CN114695579A - Solar cells and photovoltaic modules - Google Patents
Solar cells and photovoltaic modules Download PDFInfo
- Publication number
- CN114695579A CN114695579A CN202210611083.2A CN202210611083A CN114695579A CN 114695579 A CN114695579 A CN 114695579A CN 202210611083 A CN202210611083 A CN 202210611083A CN 114695579 A CN114695579 A CN 114695579A
- Authority
- CN
- China
- Prior art keywords
- doping
- substrate
- region
- layer
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 140
- 238000002161 passivation Methods 0.000 claims abstract description 127
- 230000005641 tunneling Effects 0.000 claims abstract description 65
- 230000004913 activation Effects 0.000 claims abstract description 44
- 230000007423 decrease Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 13
- 238000005538 encapsulation Methods 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 143
- 239000002344 surface layer Substances 0.000 abstract description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 57
- 229910052698 phosphorus Inorganic materials 0.000 description 55
- 125000004429 atom Chemical group 0.000 description 52
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 50
- 239000011574 phosphorus Substances 0.000 description 50
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 12
- 229910052814 silicon oxide Inorganic materials 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 125000004437 phosphorous atom Chemical group 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 150000001638 boron Chemical class 0.000 description 7
- 229910021419 crystalline silicon Inorganic materials 0.000 description 7
- 150000003017 phosphorus Chemical class 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002313 adhesive film Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910008065 Si-SiO Inorganic materials 0.000 description 2
- 229910006405 Si—SiO Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- -1 polyethylene octene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- FAWGZAFXDJGWBB-UHFFFAOYSA-N antimony(3+) Chemical compound [Sb+3] FAWGZAFXDJGWBB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/122—Active materials comprising only Group IV materials
- H10F77/1223—Active materials comprising only Group IV materials characterised by the dopants
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及光伏领域,特别涉及一种太阳能电池及光伏组件。The embodiments of the present application relate to the field of photovoltaics, and in particular, to a solar cell and a photovoltaic assembly.
背景技术Background technique
光伏组件常规的化石燃料日益消耗殆尽,在所有的可持续能源中,太阳能无疑是一种最清洁、最普遍和最有潜力的替代能源。目前,在所有的太阳电池中,晶体硅太阳电池是得到大范围商业推广的太阳能电池之一,这是由于硅材料在地壳中有着极为丰富的储量,同时晶体硅太阳电池相比其他类型的太阳能电池有着优异的电学性能和机械性能,因此,晶体硅太阳电池在光伏领域占据着重要的地位。Conventional fossil fuels for photovoltaic modules are increasingly being consumed. Among all sustainable energy sources, solar energy is undoubtedly one of the cleanest, most common and most potential alternative energy sources. At present, among all solar cells, crystalline silicon solar cells are one of the solar cells that have been widely commercialized. This is due to the extremely abundant reserves of silicon materials in the earth's crust, and crystalline silicon solar cells are compared with other types of solar cells. Cells have excellent electrical and mechanical properties, therefore, crystalline silicon solar cells occupy an important position in the field of photovoltaics.
随着太阳能电池技术的不断发展,金属接触区域的复合损失成为制约太阳能电池转换效率进一步提高的重要因素之一。为了提高太阳能电池的转换速率,常通过钝化接触来对太阳能电池进行钝化,以降低太阳能电池体内和表面的复合。常用的钝化接触电池有异质结(Heterojunction with Intrinsic Thin-layer,HIT)电池和隧穿氧化层钝化接触(Tunnel Oxide Passivated Contact,TOPCon)电池。然而,现有钝化接触电池的转换效率有待提高。With the continuous development of solar cell technology, the recombination loss in the metal contact area has become one of the important factors restricting the further improvement of the conversion efficiency of solar cells. In order to improve the conversion rate of solar cells, the solar cells are often passivated by passivating the contacts to reduce the recombination in the solar cell and on the surface. Commonly used passivated contact cells include Heterojunction with Intrinsic Thin-layer (HIT) cells and Tunnel Oxide Passivated Contact (TOPCon) cells. However, the conversion efficiency of existing passivated contact cells needs to be improved.
发明内容SUMMARY OF THE INVENTION
本申请实施例的目的在于提供一种太阳能电池及光伏组件,提升太阳能电池的钝化效果,提高太阳能电池的转换效率。The purpose of the embodiments of the present application is to provide a solar cell and a photovoltaic assembly, which can improve the passivation effect of the solar cell and improve the conversion efficiency of the solar cell.
为解决上述问题,本申请实施例提供一种太阳能电池,包括:基底、依次设置在基底背表面的隧穿层、场钝化层、第一钝化膜以及穿透第一钝化膜与场钝化层形成接触的第一电极;其中,基底、隧穿层和场钝化层均包括相同的第一掺杂元素,且第一掺杂元素在隧穿层中的掺杂浓度小于第一掺杂元素在场钝化层中的掺杂浓度,第一掺杂元素在隧穿层中的掺杂浓度大于第一掺杂元素在基底中的掺杂浓度;场钝化层包括第一掺杂区和第二掺杂区,第二掺杂区相对于第一掺杂区靠近隧穿层;其中,第一掺杂区的掺杂曲线斜率大于第二掺杂区的掺杂曲线斜率;第一掺杂元素经退火激活后得到激活的第一掺杂元素;掺杂曲线斜率为激活的第一掺杂元素的掺杂浓度随掺杂深度变化的曲线的斜率;在隧穿层朝向基底的方向上,隧穿层的掺杂曲线斜率逐渐减小。In order to solve the above problems, an embodiment of the present application provides a solar cell, comprising: a substrate, a tunneling layer sequentially arranged on the back surface of the substrate, a field passivation layer, a first passivation film, and a field penetrating the first passivation film and the field The passivation layer forms a contacted first electrode; wherein the substrate, the tunneling layer and the field passivation layer all include the same first doping element, and the doping concentration of the first doping element in the tunneling layer is smaller than that of the first doping element The doping concentration of the doping element in the field passivation layer, the doping concentration of the first doping element in the tunneling layer is greater than the doping concentration of the first doping element in the substrate; the field passivation layer includes the first doping and the second doping region, the second doping region is close to the tunneling layer relative to the first doping region; wherein, the doping curve slope of the first doping region is greater than the doping curve slope of the second doping region; A doping element is annealed and activated to obtain an activated first doping element; the slope of the doping curve is the slope of the curve of the doping concentration of the activated first doping element changing with the doping depth; direction, the slope of the doping curve of the tunneling layer gradually decreases.
另外,在基底背表面朝向基底内部的过程中,基底的掺杂曲线斜率逐渐增大并趋于稳定。In addition, when the back surface of the substrate faces the interior of the substrate, the slope of the doping curve of the substrate gradually increases and tends to be stable.
另外,基底的掺杂曲线斜率的小于或等于第二掺杂区的掺杂曲线斜率的平均值。In addition, the slope of the doping curve of the substrate is less than or equal to the average value of the slope of the doping curve of the second doping region.
另外,激活的第一掺杂元素在场钝化层中的掺杂浓度为1×1020atom/cm3~5×1020atom/cm3;第一掺杂元素在场钝化层中的激活率为50%~70%;激活率为激活的第一掺杂元素的掺杂浓度与总注入的第一掺杂元素的浓度的比值。In addition, the doping concentration of the activated first doping element in the field passivation layer is 1×10 20 atom/cm 3 to 5×10 20 atom/cm 3 ; the activation rate of the first doping element in the field passivation layer is 50% to 70%; the activation rate is the ratio of the doping concentration of the activated first doping element to the concentration of the total implanted first doping element.
另外,第一掺杂区的掺杂曲线斜率为5×1018~1×1019;第二掺杂区的掺杂曲线斜率为-5×1018~5×1018。In addition, the slope of the doping curve of the first doped region is 5×10 18 to 1×10 19 ; the slope of the doping curve of the second doped region is −5×10 18 to 5×10 18 .
另外,隧穿层的掺杂曲线斜率为-2.5×1019~-2.5×1018;基底的掺杂曲线斜率为-2.5×1019~0。In addition, the slope of the doping curve of the tunnel layer is -2.5×10 19 ~-2.5×10 18 ; the slope of the doping curve of the substrate is -2.5×10 19 ~0.
另外,在垂直于基底的表面的方向上,场钝化层的厚度为60nm~130nm,隧穿层的厚度为0.5nm~3nm。In addition, in the direction perpendicular to the surface of the substrate, the thickness of the field passivation layer is 60 nm˜130 nm, and the thickness of the tunneling layer is 0.5 nm˜3 nm.
另外,上述太阳能电池还包括:依次设置在基底上表面的发射极、第二钝化膜以及穿透第二钝化膜与发射极形成接触的第二电极;其中,基底还包括第二掺杂元素。In addition, the above-mentioned solar cell also includes: an emitter electrode, a second passivation film, and a second electrode formed in contact with the emitter electrode through the second passivation film, which are sequentially arranged on the upper surface of the substrate; wherein, the substrate further includes a second dopant element.
另外,第二掺杂元素经退火激活后得到激活的第二掺杂元素;激活的第二掺杂元素在基底上表面的掺杂浓度为5×1018atom/cm3~1.5×1019atom/cm3;第二掺杂元素在基底上表面的总注入掺杂元素的浓度为1.5×1019atom/cm3~1×1020atom/cm3。In addition, after the second doping element is activated by annealing, an activated second doping element is obtained; the doping concentration of the activated second doping element on the upper surface of the substrate is 5×10 18 atom/cm 3 ~1.5×10 19 atom /cm 3 ; the concentration of the total implanted doping element of the second doping element on the upper surface of the substrate is 1.5×10 19 atom/cm 3 to 1×10 20 atom/cm 3 .
另外,在基底上表面指向基底背表面的方向上,基底包括第一区、第二区和第三区;其中,第二区位于第一区和第三区之间;第一区相对于第二区靠近基底的上表面,第三区相对于第二区靠近基底的背表面;第二掺杂元素在第二区的掺杂浓度以及第二掺杂元素在第三区的掺杂浓度均小于第二掺杂元素在第一区的掺杂浓度。In addition, in the direction that the upper surface of the substrate points to the back surface of the substrate, the substrate includes a first area, a second area and a third area; wherein, the second area is located between the first area and the third area; the first area is relative to the first area. The second region is close to the upper surface of the substrate, and the third region is closer to the back surface of the substrate than the second region; the doping concentration of the second doping element in the second region and the doping concentration of the second doping element in the third region are both less than the doping concentration of the second doping element in the first region.
另外,激活的第二掺杂元素在第一区的掺杂浓度为5×1018atom/cm3~1.5×1019atom/cm3。In addition, the doping concentration of the activated second doping element in the first region is 5×10 18 atom/cm 3 to 1.5×10 19 atom/cm 3 .
另外,第一区的底面与基底上表面的距离为350nm~450nm;第二区的底面与基底上表面的距离为1000nm~1200nm;第三区的底面与基底上表面的距离为1200nm~1600nm。In addition, the distance between the bottom surface of the first region and the upper surface of the substrate is 350 nm to 450 nm; the distance between the bottom surface of the second region and the upper surface of the substrate is 1000 nm to 1200 nm; the distance between the bottom surface of the third region and the upper surface of the substrate is 1200 nm to 1600 nm.
另外,第二掺杂元素在第一区的激活概率为20%~40%;第二掺杂元素在第二区的激活概率为60%~90%;第二掺杂元素在第三区的激活概率为5%~90%;激活概率为经退火激活的第二掺杂元素的掺杂浓度与总注入的第二掺杂元素的浓度的比值。In addition, the activation probability of the second doping element in the first region is 20%-40%; the activation probability of the second doping element in the second region is 60%-90%; the activation probability of the second doping element in the third region The activation probability is 5% to 90%; the activation probability is the ratio of the doping concentration of the second doping element activated by annealing to the concentration of the total implanted second doping element.
本申请实施例还提供了一种光伏组件,包括:电池串、封装层和盖板,电池串由上述太阳能电池连接而成;封装层用于覆盖电池串的表面;盖板用于覆盖封装层远离电池串的表面。The embodiment of the present application also provides a photovoltaic module, comprising: a battery string, an encapsulation layer and a cover plate, the battery string is formed by connecting the above-mentioned solar cells; the encapsulation layer is used to cover the surface of the battery string; the cover plate is used to cover the encapsulation layer Keep away from the surface of the battery string.
与现有技术相比,本申请实施例提供的技术方案具有以下优点:Compared with the prior art, the technical solutions provided in the embodiments of the present application have the following advantages:
本申请实施例提供一种太阳能电池及光伏组件,包括基底、隧穿层、场钝化层、第一钝化膜以及第一电极;其中,基底、隧穿层和场钝化层中均掺杂有第一掺杂元素,第一掺杂元素在场钝化层中的掺杂浓度大于在隧穿层、在基底中的掺杂浓度,且随着掺杂深度的增加,第一掺杂元素的掺杂浓度逐渐减小。第一掺杂元素的掺杂曲线斜率随掺杂深度的增加呈梯度分布;在场钝化层的第一掺杂区中,掺杂曲线斜率先降低,随后在第二掺杂区掺杂曲线斜率稳定在0附近,表明第一掺杂元素的掺杂浓度在场钝化层的表层处变化幅度较大,随后变化趋于稳定;在隧穿层中,第一掺杂元素的掺杂曲线斜率为负,并大幅度减小,表明第一掺杂元素的掺杂浓度逐渐降低并且减低幅度较大;在基底中,第一掺杂元素的掺杂曲线斜率逐渐增大并趋于平稳。本申请实施例的第一掺杂元素在场钝化层中的掺杂浓度高于第一掺杂元素在隧穿层、基底中的掺杂浓度,且第一掺杂元素在场钝化层表层中实现了较高的激活率,有利于提升太阳能电池的钝化效果,提高太阳能电池的转换效率。Embodiments of the present application provide a solar cell and a photovoltaic assembly, including a substrate, a tunneling layer, a field passivation layer, a first passivation film and a first electrode; wherein the substrate, the tunneling layer and the field passivation layer are all doped with Doping with a first doping element, the doping concentration of the first doping element in the field passivation layer is greater than the doping concentration in the tunneling layer and in the substrate, and with the increase of doping depth, the doping concentration of the first doping element The doping concentration gradually decreases. The doping curve slope of the first doping element presents a gradient distribution with the increase of doping depth; in the first doping region of the field passivation layer, the doping curve slope first decreases, and then the doping curve slope in the second doping region It is stable near 0, indicating that the doping concentration of the first doping element changes greatly at the surface layer of the field passivation layer, and then the change tends to be stable; in the tunneling layer, the doping curve slope of the first doping element is Negative, and greatly decreased, indicating that the doping concentration of the first doping element gradually decreased and the decrease was large; in the substrate, the doping curve slope of the first doping element gradually increased and became stable. The doping concentration of the first doping element in the field passivation layer in the embodiments of the present application is higher than the doping concentration of the first doping element in the tunneling layer and the substrate, and the first doping element is in the surface layer of the field passivation layer A higher activation rate is achieved, which is beneficial to improve the passivation effect of the solar cell and improve the conversion efficiency of the solar cell.
