及cRGD修饰的GA/Fe纳米颗粒搭载多柔比星及其靶向治疗肿瘤的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Liquid metal nanocomposites;Mohammad H Malakooti 等;Nanoscale Advances;第2卷(第7期);第2668-2677页 *
铁死亡在急性肾损伤和肾癌等相关疾病中的研究进展;叶承林;疑难病杂志;第20卷(第8期);第860-864页 *

Also Published As

Publication number Publication date
CN114699372A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Deng et al. Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
Liu et al. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways
Chen et al. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy
Elsayed et al. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model
Khurana et al. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis
Venkatasubbu et al. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles
Huang et al. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment
Zhao et al. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications
Lin et al. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications
CN114699372B (zh) 靶向铁死亡的纳米药在治疗急性肾损伤中的应用
Sengupta et al. In vivo interaction of gold nanoparticles after acute and chronic exposures in experimental animal models
Wang et al. Inhibition of autophagy promotes apoptosis and enhances anticancer efficacy of adriamycin via augmented ROS generation in prostate cancer cells
Chen et al. NIR-driven polydopamine-based nanoenzymes as ROS scavengers to suppress osteoarthritis progression
Shen et al. Chemoprevention by lipid-soluble tea polyphenols in diethylnitrosamine/phenobarbital-induced hepatic pre-cancerous lesions
Abdelrahman et al. N‐acetylcysteine improves renal hemodynamics in rats with cisplatin‐induced nephrotoxicity
Zhao et al. An auto-photoacoustic melanin-based drug delivery nano-platform for self-monitoring of acute kidney injury therapy via a triple-collaborative strategy
Ameeramja et al. Possible modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats
Sun et al. Subchronic oral toxicity evaluation of gold nanoparticles in male and female mice
Huang et al. A novel antioxidant protects against contrast medium-induced acute kidney injury in rats
Lo et al. The roles of ZnT1 and ZnT4 in glucose-stimulated zinc secretion in prostate epithelial cells
Zhang et al. Evoking and enhancing ferroptosis of cancer stem cells by a liver-targeted and metal-organic framework-based drug delivery system inhibits the growth and lung metastasis of hepatocellular carcinoma
Liu et al. Point-of-care non-invasive enzyme-cleavable nanosensors for acute transplant rejection detection
Lan et al. Dual-responsive curcumin-loaded nanoparticles for the treatment of cisplatin-induced acute kidney injury
Ferdous et al. Remote effects and biodistribution of pulmonary instilled silver nanoparticles in mice
Saleh et al. Polyethylene glycol capped gold nanoparticles ameliorate renal ischemia–reperfusion injury in diabetic mice through AMPK-Nrf2 signaling pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant