CN114695575A - 基于等离子体共振的晶体管及其制备方法、太赫兹探测器 - Google Patents

基于等离子体共振的晶体管及其制备方法、太赫兹探测器 Download PDF

Info

Publication number
CN114695575A
CN114695575A CN202210329433.6A CN202210329433A CN114695575A CN 114695575 A CN114695575 A CN 114695575A CN 202210329433 A CN202210329433 A CN 202210329433A CN 114695575 A CN114695575 A CN 114695575A
Authority
CN
China
Prior art keywords
effect transistor
field effect
dimensional material
antenna
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210329433.6A
Other languages
English (en)
Inventor
徐友龙
侯文强
郑钦允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210329433.6A priority Critical patent/CN114695575A/zh
Publication of CN114695575A publication Critical patent/CN114695575A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开的基于等离子体共振的晶体管及其制备方法、太赫兹探测器,将太赫兹天线与晶体管耦合,不仅可以通过调节天线和晶体管电极的集成方式来调节沟道处太赫兹感生电场的分布,还可以通过沟道处二维材料表面的金属纳米颗粒,利用表面等离子体共振原理,进一步的提高感生电场的场强,提高光响应电流。合理设计的天线尺寸可以耦合目标探测频率,沟道处选取迁移率高的二维材料,结合上述设计,协同工作,提高太赫兹探测器的探测性能。

Description

基于等离子体共振的晶体管及其制备方法、太赫兹探测器
技术领域
本发明涉及太赫兹探测技术领域,具体为基于等离子体共振的晶体管及其制备方法、太赫兹探测器。
背景技术
太赫兹(Terahertz,THz)波是红外波段和微波波段之间的一段电磁波,其频率一般在100GHz-10THz之间,波长在3mm-30μm之间。由于其独特的性质,具有光子能量低、辐射频谱宽、穿透性较强、光谱分辨率高等特点,被用于通信、雷达、医学、安检和器件材料表征等领域。
太赫兹探测器是目前太赫兹领域的一个研究热点,如何实现常温常压下,高灵敏、快速的检测太赫兹波,也是目前太赫兹探测器的一大难点。为了满足高灵敏和高响应度的条件,具有超快载流子迁移率的高电子迁移率晶体管(High Electron MobilityTransistor,HEMT)也成为了探测器研究中的热点。随着新兴的很多二维材料的出现,如:石墨烯、黑磷、二硫化钼等,使得高电子迁移率晶体管相比于其他基于热电效应的探测器来说,拥有较快的响应速度。
目前为了提高HEMT太赫兹探测器的探测灵敏度,会集成一些特殊结构的天线,去耦合空间中的自由太赫兹波,在探测器沟道处形成特殊的太赫兹感生电场。为了进一步提高探测器的性能,还得使得沟道中的感生电场的强度继续提高。目前为止,室温下的高灵敏度、高响应速度、低成本的太赫兹探测器依旧比较紧缺。现有报道的太赫兹探测器探测频率较单一,且制备工艺复杂,所需材料价格昂贵,导致相关太赫兹设备与器件价格及其昂贵,一直限制了太赫兹探测器领域的发展。
发明内容
针对现有技术中存在的问题,本发明提供一种基于等离子体共振的晶体管及其制备方法、太赫兹探测器,该太赫兹探测器结构设计合理,制备工艺简单,可以在室温下实现多频段太赫兹波探测的探测器能够在室温下实现多频段太赫兹波探测。
本发明是通过以下技术方案来实现:
一种等离子体共振的场效应晶体管,包括基底以及设置其顶面的沟道,沟道中设置二维材料,二维材料上形成有金属纳米颗粒,沟道的两端设置有源极和漏极并与二维材料形成欧姆接触,源极和漏极之间设置有栅极,栅极通过栅氧化层设置在二维材料上。
优选的,所述二维材料为薄膜,材质为石墨烯、黑磷、二硫化钼或二硒化钼。
优选的,所述金属纳米颗粒为金、银、铜、铂、铝、铁、钴或镍纳米颗粒。
优选的,所述基底为硅/化硅片、氮化镓、氮化镓铝或碳化硅。
一种等离子体共振的场效应晶体管的制备方法,包括以下步骤:
步骤1、将二维材料转移至基底表面,并去除沟道以外的二维材料;
步骤2、在二维材料上形成金属纳米颗粒;
步骤3、在沟道的二维材料两端设置源和漏极,并与二维材料形成欧姆接触;
步骤4、在源极和漏极之间的二维材料上形成栅介质层,并在其上形成栅极,得到等离子体共振的场效应晶体管。
优选的,步骤2中采用真空溅射、沉积、蒸镀或化学还原方法在二维材料表面形成金属纳米颗粒。
一种基于等离子体共振的场效应晶体管的太赫兹探测器,包括基板、太赫兹天线以及所述的等离子体共振的场效应晶体管;
所述太赫兹天线包括两个扇形的天线振子,两个天线振子沿圆心角对称设置,天线振子的圆心角为馈电点,两个天线振子的馈电点与场效应晶体管的电极连接。
优选的,所述两个天线振子的馈电点分别与场效应晶体管的源极和漏极连接;
或,两个天线振子的馈电点分别与场效应晶体管的源极和栅极连接。
优选的,所述天线振子的圆心角β为30°-120°。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的基于等离子体共振的晶体管,在沟道处二维材料表面的增加金属纳米颗粒,当其和入射电磁波发生表面等离子体共振作用时,在纳米颗粒内会有强烈的电荷聚集并发生振荡,因此会在金属纳米颗粒的周围产生强烈的局域电场增强,进而进一步的提高感生电场的场强,提高光响应电流。
目前研究较多的Ⅲ-Ⅴ族异质结太赫兹探测器,其圆片生长要求较高,价格昂贵,室温下的探测性能、响应速度还是不够快。而且其沟道处的太赫兹感生电场完全靠天线来耦合,无法进一步提高感生电场的强度。本发明公开的太赫兹探测器,将太赫兹天线与晶体管耦合,不仅可以通过调节天线和晶体管电极的集成方式来调节沟道处太赫兹感生电场的分布,还可以通过沟道处二维材料表面的金属纳米颗粒,利用表面等离子体共振原理,进一步的提高感生电场的场强,提高光响应电流。合理设计的天线尺寸可以耦合目标探测频率,沟道处选取迁移率高的二维材料,结合上述设计,协同工作,提高太赫兹探测器的探测性能。
附图说明
图1为本发明中探测器整体结构示意图;
图2为本发明位于沟道的二维材料与表面的金属纳米颗粒示意图;
图3为本发明中二维材料场效应晶体管的结构示意图。
图中:10、第一测试电极;20、天线振子;30、第二测试电极;40、天线圆心角;
1、源极;2、二氧化硅层;3、基底;4、栅氧化层;5、漏极;6、金属纳米颗粒;7、栅极。8、二维材料。
具体实施方式
下面结合附图对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参阅图2和3,基于等离子体共振的场效应晶体管,包括基底3以及设置其顶面的沟道,沟道中设置二维材料8,二维材料上形成有金属纳米颗粒6,沟道的两端设置有源极1和漏极5并与二维材料形成欧姆接触,源极1和漏极5之间设置有栅极7,栅极7通过栅氧化层设置在二维材料8上,基底的底面镀有一金属层。
场效应晶体管的整个沟道都由二维材料构成,二维材料在介质基板的上表面,其沟道长度在20μm-500nm之间,沟道宽度在50μm-500nm之间;栅极的长度在10μm-50nm之间,处于二维材料沟道的正中央。
所述二维材料8为薄膜结构,材质为石墨烯、黑磷、二硫化钼或二硒化钼。
上述金属纳米颗粒6为金、银、铜、铂、铝、铁、钴或镍纳米颗粒,金属纳米颗粒的尺寸在1nm-1μm之间;采用化学或物理方法使金属纳米颗粒形成在二维材料上,例如,蒸镀、溅射或化学还原方法,
基底底面的金属层厚度为50nm-50μm,材质为金、银、铜、铂、铝、铁、钴或镍等。
上述栅介质层的厚度为5-30nm,材质为氧化铝(Al2O3)或氧化铪(HfO2)。
基底为硅/化硅片、氮化镓、氮化镓铝、碳化硅等任何衬底,需要对应基底的介电常数调节天线的尺寸范围,下述的实施例采用硅/化硅片,整体厚度在500-550μm,表面有300nm左右的二氧化硅,二氧化硅介电常数3.9,硅介电常数为11.9。
上述基于等离子体共振的场效应晶体管的制备方法,包括以下步骤:
步骤1、对基底进行清洗并烘干,去除基底上的杂质。
具体的,清洗基底材料,以硅/二氧化硅片为例,采用80℃的硫酸溶液清洗基底30min后,再用丙酮、异丙醇、乙醇和去离子水各超声清洗10分钟后烘干备用。
步骤2、将二维材料转移至基底表面,并去除沟道以外的二维材料。
使用光刻胶定义沟道,利用干刻等工艺手段去除掉沟道以外的二维材料,只保留沟道区域的二维材料。
步骤3、在二维材料上形成金属纳米颗粒;
形成金属纳米颗粒的方式为,利用真空溅射、沉积、蒸镀或者化学还原方法将金属纳米颗粒形成在二维材料表面。
步骤4、在沟道的二维材料两端设置源和漏极,并与二维材料形成欧姆接触。
采用光刻制备源极和漏极形状,然后采用电子束蒸发工艺分层沉积源极和漏极,源极和漏极为金属电极,一般采用合金材质,由钛、铝、镍、金等金属中一个或多个分层沉积而成。
步骤5、在惰性气氛中,将步骤4得到的基底在300℃退火30分钟。
步骤6、在源极和漏极之间的二维材料上形成栅介质层,并在其上形成栅极,得到等离子体共振的场效应晶体管。
利用光刻定义栅介质层位置,再利用原子层沉积技术,生长一定厚度的栅介质层,随后在栅介质层上利用电子束蒸发生长栅极金属。
参阅图1,一种基于等离子体共振的场效应晶体管的太赫兹探测器,包括基板、等离子体共振的场效应晶体管和太赫兹天线,太赫兹天线设置在基板的中心。
太赫兹天线包括测试电极和两个扇形的天线振子20,两个天线振子20沿圆心角对称设置,两个天线振子的圆心区域为馈电区域,天线振子20的圆心为馈电点,两个天线振子的馈电点与场效应晶体管的电极连接。
两个天线振子与场效应晶体管的连接方式有两种,具体如下:
两个天线振子的馈电点分别与场效应晶体管的源极和漏极连接,或两个天线振子的馈电点分别与场效应晶体管的源极和栅极连接。
天线振子的天线圆心角40为β范围在30-120度,天线振子的半径R,根据不同的目标探测频率而不同,R长度为200-1500μm。
介质基板的长宽需要大于天线结构的面积,厚度在500-550μm之间。
天线振子的材质为金、金、银、铜或者铂等导电性较好的金属,两个天线振子的弧形边缘均连接有第一测试电极10,太赫兹天线的馈电区域设置了第二测试电极30。
测试电极的尺寸范围在100╳100μm到200╳200μm之间;与偶极子天线相连接的引线电极长度范围在0-1000μm之间,线宽为20-60μm。天线振子、测试电极和引线的厚度在100nm-1000nm之间。
上述的太赫兹探测器利用迁移率高的二维材料作为高电子迁移率晶体管的沟道材料,将天线与晶体管的电极集成,在沟道中产生太赫兹感生电场,此外,在沟道处的二维材料表面溅射尺寸可控的贵金属纳米颗粒利用表面等离子体共振原理实现局域表面电场增强。设计的一种全新结构的基于表面等离子体共振技术的二维材料太赫兹探测器,有效耦合太赫兹波,并在沟道中产生较强的太赫兹感生电场,增强光电流,实现室温下的高灵敏太赫兹探测。
实施例1
一种基于等离子体共振的场效应晶体管的太赫兹探测器,包括以下步骤:
步骤1、在衬底材料硅/二氧化硅上采用湿转移法转移石墨烯薄膜;
硅基底的表面为二氧化硅2,需要说明的是,其为一个整体。
步骤2、利用光刻技术,光刻胶定义沟道并保护沟道处的石墨烯薄膜,其余暴露出来的石墨烯薄膜用等离子体打掉;
步骤3、利用电子束蒸发设备蒸镀Au材料,1A/s的速度沉积3s,在石墨烯薄膜上形成Au纳米颗粒;
步骤4、在光刻、电子束蒸发20nm的Ti,40nm的Al,40nm的Ni,50nm的Au,在沟道石墨烯薄膜的两端形成源漏电极,并与石墨烯薄膜形成欧姆接触,随后400℃惰性气氛下退火30min;
步骤5、光刻定义栅极位置,采用ALD技术沉积10nm的HfO2作为栅氧化层,随后沉积100nm的金作为栅极;
步骤6、利用光刻技术和电子束蒸发技术,沉积出太赫兹天线,并与源极和栅极相连,完成太赫兹探测器制备。
实施例2
步骤1、在基底材料SiC上,采用机械剥离手段转移石墨烯薄膜;
步骤2、定义沟道并去除沟道外多余的石墨烯薄膜;
步骤3、利用真空溅射,调节电流和溅射时间,在石墨烯薄膜上溅射Pt金属,随后清洗;
步骤4、采用光刻和电子束蒸发20nm的Ti,20nm的Al,20nm的Ni,90nm的Au,在沟道石墨烯薄膜的两端形成源漏电极,随后300℃惰性气氛下退火60min;
步骤5、光刻定义栅极位置,采用ALD技术沉积15nm的Al2O3作为栅氧化层,随后沉积100nm的金作为栅极;
步骤6、采用光刻和电子束蒸发,沉积出太赫兹天线,与源极和栅极相连,完成太赫兹探测器制备。
实施例3
步骤1、在柔性基底材料聚酰亚胺上,采用湿化学转移法转移石墨烯薄膜;
步骤2、定义沟道并去除沟道外多余的石墨烯薄膜;
步骤3、利用化学还原方法,将石墨烯/聚酰亚胺复合膜放入配置好的氯铂酸溶液中浸泡5s,随后还原成铂单质,在水中清洗;
步骤4、采用光刻和电子束蒸发20nm的Ti,80nm的Au,在沟道石墨烯薄膜的两端形成源漏电极,随后400℃惰性气氛下退火10min;
步骤5、光刻定义栅极位置,采用ALD技术沉积5nm的HfO2作为栅氧化层,随后沉积100nm的金作为栅极;
步骤6、采用光刻和电子束蒸发,沉积出太赫兹天线,与源极和栅极相连,完成太赫兹探测器制备。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种等离子体共振的场效应晶体管,其特征在于,包括基底(3)以及设置其顶面的沟道,沟道中设置二维材料(8),二维材料上形成有金属纳米颗粒(6),沟道的两端设置有源极(1)和漏极(5)并与二维材料形成欧姆接触,源极(1)和漏极(5)之间设置有栅极(7),栅极(7)通过栅氧化层设置在二维材料(8)上。
2.根据权利要求1所述的一种等离子体共振的场效应晶体管,其特征在于,所述二维材料(8)为薄膜,材质为石墨烯、黑磷、二硫化钼或二硒化钼。
3.根据权利要求1所述的一种等离子体共振的场效应晶体管,其特征在于,所述金属纳米颗粒(6)为金、银、铜、铂、铝、铁、钴或镍纳米颗粒。
4.根据权利要求3所述的一种等离子体共振的场效应晶体管,其特征在于,所述金属纳米颗粒的尺寸为1nm-1μm。
5.根据权利要求1所述的一种等离子体共振的场效应晶体管,其特征在于,所述基底为硅/化硅片、氮化镓、氮化镓铝或碳化硅。
6.一种权利要求1-5任一项所述的一种等离子体共振的场效应晶体管的制备方法,其特征在于,包括以下步骤:
步骤1、将二维材料转移至基底表面,并去除沟道以外的二维材料;
步骤2、在二维材料上形成金属纳米颗粒;
步骤3、在沟道的二维材料两端设置源和漏极,并与二维材料形成欧姆接触;
步骤4、在源极和漏极之间的二维材料上形成栅介质层,并在其上形成栅极,得到等离子体共振的场效应晶体管。
7.根据权利要求6所述的一种等离子体共振的场效应晶体管的制备方法,其特征在于,步骤2中采用真空溅射、沉积、蒸镀或化学还原方法在二维材料表面形成金属纳米颗粒。
8.一种基于等离子体共振的场效应晶体管的太赫兹探测器,其特征在于,包括基板、太赫兹天线以及权利要求1-5任一项所述的等离子体共振的场效应晶体管;
所述太赫兹天线包括两个扇形的天线振子(20),两个天线振子(20)沿圆心角对称设置,天线振子(20)的圆心角为馈电点,两个天线振子的馈电点与场效应晶体管的电极连接。
9.根据权利要求8所述的一种基于等离子体共振的场效应晶体管的太赫兹探测器,其特征在于,所述两个天线振子的馈电点分别与场效应晶体管的源极和漏极连接;
或,两个天线振子的馈电点分别与场效应晶体管的源极和栅极连接。
10.根据权利要求8所述的一种基于等离子体共振的场效应晶体管的太赫兹探测器,其特征在于,所述天线振子的圆心角β为30°-120°。
CN202210329433.6A 2022-03-30 2022-03-30 基于等离子体共振的晶体管及其制备方法、太赫兹探测器 Pending CN114695575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210329433.6A CN114695575A (zh) 2022-03-30 2022-03-30 基于等离子体共振的晶体管及其制备方法、太赫兹探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210329433.6A CN114695575A (zh) 2022-03-30 2022-03-30 基于等离子体共振的晶体管及其制备方法、太赫兹探测器