附图说明Description of drawings
图1为本申请一实施例提供的一种太阳能电池的结构示意图;FIG. 1 is a schematic structural diagram of a solar cell according to an embodiment of the present application;
图2为本申请一实施例提供的太阳能电池中第一掺杂元素的掺杂浓度随掺杂深度变化的曲线图;FIG. 2 is a graph showing a change in doping concentration of a first doping element in a solar cell with doping depth according to an embodiment of the present application;
图3为本申请一实施例提供的太阳能电池中第一掺杂元素的掺杂曲线斜率随掺杂深度变化的分布图;3 is a distribution diagram of a doping curve slope of a first doping element in a solar cell according to an embodiment of the present application as a function of doping depth;
图4为本申请一实施例提供的太阳能电池中第二掺杂元素的掺杂浓度随掺杂深度变化的曲线图;FIG. 4 is a graph showing the change of the doping concentration of the second doping element in the solar cell with the doping depth according to an embodiment of the present application;
图5为本申请一实施例提供的太阳能电池中第二掺杂元素的激活概率随掺杂深度变化的分布图;FIG. 5 is a distribution diagram of the activation probability of the second doping element in the solar cell according to an embodiment of the present application as a function of doping depth;
图6为本申请一实施例提供的一种光伏组件的结构示意图。FIG. 6 is a schematic structural diagram of a photovoltaic module according to an embodiment of the present application.
具体实施方式Detailed ways
由背景技术可知:目前,隧穿氧化钝化接触(TOPCon)电池,因其优异的表面钝化效果、较高的理论效率以及与传统产线兼容性好等优势而受到持续关注。TOPCon技术最显著的特征是其高质量的超薄氧化硅和重掺杂多晶硅(poly-Si)的叠层结构,因此磷扩散掺杂是其中重要的一环,TOPCon背面优异的钝化接触需要通过磷扩散掺杂形成场效应来实现。It can be seen from the background art that at present, tunneling oxide passivation contact (TOPCon) cells have received continuous attention due to their excellent surface passivation effect, high theoretical efficiency and good compatibility with traditional production lines. The most notable feature of TOPCon technology is its high-quality stack structure of ultra-thin silicon oxide and heavily doped polysilicon (poly-Si), so phosphorus diffusion doping is an important part of it, and the excellent passivation contact on the back of TOPCon requires The field effect is achieved by phosphorus diffusion doping.
目前针对掺杂磷元素的研究主要集中在Poly-Si中磷元素的分布情况,对于Poly-Si-SiOx-Si中磷元素的浓度变化和分布研究还不完善,无法从本质上优化场效应和钝化接触,从而实现太阳能电池的进一步提效。At present, the research on doping phosphorus elements mainly focuses on the distribution of phosphorus elements in Poly-Si. The research on the concentration change and distribution of phosphorus elements in Poly-Si-SiO x -Si is not perfect, and it is impossible to essentially optimize the field effect. and passivated contacts, thereby achieving further efficiency improvements of the solar cell.
为了提高太阳能电池的转换效率,从本质上优化场效应和钝化接触,本申请实施例提出一种太阳能电池,第一掺杂元素在场钝化层中的掺杂浓度高于第一掺杂元素在隧穿层、基底中的掺杂浓度,且第一掺杂元素在场钝化层表层中实现了较高的激活率,有利于提升太阳能电池的钝化效果,提高太阳能电池的转换效率。本申请实施例还通过对太阳能电池的Poly-Si-SiOx-Si中磷元素的掺杂浓度分布进行分析,从而为磷掺杂工艺改进及电池提效提供基础。In order to improve the conversion efficiency of the solar cell and essentially optimize the field effect and the passivation contact, an embodiment of the present application proposes a solar cell in which the doping concentration of the first doping element in the field passivation layer is higher than that of the first doping element The doping concentration in the tunneling layer and the substrate, and the first doping element achieves a high activation rate in the surface layer of the field passivation layer, which is beneficial to improve the passivation effect of the solar cell and improve the conversion efficiency of the solar cell. The embodiment of the present application also analyzes the doping concentration distribution of the phosphorus element in the Poly-Si-SiO x -Si of the solar cell, thereby providing a basis for improving the phosphorus doping process and improving the efficiency of the battery.
参见图1,本申请实施例提供一种太阳能电池,包括:基底10、依次设置在基底10背表面的隧穿层121、场钝化层122、第一钝化膜123以及穿透第一钝化膜123与场钝化层122形成接触的第一电极124;其中,基底10、隧穿层121和场钝化层122均包括相同的第一掺杂元素,且第一掺杂元素在隧穿层121中的掺杂浓度小于第一掺杂元素在场钝化层122中的掺杂浓度,第一掺杂元素在隧穿层121中的掺杂浓度大于第一掺杂元素在基底10中的掺杂浓度;场钝化层122包括第一掺杂区和第二掺杂区,第二掺杂区相对于第一掺杂区靠近隧穿层121;其中,第一掺杂区的掺杂曲线斜率大于第二掺杂区的掺杂曲线斜率;第一掺杂元素经退火激活后得到激活的第一掺杂元素;掺杂曲线斜率为激活的第一掺杂元素的掺杂浓度随掺杂深度变化的曲线的斜率;在隧穿层121朝向基底10的方向上,隧穿层121的掺杂曲线斜率逐渐减小。Referring to FIG. 1 , an embodiment of the present application provides a solar cell, including: a
基底10用于接收入射光线并产生光生载流子。在一些实施例中,基底10的背表面与上表面相对设置,基底10的背表面和上表面均可用于接收入射光线或反射光线。The
在一些实施例中,基底10可以为硅基底,硅基底的材料可以包括单晶硅、多晶硅、非晶硅或者微晶硅中的至少一种。基底10可以为N型半导体基底,即基底10内掺杂有N型第一掺杂元素。第一掺杂元素可以为磷元素、砷元素或者锑元素中的任意一者。具体的,在第一掺杂元素为磷元素的情况下,可以通过掺杂工艺(例如,热扩散、离子注入等)对基底10的背表面进行磷扩散,使得隧穿层121、场钝化层122和基底10中均掺杂有磷元素,且通过退火处理以激活磷元素,从而得到激活的磷元素。In some embodiments, the
隧穿层121用于实现基底10的背表面的界面钝化,并通过隧穿效应方便载流子的迁移;在一些实施例中,可以采用沉积工艺形成隧穿层121,例如可以采用化学气相沉积工艺。在另一些实施例中,也可以采用原位生成工艺形成隧穿层121。具体地,隧穿层121可包括提供钝化和隧穿效应的电介质材料,例如,氧化物、氮化物、半导体、导电聚合物等。例如,隧穿层121的材料可包括氧化硅、氮化硅、氮氧化硅、本征非晶硅、本征多晶硅等。在一些实例中,隧穿层121实际效果上可以不是完美的隧道势垒,因为它可以例如含有诸如针孔的缺陷,这可以导致其它电荷载流子传输机制(例如漂移、扩散)相对于隧穿效应占主导。The
场钝化层122用于形成场钝化,在一些实施例中,场钝化层122的材料可以为掺杂硅,具体地,在一些实施例中,场钝化层122与基底10具有相同导电类型的掺杂元素,掺杂硅可以包括N型掺杂多晶硅、N型掺杂微晶硅或N型掺杂非晶硅的一种或多种。优选地,场钝化层122的材料为掺磷多晶硅层。在一些实施例中,可以采用沉积工艺形成场钝化层122。具体地,可以在隧穿层121远离基底10的背表面沉积本征多晶硅以形成多晶硅层,并通过离子注入以及源扩散的方式掺杂第一掺杂元素,形成N型掺杂多晶硅层,以N型掺杂多晶硅层作为场钝化层122。在一些实施例中,可以在隧穿层121远离基底10的背表面先形成N型掺杂非晶硅,再经过高温处理之后形成N型掺杂多晶硅层。The
参见图1,第一钝化膜123为背面钝化膜,形成在场钝化层122远离基底10背表面的一侧。在一些实施例中,第一钝化膜123的材料可以是氧化硅、氧化铝、氮化硅、氮氧化硅或者碳氮氧化硅中的一种或多种。具体地,在一些实施例中,第一钝化膜123可以为单层结构。在另一些实施例中,第一钝化膜123也可以为多层结构。在一些实施例中,可以采用等离子体增强化学的气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)方法形成第一钝化膜123。Referring to FIG. 1 , the
第一钝化膜123使存在于基底10背表面的场钝化层122中的缺陷钝化,去除少数载流子的复合部位,从而增加太阳能电池的开路电压。另外,还可以在第一钝化膜123远离基底10的背表面的一侧设置第一减反膜,第一减反膜减小入射在基底10的背表面上的光的反射率,从而增加到达通过基底10和随穿层121形成的隧道结的光的量,从而增大太阳能电池的短路电流(Isc)。因此,第一钝化膜123和第一减反膜能够增大太阳能电池的开路电压和短路电流,从而提高太阳能电池的转换效率。The
在一些实施例中,第一减反膜可由能够防止表面反射的各种材料形成。例如,第一减反膜的材料可以是氮化硅、含氢的氮化硅、氧化硅、氮氧化硅、氧化铝、MgF2、ZnS、TiO2或CeO2中的一种或多种。具体地,在一些实施例中,第一减反膜可以为单层结构。在另一些实施例中,第一减反膜也可以为多层结构。在一些实施例中,可以采用PECVD方法形成第一减反膜。In some embodiments, the first anti-reflection coating may be formed of various materials capable of preventing surface reflection. For example, the material of the first anti-reflection film may be one or more of silicon nitride, hydrogen-containing silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, MgF 2 , ZnS, TiO 2 or CeO 2 . Specifically, in some embodiments, the first anti-reflection film may have a single-layer structure. In other embodiments, the first anti-reflection film can also be a multi-layer structure. In some embodiments, the first anti-reflection film may be formed using a PECVD method.
在一些实施例中,第一电极124穿透第一钝化膜123与场钝化层122形成电连接。具体的,第一电极124经由形成在第一钝化膜123的开口(即,第一电极124在穿透第一钝化膜123的同时)电连接到场钝化层122。In some embodiments, the
在一些实施例中,形成第一电极124的方法可以包括:在预设区域的第一钝化膜123表面印刷导电浆料,导电浆料中的导电材料可以为银、铝、铜、锡、金、铅或者镍中的至少一者;对导电浆料进行烧结处理,例如可以采用750℃~850℃峰值温度进行烧结处理,形成第一电极124。In some embodiments, the method of forming the
在一些实施例中,对于图1所述的太阳能电池,在第一掺杂元素为磷元素的情况下,可通过电化学电容-电压法(Electrochemical Capacitance Voltage,ECV)和二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)测试磷扩散掺杂工艺中激活的磷原子浓度和总注入的磷原子浓度,得到激活的磷原子浓度和总注入的磷原子浓度随掺杂深度的分布曲线,如图2所示。从图2中可以看出,总注入磷元素浓度在场钝化层122、隧穿层121、基底10中掺杂浓度的分布趋势为掺杂浓度逐渐降低。在场钝化层122(Poly-Si薄膜)中,激活的磷元素浓度约为3×1020atom/cm3,总注入磷元素浓度约为5×1020atom/cm3,磷元素的激活率为50%-70%,实现了较高概率的磷元素激活。In some embodiments, for the solar cell described in FIG. 1 , when the first doping element is phosphorus, electrochemical capacitance-voltage (Electrochemical Capacitance Voltage, ECV) and secondary ion mass spectrometry (Secondary ion mass spectrometry) can be used Ion Mass Spectrometry, SIMS) tests the activated phosphorus atom concentration and the total implanted phosphorus atom concentration in the phosphorus diffusion doping process, and obtains the distribution curve of the activated phosphorus atom concentration and the total implanted phosphorus atom concentration with the doping depth, as shown in Figure 2 shown. It can be seen from FIG. 2 that the distribution trend of the doping concentration of the total implanted phosphorus element concentration in the
参看图2,场钝化层122包括具有高掺杂浓度的第一掺杂区以及掺杂浓度比第一掺杂区低的第二掺杂区,因此,从而改进光入射在场钝化层122上时的钝化效应。同时,也能够降低场钝化层122与第一电极124的接触电阻,从而提高太阳能电池的转换效率。Referring to FIG. 2 , the
如图2所示,在SIMS测试得到的总注入磷元素浓度谱中存在一个明显的掺杂浓度峰,这主要是由于在场钝化层122至隧穿层121(Poly-Si-SiOx薄膜)的界面两侧,磷元素所处的化学环境有所改变,影响了磷元素的离子化率,特别是在隧穿层121的SiOx薄层中存在丰富的氧元素,在SIMS正离子测试模式下会增大磷元素的信号强度,导致测试得到的掺杂浓度偏高。而当测试深度到达基底10所在的单晶硅层时,信号强度会逐渐稳定并变平稳。As shown in Fig. 2, there is an obvious doping concentration peak in the total implanted phosphorus element concentration spectrum obtained by SIMS test, which is mainly due to the presence of the
作为一种示例,结合ECV和SIMS测试可以发现,Poly-Si-SiOx和SiOx-Si的界面深度位置分别处于约94nm和101nm。如图2所示,在场钝化层122的表层至隧穿层121(界面深度0nm~94nm)的位置处,总注入磷元素浓度约为5×1020atom/cm3,且变化趋势平稳;在界面深度约94nm的位置处,总注入磷元素浓度开始发生波动,在界面深度大致在94nm~101nm的区间内存在一个掺杂浓度峰;而在界面深度大于101nm后,总注入磷元素浓度逐渐减小并于界面深度约为310nm处达到稳定,在界面深度为310nm~500nm之间,总注入磷元素浓度位于5×1018atom/cm3~5×1019atom/cm3之间。而激活的磷元素浓度在场钝化层122的表层至隧穿层121(界面深度0nm~94nm)的位置处,激活的磷元素浓度约为3×1020atom/cm3,且变化趋势平稳;在界面深度约94nm的位置处,激活的磷元素浓度大幅度降低;而在界面深度大于101nm后,激活的磷元素浓度变化趋势为缓慢降低,并在界面深度为160nm的位置附近达到最低值。As an example, combined with ECV and SIMS tests, it can be found that the interface depth positions of Poly-Si- SiOx and SiOx -Si are about 94 nm and 101 nm, respectively. As shown in FIG. 2 , from the surface layer of the
需要说明的是,掺杂曲线为磷掺杂浓度(单位atom/cm3)与掺杂深度(单位nm)的关系。掺杂曲线斜率为经退火激活的磷元素的掺杂浓度随掺杂深度变化的曲线的斜率。It should be noted that the doping curve is the relationship between the phosphorus doping concentration (unit atom/cm 3 ) and the doping depth (unit nm). The slope of the doping curve is the slope of the curve of the doping concentration of the phosphorus element activated by annealing as a function of doping depth.
图3示出了磷元素掺杂曲线斜率随掺杂深度的梯度分布,可以更清晰地分析磷元素的掺杂浓度在TOPCon结构中的变化情况。如图3所示,第一掺杂区与第二掺杂区的分界线为虚线D线,隧穿层121(SiOx薄膜)与第二掺杂区的分界线为虚线E线,隧穿层121与基底10的分界线为虚线C线。在场钝化层122(Poly-Si薄膜)的第一掺杂区中,磷元素掺杂曲线斜率大幅降低,在第二掺杂区中,磷元素掺杂曲线斜率的下降幅度变缓,随后稳定在0附近,表明磷掺杂浓度在场钝化层122的第一掺杂区中(也可以称为Poly-Si表层)处变化幅度较大,随后在场钝化层122的第一掺杂区中磷掺杂浓度的变化趋于稳定;在隧穿层121(SiOx薄膜)中,磷元素掺杂曲线斜率为负值,并大幅减小,表明磷掺杂浓度逐渐降低并且降低幅度逐渐变大。Figure 3 shows the gradient distribution of the slope of the phosphorus element doping curve with the doping depth, which can more clearly analyze the change of the phosphorus element doping concentration in the TOPCon structure. As shown in FIG. 3 , the boundary line between the first doped region and the second doped region is a dashed line D, and the boundary line between the tunneling layer 121 (SiO x film) and the second doped region is a dashed line E. The boundary line between the
在一些实施例中,在基底10背表面朝向基底10内部的过程中,基底10的掺杂曲线斜率逐渐增大并趋于稳定。如图3所示,在基底10中,随着界面深度的增大,磷元素在基底10中的掺杂曲线斜率逐渐增大并趋于稳定,表明磷元素在基底10中的掺杂浓度降低幅度变慢并逐渐趋于稳定。In some embodiments, when the back surface of the
在一些实施例中,基底10的掺杂曲线斜率的小于或等于第二掺杂区的掺杂曲线斜率的平均值。继续参看图3,基底10的掺杂曲线斜率逐渐增大并趋于一个稳定值,该稳定值大致等于第二掺杂区的掺杂曲线斜率的平均值。In some embodiments, the slope of the doping curve of the
在一些实施例中,激活的第一掺杂元素在场钝化层122中的掺杂浓度为1×1020atom/cm3~5×1020atom/cm3;第一掺杂元素在场钝化层122中的激活率为50%~70%;激活率为激活的第一掺杂元素的掺杂浓度与总注入的第一掺杂元素的浓度的比值。In some embodiments, the doping concentration of the activated first doping element in the
如图2所示,在第一掺杂元素为磷元素的情况下,激活的磷元素在场钝化层122中的掺杂浓度可以为1×1020atom/cm3、2×1020atom/cm3、3×1020atom/cm3、4×1020atom/cm3或5×1020atom/cm3;优选的,激活的磷元素在场钝化层122中的掺杂浓度可以为3×1020atom/cm3,总注入的磷元素浓度约为5×1020atom/cm3,第一掺杂元素在场钝化层122中的激活率为50%~70%,实现了较高概率的磷元素激活。As shown in FIG. 2 , when the first doping element is phosphorus element, the doping concentration of the activated phosphorus element in the
在一些实施例中,第一掺杂区的掺杂曲线斜率为5×1018~1×1019;第二掺杂区的掺杂曲线斜率为-5×1018~5×1018。In some embodiments, the slope of the doping curve of the first doped region is 5×10 18 to 1×10 19 ; the slope of the doping curve of the second doped region is −5×10 18 to 5×10 18 .
如图3所示,在场钝化层122的表层至界面深度约为10mn的位置处为第一掺杂区,第一掺杂区的掺杂曲线斜率大幅降低;在第二掺杂区内,掺杂曲线斜率先平缓降低(界面深度约为10nm~20mn),掺杂曲线斜率在界面深度约为20nm的位置处区域平稳,并一直处于平稳状态且持续至Poly-Si-SiOx薄膜的界面位置处(界面深度约为94mn)。As shown in FIG. 3 , the position from the surface layer of the
在一些实施例中,隧穿层121的掺杂曲线斜率为-2.5×1019~-2.5×1018;基底10的掺杂曲线斜率为-2.5×1019~0。In some embodiments, the slope of the doping curve of the
请继续参看图3,在隧穿层121至基底10的界面深度范围内,也就是图3中SiOx薄膜至晶硅层的界面深度范围内,掺杂曲线斜率开始大幅度降低(如图3中A处所示),从2.5×1018大幅度降低至-2.5×1019。这主要是因为磷元素从Poly-Si薄膜中进入SiOx薄膜中,磷元素所处的化学环境有所改变,影响了磷元素的离子化率,导致磷元素的掺杂浓度大幅度降低。在基底10(Si)的背表面至基底10的上表面的界面深度区间内,掺杂曲线斜率从-2.5×1019开始大幅度升高(如图3中B处所示),直至2.5×1018,然后磷掺杂曲线斜率趋于稳定。从图3中可以看出,在SiOx-Si的界面位置的左、右两侧的掺杂曲线斜率曲线关于图3中虚线C大致对称,且在基底10中稳定后的磷掺杂曲线斜率大致等于第二掺杂区的掺杂曲线斜率的平均值,从图3中可以看出,第二掺杂区的磷掺杂曲线斜率的中心线与基底10中稳定后的磷掺杂曲线斜率的中心线大致齐平。Please continue to refer to FIG. 3 , within the interface depth range from the
在一些实施例中,在垂直于基底10的表面的方向上,场钝化层122的厚度为60nm~130nm,隧穿层121的厚度为0.5nm~3nm。In some embodiments, in a direction perpendicular to the surface of the
在一些实施例中,为了提供足够的钝化和隧穿效应,隧穿层121的厚度可以为0.5nm~3nm。当隧穿层121的厚度超过3nm时,无法有效地执行隧穿,太阳能电池可能无法工作,当隧穿层121的厚度低于0.5nm时,钝化性能可能变差。为了进一步改进隧穿效应,隧穿层121的厚度还可以为0.5nm~2nm,或者,隧穿层121的厚度还可以为0.5nm~1nm。In some embodiments, in order to provide sufficient passivation and tunneling effects, the thickness of the
在一些实施例中,基底10的厚度为130μm~250μm。In some embodiments, the thickness of the
本申请实施例提供一种太阳能电池及光伏组件,通过分析太阳能电池磷扩散掺杂工艺磷原子的激活率和掺杂曲线斜率,为优化场效应和钝化接触及电池提效提供理论基础。通过上述分析得知:磷原子在场钝化层122的激活率为50%-70%;在Poly-Si薄膜中,磷原子掺杂曲线斜率先降低,随后稳定在5×1018至-5×1018范围内,在SiOx薄膜中,磷原子掺杂曲线斜率从约-1×1018降低至约-3×1019,在晶硅中,磷原子掺杂曲线斜率逐渐增大,并稳定在-1×1017至-1×1018范围内。The embodiments of the present application provide a solar cell and a photovoltaic module. By analyzing the activation rate and doping curve slope of phosphorus atoms in the phosphorus diffusion doping process of the solar cell, a theoretical basis is provided for optimizing field effects and passivation contacts and improving battery efficiency. Through the above analysis, it is known that the activation rate of phosphorus atoms in the
在一些实施例中,上述太阳能电池还包括:依次设置在基底10上表面的发射极111、第二钝化膜112以及穿透第二钝化膜112与发射极111形成接触的第二电极114;其中,基底10还包括第二掺杂元素。In some embodiments, the above-mentioned solar cell further includes: an
具体的,上述太阳能电池的制备工艺包括:首先,在基底10上表面沉积P型掺杂源,以形成薄膜层。然后通过掺杂工艺将预设区域的薄膜层中的P型掺杂源扩散至基底10内,以在预设区域的基底10内部形成发射极111。Specifically, the above-mentioned preparation process of the solar cell includes: first, depositing a P-type dopant source on the upper surface of the
在一些实施例中,P型掺杂源为三溴化硼或者三氯化硼等含三价元素的单质或化合物。在一些实施例中,当P型掺杂源为硼源时,第二掺杂元素为硼元素;可采用三溴化硼或者三氯化硼等含三价元素的单质或化合物作为掺杂源。具体的,可通过掺杂工艺(例如:激光掺杂工艺、等离子体定位掺杂工艺或离子注入工艺)将预设区域的第二掺杂元素扩散至基底10的上表面内。In some embodiments, the P-type doping source is a trivalent element-containing element or compound such as boron tribromide or boron trichloride. In some embodiments, when the P-type doping source is a boron source, the second doping element is boron; a simple substance or compound containing a trivalent element such as boron tribromide or boron trichloride can be used as the doping source . Specifically, the second doping element in the predetermined region can be diffused into the upper surface of the
在一些实施例中,在基底10上表面形成薄膜层之前,对基底10的上表面进行预处理,包括对基底10进行清洗以及对基底10的上表面进行制绒;具体的,可采用化学刻蚀、激光刻蚀、机械法或者等离子刻蚀等工艺在基底10的上表面形成金字塔状的纹理结构,一方面可以增加基底10上表面的粗糙度,使得基底10上表面对入射光线的反射率较小,从而增加对入射光线的吸收利用率。另一方面,相较于基底1的上表面为平坦表面而言,金字塔状的纹理结构的存在,使得基底10上表面的表面积增大,因此,使得基底10上表面中可以存储更多的第二掺杂元素有利于形成浓度较高的发射极111。在一些实施例中,发射极111为扩散到基底10上表面至一定深度的掺杂层,在基底10内形成PN结结构。In some embodiments, before the film layer is formed on the upper surface of the
参见图1,第二钝化膜112为正面钝化膜,形成在发射极111远离基底10上表面的一侧。第二钝化膜112的材料可以是氧化硅、氧化铝、氮化硅、氮氧化硅或者碳氮氧化硅中的一种或多种。具体地,在一些实施例中,第二钝化膜112可以为单层结构。在另一些实施例中,第二钝化膜112也可以为多层结构。在一些实施例中,可以采用PECVD方法形成第二钝化膜112。Referring to FIG. 1 , the
另外,还可以在第二钝化膜112远离基底10上表面的一侧设置第二减反膜,第二减反膜减小入射在基底10上表面上的光的反射率,从而增加到达通过基底10和发射极111形成的隧道结的光的量,从而增大太阳能电池的短路电流(Isc)。因此,第二钝化膜112和第二减反膜能够增大太阳能电池的开路电压和短路电流,从而提高太阳能电池的转换效率。In addition, a second anti-reflection film can also be provided on the side of the
在一些实施例中,第二减反膜的材料与第一减反膜的材料相同。例如,第二减反膜的材料可以是氮化硅、含氢的氮化硅、氧化硅、氮氧化硅、氧化铝、MgF2、ZnS、TiO2或CeO2中的一种或多种。具体地,在一些实施例中,第二减反膜可以为单层结构。在另一些实施例中,第二减反膜也可以为多层结构。在一些实施例中,可以采用PECVD方法形成第二减反膜。In some embodiments, the material of the second AR coating is the same as the material of the first AR coating. For example, the material of the second anti-reflection film may be one or more of silicon nitride, hydrogen-containing silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, MgF 2 , ZnS, TiO 2 or CeO 2 . Specifically, in some embodiments, the second anti-reflection film may have a single-layer structure. In other embodiments, the second anti-reflection film can also be a multi-layer structure. In some embodiments, the PECVD method can be used to form the second anti-reflection film.
在一些实施例中,第二电极114穿透第二钝化膜112与发射极111形成电连接。具体的,第二电极114经由形成在第二钝化膜112的开口(即,第二电极114在穿透第二钝化膜112的同时)电连接到发射极111。具体地,形成第二电极114的方法可以与形成第一电极124的方法相同,且第二电极114的材料也可以与第一电极124的材料相同。In some embodiments, the
在一些实施例中,对于图1所述的太阳能电池,第二掺杂元素经退火激活后得到激活的第二掺杂元素;激活的第二掺杂元素在基底10上表面的掺杂浓度为5×1018atom/cm3~1.5×1019atom/cm3;第二掺杂元素在基底10上表面的总注入掺杂元素的浓度为1.5×1019atom/cm3~1×1020atom/cm3。In some embodiments, for the solar cell shown in FIG. 1 , the activated second doping element is obtained after the second doping element is activated by annealing; the doping concentration of the activated second doping element on the upper surface of the
在一些实施例中,激活的第二掺杂元素在基底10上表面的掺杂浓度例如可以为5×1018atom/cm3、9×1018atom/cm3、1×1019atom/cm3、1.2×1019atom/cm3或1.5×1019atom/cm3;第二掺杂元素在基底10上表面的总注入掺杂元素的浓度例如可以为1.5×1019atom/cm3、3×1019atom/cm3、6×1019atom/cm3、8×1019atom/cm3、1×1020atom/cm3。In some embodiments, the doping concentration of the activated second doping element on the upper surface of the
优选的,激活的第二掺杂元素在基底10上表面的掺杂浓度为1×1019atom/cm3;第二掺杂元素在基底10上表面的总注入掺杂元素的浓度为3×1019atom/cm3~5×1019atom/cm3。Preferably, the doping concentration of the activated second doping element on the upper surface of the
在一些实施例中,对于图1所述的太阳能电池,通过ECV测试和SIMS测试得到了激活的硼元素浓度和总注入硼元素浓度随掺杂深度的变化分布曲线,如图4所示。从图4中可以看出,晶硅表层的总注入硼元素浓度约为3×1019atom/cm3,并随掺杂深度的增加,总注入硼浓度呈现先提高后下降的趋势,在约300nm深度处达到峰值浓度,约为5×1019atom/cm3。激活的硼元素浓度呈现与总注入硼元素浓度相同的变化趋势,表层的激活硼浓度约为1×1019atom/cm3,并也在300nm深度处达到峰值。In some embodiments, for the solar cell described in FIG. 1 , the distribution curves of activated boron concentration and total implanted boron concentration with doping depth are obtained through ECV test and SIMS test, as shown in FIG. 4 . It can be seen from Fig. 4 that the total implanted boron concentration in the surface layer of crystalline silicon is about 3×10 19 atom/cm 3 , and with the increase of doping depth, the total implanted boron concentration first increases and then decreases. The peak concentration is reached at a depth of 300 nm, which is about 5×10 19 atoms/cm 3 . The activated boron concentration showed the same trend as the total implanted boron concentration. The activated boron concentration in the surface layer was about 1×10 19 atom/cm 3 and also reached a peak at 300 nm depth.
在一些实施例中,在基底10上表面指向基底10背表面的方向上,基底10包括第一区、第二区和第三区;其中,第二区位于第一区和第三区之间;第一区相对于第二区靠近基底10的上表面,第三区相对于第二区靠近基底10的背表面;第二掺杂元素在第二区的掺杂浓度以及第二掺杂元素在第三区的掺杂浓度均小于第二掺杂元素在第一区的掺杂浓度。In some embodiments, the
在一些实施例中,激活的第二掺杂元素在第一区的掺杂浓度为5×1018atom/cm3~1.5×1019atom/cm3。In some embodiments, the doping concentration of the activated second doping element in the first region is 5×10 18 atom/cm 3 to 1.5×10 19 atom/cm 3 .
在一些实施例中,第一区的底面与基底10上表面的距离为350nm~450nm;第二区的底面与基底10上表面的距离为1000nm~1200nm;第三区的底面与基底10上表面的距离为1200nm~1600nm。In some embodiments, the distance between the bottom surface of the first region and the upper surface of the
如图4所示,第一区的界面深度大约位于400nm附近位置,激活的硼元素在第一区的表层的掺杂浓度为1×1019atom/cm3,随着掺杂深度的增加,激活的硼元素在第一区的掺杂浓度先缓慢增大,增大至最高点(掺杂浓度约为1.5×1019atom/cm3),然后再缓慢降低(掺杂浓度约为1.1×1019atom/cm3);激活的硼元素在第二区的掺杂浓度持续降低,直至1×1018atom/cm3附近;激活的硼元素在第三区的掺杂浓度继续降低,达到最低值,约在1×1017atom/cm3附近。As shown in FIG. 4 , the interface depth of the first region is about 400 nm, and the doping concentration of activated boron element in the surface layer of the first region is 1×10 19 atom/cm 3 . As the doping depth increases, The doping concentration of the activated boron element in the first region first increases slowly, increases to the highest point (doping concentration is about 1.5×10 19 atom/cm 3 ), and then slowly decreases (doping concentration is about 1.1× 10 19 atom/cm 3 ); the doping concentration of activated boron in the second region continued to decrease until around 1×10 18 atom/cm 3 ; the doping concentration of activated boron in the third region continued to decrease, reaching The lowest value is around 1×10 17 atom/cm 3 .
在一些实施例中,第二掺杂元素在第一区的激活概率为20%~40%;第二掺杂元素在第二区的激活概率为60%~90%;第二掺杂元素在第三区的激活概率为5%~90%;激活概率为经退火激活的第二掺杂元素的掺杂浓度与总注入的第二掺杂元素的浓度的比值。In some embodiments, the activation probability of the second doping element in the first region is 20%-40%; the activation probability of the second doping element in the second region is 60%-90%; The activation probability of the third region is 5%-90%; the activation probability is the ratio of the doping concentration of the second doping element activated by annealing to the concentration of the total implanted second doping element.
在基底10表层时,由于总注入硼元素的浓度高,表层掺杂浓度低,因此第一区的掺杂元素的激活概率为20%~40%;在第二区和第三区时,随着掺杂深度的增加,总注入硼元素浓度减小,激活概率增加,在掺杂深度大于1100nm时,扩散时硼元素的激活概率在掺杂深度为1100nm处达到极限,在掺杂深度继续增加时,激活概率又急剧下降。In the surface layer of the
图5示出了硼扩散掺杂工艺中硼原子激活概率随掺杂深度的梯度分布曲线。通过测得在不同的掺杂深度下硼原子的激活概率数据,进行数据拟合,得到拟合曲线。通过拟合曲线可以得知:晶硅表层及浅结区域(掺杂深度小于400nm)硼原子激活概率较低,约为33%左右,表明死层问题主要集中在这部分区域,可通过扩散工艺进行针对性调整。当掺杂深度超过400nm时,硼原子激活概率逐渐提高,在约1100nm处达到峰值,峰值激活概率在60%-90%范围内。当掺杂深度进一步增加时,硼原子激活概率急剧降低。由此可见,基底10表层(掺杂深度为0nm至400nm)的硼原子激活概率较稳定,在20%-40%范围内;当掺杂深度从400nm增长到1400nm时,硼原子激活概率先增大后降低,峰值位置位于掺杂深度为1000nm至1200nm深度处,峰值激活概率在60%-90%范围内。FIG. 5 shows the gradient distribution curve of the activation probability of boron atoms with the doping depth in the boron diffusion doping process. By measuring the activation probability data of boron atoms at different doping depths, fitting the data to obtain the fitting curve. By fitting the curve, it can be known that the activation probability of boron atoms in the surface layer of crystalline silicon and the shallow junction area (doping depth less than 400nm) is relatively low, about 33%, indicating that the dead layer problem is mainly concentrated in this part of the area, and the diffusion process can be used. Make targeted adjustments. When the doping depth exceeds 400 nm, the activation probability of boron atoms gradually increases, reaching a peak at about 1100 nm, and the peak activation probability is in the range of 60%-90%. When the doping depth is further increased, the activation probability of boron atoms decreases sharply. It can be seen that the activation probability of boron atoms in the surface layer of the substrate 10 (doping depth is 0nm to 400nm) is relatively stable, in the range of 20%-40%; when the doping depth increases from 400nm to 1400nm, the activation probability of boron atoms increases first The peak position is located at the doping depth of 1000nm to 1200nm, and the peak activation probability is in the range of 60%-90%.
参见图6,本申请实施例还提供了一种光伏组件,包括:电池串101、封装层102和盖板103,电池串101由上述实施例提供的太阳能电池连接而成;封装层102用于覆盖电池串101的表面;盖板103用于覆盖封装层102远离电池串101的表面。Referring to FIG. 6 , an embodiment of the present application further provides a photovoltaic module, comprising: a
在一些实施例中,太阳能电池可以以整片或者多个分片的形式电连接形成多个电池串101,多个电池串101以串联和/或并联的方式进行电连接。In some embodiments, the solar cells may be electrically connected in the form of a whole piece or a plurality of pieces to form a plurality of
具体地,在一些实施例中,多个电池串101之间可以通过导电带104电连接。封装层102覆盖太阳能电池的正面以及背面。具体地,封装层102可以为乙烯-乙酸乙烯共聚物(EVA)胶膜、聚乙烯辛烯共弹性体(POE)胶膜或者聚对苯二甲酸乙二醇酯(PET)胶膜等有机封装胶膜。在一些实施例中,盖板103可以为玻璃盖板、塑料盖板等具有透光功能的盖板103。具体地,盖板103朝向封装层102的表面可以为凹凸表面,从而增加入射光线的利用率。Specifically, in some embodiments, the plurality of
本申请实施例提供一种太阳能电池及光伏组件,通过在基底10的背表面掺杂第一掺杂元素以及在基底10的上表面掺杂第二掺杂元素,且第一掺杂元素在场钝化层中的掺杂浓度高于在隧穿层、基底中的掺杂浓度,且第一掺杂元素在场钝化层表层中实现了较高的激活率,有利于提升太阳能电池的钝化效果,提高太阳能电池的转换效率。另外,通过增大第二掺杂元素在基底上表面的表层的激活概率,以改善基底表层及浅结区域的第二掺杂元素的掺杂分布情况,减小死层的影响,改善太阳能电池的整体性能,从而提升太阳能电池的转换效率。The embodiment of the present application provides a solar cell and a photovoltaic assembly, by doping the back surface of the
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific examples for realizing the present application, and in practical applications, various changes can be made in form and details without departing from the spirit and the spirit of the present application. scope. Any person skilled in the art can make respective changes and modifications without departing from the spirit and scope of the present application. Therefore, the protection scope of the present application should be subject to the scope defined by the claims.
Claims (14)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210611083.2A CN114695579B (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
CN202211091861.6A CN115377228A (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
EP22181369.4A EP4287267B1 (en) | 2022-06-01 | 2022-06-27 | Photovoltaic cell and photovoltaic module |
AU2022204658A AU2022204658B1 (en) | 2022-06-01 | 2022-06-29 | Photovoltaic cell and photovoltaic module |
JP2022108836A JP7490021B2 (en) | 2022-06-01 | 2022-07-06 | Solar Cells and Photovoltaic Modules |
US17/859,975 US12159952B2 (en) | 2022-06-01 | 2022-07-07 | Photovoltaic cell and photovoltaic module |
ATGM50174/2022U AT18393U1 (en) | 2022-06-01 | 2022-11-28 | PHOTOVOLTAIC CELL AND PHOTOVOLTAIC MODULE |
DE202022106692.2U DE202022106692U1 (en) | 2022-06-01 | 2022-11-29 | Photovoltaic cell and photovoltaic module |
GB2218026.9A GB2611203B (en) | 2022-06-01 | 2022-11-30 | Photovoltaic cell and photovoltaic module |
GB2312290.6A GB2617526B (en) | 2022-06-01 | 2022-11-30 | Photovoltaic cell and photovoltaic module |
FR2212572A FR3136316B3 (en) | 2022-06-01 | 2022-11-30 | PHOTOVOLTAIC CELL AND PHOTOVOLTAIC MODULE |
NL2033699A NL2033699B1 (en) | 2022-06-01 | 2022-12-09 | Photovoltaic cell and photovoltaic module |
JP2023056857A JP7515650B2 (en) | 2022-06-01 | 2023-03-31 | Solar Cells and Photovoltaic Modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210611083.2A CN114695579B (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211091861.6A Division CN115377228A (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114695579A true CN114695579A (en) | 2022-07-01 |
CN114695579B CN114695579B (en) | 2022-11-01 |
Family
ID=82131082
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211091861.6A Pending CN115377228A (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
CN202210611083.2A Active CN114695579B (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211091861.6A Pending CN115377228A (en) | 2022-06-01 | 2022-06-01 | Solar cells and photovoltaic modules |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN115377228A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118507561A (en) * | 2023-09-27 | 2024-08-16 | 隆基绿能科技股份有限公司 | Solar cell and preparation thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117219682A (en) * | 2023-08-30 | 2023-12-12 | 天合光能股份有限公司 | Solar cell, manufacturing method thereof, photovoltaic module and photovoltaic system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515477A (en) * | 2012-06-22 | 2014-01-15 | Lg电子株式会社 | Method for manufacturing solar cell and dopant layer thereof |
CN103606596A (en) * | 2013-11-26 | 2014-02-26 | 英利集团有限公司 | Phosphorus doping silicon wafer, manufacturing method of phosphorus doping silicon wafer, solar cell and manufacturing method of solar cell |
US20160126400A1 (en) * | 2014-11-04 | 2016-05-05 | Lg Electronics Inc. | Solar cell and method for manufacturing the same |
US20170005218A1 (en) * | 2015-06-30 | 2017-01-05 | Lg Electronics Inc. | Solar cell and method of manufacturing the same |
CN106784128A (en) * | 2015-11-20 | 2017-05-31 | 上海神舟新能源发展有限公司 | The preparation method of preceding emitter junction back side tunnel oxidation passivation contact high-efficiency battery |
NL2018356B1 (en) * | 2017-02-10 | 2018-09-21 | Tempress Ip B V | A method of manufacturing a passivated solar cell and resulting passivated solar cell |
CN109285896A (en) * | 2018-07-31 | 2019-01-29 | 晶澳(扬州)太阳能科技有限公司 | A kind of solar cell and preparation method thereof |
CN110165017A (en) * | 2019-04-18 | 2019-08-23 | 中国科学院宁波材料技术与工程研究所 | Prepare the quick annealing method of tunnelling oxygen passivation contact structures |
CN111133589A (en) * | 2017-09-22 | 2020-05-08 | 荷兰应用自然科学研究组织Tno | Dopant-enhanced solar cells and methods of making the same |
CN111509055A (en) * | 2020-03-20 | 2020-08-07 | 中国科学院宁波材料技术与工程研究所 | Interface laminated film, preparation method thereof and application thereof in passivation contact battery |
CN111883420A (en) * | 2020-08-05 | 2020-11-03 | 中国科学院半导体研究所 | Thermal diffusion method for improving activation rate of phosphorus-doped and boron-doped surface layer of crystalline silicon |
CN113555469A (en) * | 2021-07-21 | 2021-10-26 | 苏州腾晖光伏技术有限公司 | Back passivation contact structure, preparation method thereof and solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242803B (en) * | 2022-02-25 | 2022-08-12 | 浙江晶科能源有限公司 | Solar cell and preparation method thereof, photovoltaic module |
-
2022
- 2022-06-01 CN CN202211091861.6A patent/CN115377228A/en active Pending
- 2022-06-01 CN CN202210611083.2A patent/CN114695579B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515477A (en) * | 2012-06-22 | 2014-01-15 | Lg电子株式会社 | Method for manufacturing solar cell and dopant layer thereof |
CN103606596A (en) * | 2013-11-26 | 2014-02-26 | 英利集团有限公司 | Phosphorus doping silicon wafer, manufacturing method of phosphorus doping silicon wafer, solar cell and manufacturing method of solar cell |
US20160126400A1 (en) * | 2014-11-04 | 2016-05-05 | Lg Electronics Inc. | Solar cell and method for manufacturing the same |
US20170005218A1 (en) * | 2015-06-30 | 2017-01-05 | Lg Electronics Inc. | Solar cell and method of manufacturing the same |
CN106784128A (en) * | 2015-11-20 | 2017-05-31 | 上海神舟新能源发展有限公司 | The preparation method of preceding emitter junction back side tunnel oxidation passivation contact high-efficiency battery |
NL2018356B1 (en) * | 2017-02-10 | 2018-09-21 | Tempress Ip B V | A method of manufacturing a passivated solar cell and resulting passivated solar cell |
CN111133589A (en) * | 2017-09-22 | 2020-05-08 | 荷兰应用自然科学研究组织Tno | Dopant-enhanced solar cells and methods of making the same |
CN109285896A (en) * | 2018-07-31 | 2019-01-29 | 晶澳(扬州)太阳能科技有限公司 | A kind of solar cell and preparation method thereof |
CN110165017A (en) * | 2019-04-18 | 2019-08-23 | 中国科学院宁波材料技术与工程研究所 | Prepare the quick annealing method of tunnelling oxygen passivation contact structures |
CN111509055A (en) * | 2020-03-20 | 2020-08-07 | 中国科学院宁波材料技术与工程研究所 | Interface laminated film, preparation method thereof and application thereof in passivation contact battery |
CN111883420A (en) * | 2020-08-05 | 2020-11-03 | 中国科学院半导体研究所 | Thermal diffusion method for improving activation rate of phosphorus-doped and boron-doped surface layer of crystalline silicon |
CN113555469A (en) * | 2021-07-21 | 2021-10-26 | 苏州腾晖光伏技术有限公司 | Back passivation contact structure, preparation method thereof and solar cell |
Non-Patent Citations (1)
Title |
---|
吕欣,林涛,董鹏: "背表面掺杂对n型TOPCon电池特性的影响研究", 《太阳能学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118507561A (en) * | 2023-09-27 | 2024-08-16 | 隆基绿能科技股份有限公司 | Solar cell and preparation thereof |
WO2025066580A1 (en) * | 2023-09-27 | 2025-04-03 | 隆基绿能科技股份有限公司 | Solar cell and preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115377228A (en) | 2022-11-22 |
CN114695579B (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115241298B (en) | Solar cells and preparation methods thereof, photovoltaic modules | |
EP4261899B1 (en) | Photovoltaic cell and method for manufacturing same | |
JP7427833B1 (en) | Solar cells and their manufacturing methods, solar power generation modules | |
JP7515650B2 (en) | Solar Cells and Photovoltaic Modules | |
CN114695579B (en) | Solar cells and photovoltaic modules | |
CN116722051A (en) | Solar cell and preparation method, photovoltaic module | |
CN114695578B (en) | Solar cell and photovoltaic module | |
CN116093191A (en) | Solar cell and photovoltaic module | |
CN115241299A (en) | Solar cell and photovoltaic module | |
CN115172478B (en) | Solar cell and photovoltaic module | |
AU2022206830B2 (en) | Solar cell and production method thereof, photovoltaic module | |
CN117673178A (en) | Solar cell and photovoltaic module | |
CN117712194B (en) | Solar cells and photovoltaic modules | |
US20250204086A1 (en) | Solar cell, method for preparing solar cell, and photovoltaic module | |
CN118156330A (en) | Solar cell, photovoltaic module and preparation method of solar cell | |
CN119789607A (en) | Solar cell, photovoltaic module and preparation method of solar cell | |
TW201929241A (en) | Solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230315 Address after: No. 1, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100 Patentee after: Jinko Solar Co., Ltd. Address before: 314416 89 Yuanhong Road, Yuanhua Town, Haining City, Jiaxing, Zhejiang Patentee before: Jingke energy (Haining) Co.,Ltd. |
|
TR01 | Transfer of patent right |