Publications (1)

Publication Number Publication Date
CN114695575A true CN114695575A (zh) 2022-07-01

Family

ID=82141012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210329433.6A Pending CN114695575A (zh) 2022-03-30 2022-03-30 基于等离子体共振的晶体管及其制备方法、太赫兹探测器

Country Status (1)

Country Link
CN (1) CN114695575A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307389A1 (en) * 2022-07-12 2024-01-17 Samsung Electronics Co., Ltd. Semiconductor device including two-dimensional material and method of fabricating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110215298A1 (en) * 2010-03-02 2011-09-08 Jin Young Kim Ultrafast and ultrasensitive novel photodetectors
CN105023950A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种具有高开关电流比的石墨烯晶体管及其制备方法
CN105047728A (zh) * 2015-06-11 2015-11-11 上海电力学院 增强二维半导体晶体材料光吸收效率的探测器及制作方法
US9368667B1 (en) * 2013-02-01 2016-06-14 Sung Jin Kim Plasmon field effect transistor
CN108735806A (zh) * 2018-05-30 2018-11-02 厦门大学 一种产生可控极化率的自旋电流的结构与方法
CN108956743A (zh) * 2018-07-24 2018-12-07 中国电子科技集团公司第四十九研究所 一种可用金纳米粒子增强的场效应晶体管生物传感器的制备方法及其检测方法
CN211205522U (zh) * 2019-12-19 2020-08-07 江苏盖姆纳米材料科技有限公司 一种天线集成场效应晶体管的太赫兹探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110215298A1 (en) * 2010-03-02 2011-09-08 Jin Young Kim Ultrafast and ultrasensitive novel photodetectors
US9368667B1 (en) * 2013-02-01 2016-06-14 Sung Jin Kim Plasmon field effect transistor
CN105023950A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种具有高开关电流比的石墨烯晶体管及其制备方法
CN105047728A (zh) * 2015-06-11 2015-11-11 上海电力学院 增强二维半导体晶体材料光吸收效率的探测器及制作方法
CN108735806A (zh) * 2018-05-30 2018-11-02 厦门大学 一种产生可控极化率的自旋电流的结构与方法
CN108956743A (zh) * 2018-07-24 2018-12-07 中国电子科技集团公司第四十九研究所 一种可用金纳米粒子增强的场效应晶体管生物传感器的制备方法及其检测方法
CN211205522U (zh) * 2019-12-19 2020-08-07 江苏盖姆纳米材料科技有限公司 一种天线集成场效应晶体管的太赫兹探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307389A1 (en) * 2022-07-12 2024-01-17 Samsung Electronics Co., Ltd. Semiconductor device including two-dimensional material and method of fabricating the same

Similar Documents

Publication Publication Date Title
Joshna et al. Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors
Semple et al. Analysis of Schottky contact formation in coplanar Au/ZnO/Al nanogap radio frequency diodes processed from solution at low temperature
Farhat et al. Growth of vertically aligned ZnO nanorods on Teflon as a novel substrate for low-power flexible light sensors
KR20140095553A (ko) 전자기 에너지 수집 장치, 시스템 및 방법
Omri et al. Surface morphology, microstructure and electrical properties of Ca-doped ZnO thin films
EP2688109B1 (en) Photodiode and method for manufacturing the same
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
Chetri et al. Au/GLAD-SnO 2 nanowire array-based fast response Schottky UV detector
Zhang et al. Highly sensitive and ultra-broadband VO2 (b) photodetector dominated by bolometric effect
Wu et al. Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion
CN114695575A (zh) 基于等离子体共振的晶体管及其制备方法、太赫兹探测器
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Bablich et al. Few-layer MoS2/a-Si: H heterojunction pin-photodiodes for extended infrared detection
Ferhati et al. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power
CN112216760A (zh) 一种在红外及太赫兹宽频带的探测器及其制备方法
Yin et al. Application of CVD graphene as transparent front electrode in Cu (In, Ga) Se 2 solar cell
Sugumaran et al. Thermally evaporated InZnO transparent thin films: Optical, electrical and photoconductivity behavior
CN118073447A (zh) 一种可调谐深紫外探测器及其制备方法
CN110931576A (zh) 一种日盲紫外探测器及其制备方法
CN110690313A (zh) 一种Si衬底MoS2近红外光探测器及制备方法
Zhou et al. Solar-blind photodetector arrays fabricated by weaving strategy
CN113823703A (zh) 室温碲化铂阵列太赫兹探测器及其制备方法
Zhao et al. Broadband photodetectors with enhanced performance in UV–Vis–NIR band based on PbS quantum dots/ZnO film heterostructure
CN116344662A (zh) 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法
Wu et al. Enhanced performance of In2O3 nanowire field effect transistors with controllable surface functionalization of Ag nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination