CN114674806B - 一种基于表面增强拉曼散射的细胞传感器及其应用 - Google Patents

一种基于表面增强拉曼散射的细胞传感器及其应用 Download PDF

Info

Publication number
CN114674806B
CN114674806B CN202210577889.4A CN202210577889A CN114674806B CN 114674806 B CN114674806 B CN 114674806B CN 202210577889 A CN202210577889 A CN 202210577889A CN 114674806 B CN114674806 B CN 114674806B
Authority
CN
China
Prior art keywords
raman
cell
solution
gold nano
effector molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210577889.4A
Other languages
English (en)
Other versions
CN114674806A (zh
Inventor
柳文媛
韩凌飞
冯锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202210577889.4A priority Critical patent/CN114674806B/zh
Publication of CN114674806A publication Critical patent/CN114674806A/zh
Application granted granted Critical
Publication of CN114674806B publication Critical patent/CN114674806B/zh
Priority to PCT/CN2023/075166 priority patent/WO2023226476A1/zh
Priority to US18/570,741 priority patent/US20240280493A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5067Liver cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Nanotechnology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于表面增强拉曼散射的细胞传感器及其应用,该细胞传感器是将表面增强拉曼散射探针导入人源肝细胞系构建得到的;所述的表面增强拉曼散射探针是以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元,SH‑PEG‑NH2为稳定链,穿膜肽为辅助穿透单元制备得到的;将所述的细胞传感器暴露于各类药物杂质,检测拉曼信号,评价基因毒性杂质的类型和水平。本发明具有检测通用性好、可靠性高、杂质用量少等优点,有利于推动药物研发过程中基因毒性杂质的评价。

Description

一种基于表面增强拉曼散射的细胞传感器及其应用
技术领域
本发明属于药物分析检测领域,涉及一种基于表面增强拉曼散射(SERS)的细胞传感器及其在基因毒性杂质评价中的应用。
背景技术
对药物研发及临床使用的各个环节中可能产生的多种杂质进行毒性评价和限度控制是保障药物质量与安全的重大需求。基因毒性杂质(Genotoxic Impurities,GTI)是一类能在低浓度下引起基因损伤并有致癌风险的杂质,各国药品监管机构对GTI在药物中的含量都制定了严苛的限度标准1-2。随着现代分析技术的发展,对于基因毒性已知的杂质(如N-亚硝基二甲胺、甲磺酸甲酯)均已能够实施有效的检测控制。然而,对于基因毒性未知的杂质,如何快速有效评价其基因毒性成为关键卡脖子问题。
现有的传统GTI评价方法3-5(如啮齿动物致癌试验、细菌回复突变试验(Amestest)、计算机定量构效评价(QSAR)等)及基础研究中运用的细胞内分子原位杂交、DNA加合物检测等方法仍然面临许多局限性,表现在:
(1)动物试验杂质用量大、成本高、周期长;
(2)基于原核细胞的试验与人源细胞差异大,且不适用于需代谢激活的GTI评价;
(3)基于计算机等虚拟筛选法易产生假阳性/假阴性;
(4)针对单个基因突变位点或损伤类型的分子杂交或加合物检测等评价方法难以实现各类基因损伤的快速评价;
(5)其他需分离或染色的方法操作繁琐,无法原位实时检测,可能错过或干扰机体对基因损伤的应答过程。
因此,本发明在体外构建基于人源肝细胞的检测平台,以基因损伤后共性效应分子为靶标,实现胞内效应分子的原位在线检测是解决上述技术瓶颈问题的有效策略。
参考文献
1 Szekely G, Amores De Sousa MC, Gil M, Castelo Ferreira F, Heggie W.Genotoxic Impurities in Pharmaceutical Manufacturing: Sources, Regulations,and Mitigation. Chemical Reviews 2015;115:8182-8229.
2 ICH guideline M7 on assessment and control of DNA reactive(mutagenic) impurities in pharmaceuticals to limit potential carcinogenicrisk.
3 Dearfield KL, Thybaud V, Cimino MC et al. Follow-up actions frompositive results of in vitro genetic toxicity testing. Environmental and Molecular Mutagenesis 2011;52:177-204.
4 Guo X, Seo J, Li X, Mei N. Genetic toxicity assessment using livercell models: past, present, and future. Journal of Toxicology and Environmental Health, Part B 2020;23:27-50.
5 张玉英, 李薇, 潘卫松. 药品杂质遗传毒性评价的概述. 药品评价 2021;18:203-207.
发明内容
本发明为改善现有基因毒性评价方法的不足,提供一种基于表面增强拉曼散射(SERS)的细胞传感器及其在基因毒性杂质评价中的应用。本发明以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元制备SERS探针,将其导入人源肝细胞构建细胞传感器。当基因损伤发生时,效应分子在损伤处过表达,诱导探针聚集形成热点,产生SERS增强信号,在拉曼显微镜下进行原位实时监测,通过基因损伤过程中拉曼信号的强度变化评价杂质基因毒性,对推动药物研发和保障药物安全具有重要意义。
本发明的目的可以通过以下技术方案实现:
一种基于表面增强拉曼散射的细胞传感器,该细胞传感器是将表面增强拉曼散射探针导入人源肝细胞系构建得到的;
所述的表面增强拉曼散射(SERS)探针是以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元,SH-PEG-NH2为稳定链,穿膜肽为辅助穿透单元制备得到的;
所述的基因损伤效应分子抗体为γH2AX抗体。
所述的拉曼分子包括4-巯基苯甲腈、4-巯基苯甲酸和4-巯基苯硼酸中的至少一种。
所述的人源肝细胞系为人肝细胞L02、人肝癌细胞HepG2和人肝癌细胞Hepa1-6中的至少一种。
所述的穿膜肽包括TAT和NLS中的至少一种。
作为一种优选技术方案,所述的表面增强拉曼散射探针还以SH-PEG-NH2为稳定链,穿膜肽为辅助穿透单元。
进一步优选的,所述的表面增强拉曼散射探针采用以下步骤制备:
步骤(1):采用柠檬酸三钠还原法制备金纳米溶液(GNP):
步骤(2):SH-PEG-NH2修饰金纳米:将SH-PEG-NH2加入到步骤(1)制备的金纳米溶液中搅拌反应得到SH-PEG-NH2修饰的金纳米溶液;
步骤(3):拉曼分子修饰金纳米:将拉曼分子溶液缓慢加入到步骤(2)制备的金纳米溶液中搅拌反应,然后离心弃上清并加入超纯水分散均匀得到SH-PEG-NH2和拉曼分子修饰的金纳米溶液(GPM);
步骤(4):基因损伤效应分子抗体修饰金纳米:向步骤(3)制备的金纳米溶液中加入5%(5g/100mL)的戊二醛溶液搅拌反应,然后离心弃上清并加入超纯水分散均匀得到戊二醛化的金纳米溶液,再加入基因损伤效应分子抗体水溶液孵育后离心弃上清并加入超纯水分散均匀得到基因损伤效应分子抗体修饰的金纳米溶液;
步骤(5):穿膜肽修饰金纳米:将穿膜肽加入到步骤(4)制备的金纳米溶液中,搅拌反应,然后离心弃上清并用含1%BSA(1g/100mL)的PBS复溶并分散均匀得到表面增强拉曼散射探针(Anti γH2AX@GPMT)。
进一步优选的,所述的金纳米的粒径为10-50 nm。
进一步优选的,步骤(1)中采用柠檬酸三钠还原法制备金纳米溶液的过程为:将0.01%(0.01g/100mL)的HAuCl4水溶液加热至沸腾,迅速加入1%(1g/100mL)柠檬酸三钠水溶液,煮沸7~10min;其中,0.01%HAuCl4水溶液与1%柠檬酸三钠水溶液体积比为20:1~100:1。
进一步优选的,步骤(2)中所述SH-PEG-NH2分子量为2000-5000;所述金纳米与SH-PEG-NH2的摩尔比为1:1×103~1:2×106
步骤(3)中所述的拉曼分子溶液为1 mg/ml的拉曼分子乙醇溶液;所述的金纳米与拉曼分子的摩尔比为1:1×103~1:1×106
步骤(4)中所述的金纳米与戊二醛的摩尔比为1:1×103~1:2×106;所述的金纳米与基因损伤效应分子抗体的投料比为5pmol:2 μL~5nmol:2 μL;
步骤(5)中所述的金纳米与穿膜肽的摩尔比为1: 1×102~1×1:105
进一步优选的,步骤(2)、步骤(3)和步骤(5)中所述搅拌反应的时间各自独立的为搅拌5~10小时;步骤(4)中所述搅拌反应的时间为1~3小时,所述孵育的条件为25~38℃孵育1~3小时。
上述表面增强拉曼散射(SERS)探针制备方法的优选技术方案包括如下步骤:
步骤(1)柠檬酸三钠还原法制备金纳米:将0.01%(0.01g/100mL)的HAuCl4水溶液加热至沸腾,迅速加入1%(1g/100mL)柠檬酸三钠水溶液,煮沸7~10min;其中,0.01%HAuCl4水溶液与1%柠檬酸三钠水溶液体积比为20:1~100:1,所得金纳米粒径为10-50 nm;
步骤(2)SH-PEG-NH2修饰金纳米:将SH-PEG-NH2加入步骤(1)制备的金纳米溶液中,搅拌5~10 h(最优选为6 h)得到SH-PEG-NH2修饰的金纳米溶液;其中,SH-PEG-NH2分子量为2000-5000,金纳米与SH-PEG-NH2摩尔比为1:1×103~1:2×106,最优选为1:2×104
步骤(3)拉曼分子修饰金纳米:将1 mg/ml的拉曼分子乙醇溶液缓慢加入到步骤(2)制备的金纳米溶液中,搅拌5~10 h(最优选为6 h),6000 rpm离心10 min弃上清,超纯水超声分散均匀得到SH-PEG-NH2和拉曼分子修饰的金纳米溶液(GPM);其中,所述的拉曼分子包括4-巯基苯甲腈、4-巯基苯甲酸和4-巯基苯硼酸中的至少一种;所述的金纳米与拉曼分子的摩尔比为1:1×103~1:1×106,优选为1:1×105
步骤(4)基因损伤效应分子抗体修饰金纳米:将5%(5g/100mL)戊二醛溶液加入到步骤(3)制备的金纳米溶液(GPM)中,搅拌1~3 h,(最优选为2 h),6000 rpm离心10 min弃上清,超纯水超声分散后得到戊二醛化的金纳米溶液,再加入基因损伤效应分子抗体水溶液25~38℃孵育1~3 h,(最优选为2 h),6000 rpm离心10 min弃上清,超纯水超声分散均匀得到基因损伤效应分子抗体修饰的金纳米溶液;其中,所述的金纳米与戊二醛的摩尔比为1:1×103~1:2×106,优选为1:2×105;所述的基因损伤效应分子抗体为γH2AX抗体;所述的金纳米与基因损伤效应分子抗体的投料比为5pmol:2 μL~5nmol:2 μL ,优选为500 pmol:2μL。所述的基因损伤效应分子抗体为常规的市售产品。
步骤(5)穿膜肽修饰金纳米:将穿膜肽加入到步骤(4)制备的金纳米溶液中,搅拌5~10 h(最优选为6 h),6000 rpm离心10 min弃上清,用含1%BSA(1g/100mL)的PBS复溶,超声分散均匀得到表面增强拉曼散射探针(Anti γH2AX@GPMT);其中,所述的穿膜肽包括TAT和NLS中的至少一种;所述的金纳米与穿膜肽的摩尔比为1: 1×102~1: 1×105,优选为1: 1×103
上述的细胞传感器在基因毒性杂质评价中的应用。
一种基于表面增强拉曼散射的基因毒性杂质评价方法,以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元,SH-PEG-NH2为稳定链,穿膜肽为辅助穿透单元制备表面增强拉曼散射探针;将所述的表面增强拉曼散射探针导入人源肝细胞系构建细胞传感器;将所述的细胞传感器暴露于不同DNA损伤机制的药物杂质,检测拉曼信号,评价药物杂质的基因毒性水平;所述的细胞传感器为上述的细胞传感器。
上述的方法,当基因损伤发生时,效应分子在损伤处过表达,诱导所述的表面增强拉曼散射探针聚集形成热点,产生表面增强拉曼散射增强信号,在拉曼显微镜下进行原位实时监测,通过基因损伤过程中拉曼信号的强度变化评价药物杂质的基因毒性水平。
该方法的具体操作过程包括以下步骤:(1)细胞传感器构建:将人源肝细胞接种至含细胞爬片的24孔板中,待其贴壁后,将培养基更换为浓度为0.01-1 nM的SERS探针培养基,孵育1-4 h。(2)基因毒性杂质评价:将细胞传感器培养基更换为含不同浓度药物杂质的培养基,持续孵育24 h后,将爬片取出,置于共聚焦倒置显微明暗场成像拉曼光谱仪中检测,比较实验组与对照组的拉曼信号,评价药物杂质的的基因毒性水平。
上述的方法,γH2AX细胞传感器评价的是致染色体断裂剂;所述药物杂质的浓度应保证细胞传感器的细胞存活率在75%以上;共聚焦倒置显微明暗场成像拉曼光谱仪需配备暗场聚光镜、拉曼光谱仪等元件;检测拉曼信号时,拉曼光谱仪光源激发波长为638 nm,检测信号采用拉曼位移在1800 cm-1后的特征拉曼峰的峰高值;将所述的检测信号经标准曲线转换为效应分子浓度,计算实验组与对照组的效应分子浓度比值,即为诱导倍数FI,FI大于1.5时,判定为DNA损伤类基因毒性杂质,小于等于1.5时判定为非DNA损伤类基因毒性杂质。
本发明的技术方案,以富含代谢酶的肝细胞系为载体,人源肝细胞具有大量的代谢酶系,能最大程度模拟人体环境,避免一些需代谢激活的GTI漏筛;共性效应分子能同时响应多种类型的基因损伤,有效提升基因毒性评价速度;机体基因损伤及修复往往在有限的时间内发生,而原位实时检测提供了活细胞基因损伤后的即时应答信息,免去繁琐的后处理过程,能有效降低假阴性率或假阳性率。
锚定基因损伤后的共性效应分子是提升本发明方法通用性的基础。基因毒性杂质损伤主要包括DNA损伤和细胞分裂损伤两种类型,现有的基因毒性杂质损伤类型大都为DNA损伤,包括DNA烷基化,DNA交联,单链断裂,双链断裂等,每种具体的机制都有特定的损伤标记物。γH2AX是组蛋白H2AX的磷酸化产物,不同机制的DNA损伤最终导致的双链断裂均会引发γH2AX在短时间内于损伤DNA周围高表达,已成为DNA损伤通用的生物标志物;本发明以γH2AX为基因损伤效应分子构建GTI评价体系。
对效应分子局部高表达的胞内原位实时检测是本发明要解决的又一关键问题。表面增强拉曼散射(SERS)是一种稳定、无损的分子光谱检测技术,常以胶质金属颗粒为基底,借助激发后粗糙金属表面产生的表面等离激元,增强吸附分子的拉曼信号,克服了传统拉曼光谱的低灵敏度问题。其中,处于金属粒子纳米间隙中(称为“热点”)的分子由于等离激元耦合效应能够进一步增强拉曼信号。本发明基于配体捕获识别、拉曼分子标签(具有较大拉曼散射截面的分子,吸附在金属表面后作为报告分子)的SERS探针检测技术为基因损伤效应分子提供新的检测思路。
和现有方法相比,本发明在评价杂质基因毒性时具有以下有益效果:
本发明构建的基于表面增强拉曼散射的细胞传感器评价杂质基因毒性的方法具有检测通用性好、可靠性高、杂质用量少等优点,有利于推动药物研发过程中基因毒性杂质的评价。具体表现为:
人源肝细胞具有大量的代谢酶系,能最大程度模拟人体环境,避免一些需代谢激活的GTI漏筛,并降低杂质用量;共性效应分子能同时响应多种类型的基因损伤,有效提升基因毒性评价速度;利用基因损伤后效应分子的局部过表达,在细胞原位构建热点实现SERS的灵敏检测,避免了在体外预先构建复杂增强机制的SERS基底,降低工艺复杂性。
机体基因损伤及修复往往在有限的时间内发生,而原位实时检测提供了活细胞基因损伤后的即时应答信息,免去繁琐的后处理过程,能有效降低假阴性率或假阳性率。
附图说明
图1. SERS探针制备线路。
图2. SERS探针制备过程GNP、GPM、Anti γH2AX@GPMT的紫外吸收光谱图。
图3. SERS探针制备过程GNP、GPM、Anti γH2AX@GPMT的Zeta电位。
图4. SERS探针制备过程4-MBN、GNP、Anti γH2AX@GPMT的拉曼散射光谱图。
图5. SERS探针Anti γH2AX@GPMT的透射电镜扫描图。
图6. Anti γH2AX@GPMT的浓度-拉曼信号响应曲线。
图7中A. 0.0125 nM Anti γH2AX@GPMT加入不同浓度γH2AX孵育30 min的拉曼信号响应曲线;图7中B. A中实验组信号与对照组信号的商取对数后的拟合标准曲线。
图8. 0.0125 nM Anti γH2AX@GPMT加入100 ng/mL不同杂质孵育30 min的校准拉曼信号。
图9. GNP、Anti γH2AX@GPMT孵育L02细胞24 h的细胞存活率。
图10. GNP、Anti γH2AX@GPMT孵育L02细胞24 h的γH2AX免疫荧光图。
图11. 0.05 nM Anti γH2AX@GPMT孵育L02细胞4h的细胞摄取暗场成像图。
图12. 不同杂质孵育细胞传感器24 h后的拉曼信号mapping成像图。
图13. 4-MBN、4-MBA、4-MPBA拉曼报告分子结构式。
图14. 0.05 nM NLS修饰的SERS探针孵育L02细胞4h的细胞摄取暗场成像图。
图15. 0.05 nM Anti γH2AX@GPMT孵育HepG2和Hepa1-6细胞4h的细胞摄取暗场成像图。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
1.仪器与试剂
1.1仪器
共聚焦倒置显微荧光明暗场成像拉曼光谱仪(北京卓立汉光,配备Olympus®LUCPLFLN40X 型长焦消色差物镜、Lumenera® INFINITY 3-1 型相机、3刻线光栅、3通道激光光源、荧光光源及滤镜等,可进行明场、暗场成像及拉曼光谱检测并进行mapping成像)、恒温培养箱、酶标仪、紫外分光光度计、透射电镜、超纯水仪等。
试剂
四水合氯金酸(HAuCl4·4H2O)、柠檬酸三钠、SH-PEG-NH2(MW2000)、4-巯基苯甲腈(4-MBN)、戊二醛(25%)、PBS、牛血清白蛋白(BSA)、TAT、Anti-γH2AX (phospho S139)antibody、甲磺酸甲酯(MMS)、顺铂(cis-Pt)、5-氟尿嘧啶(5-Fu)、N-亚硝基二乙胺(NDEA)。
探针的构建
2.1SERS探针的制备
SERS探针的制备路线见图1。
称取含1.26 gHAuCl4·4H2O,溶于100 mL超纯水中,制成1%(1g/100ml)的HAuCl4母液。量取99 mL超纯水,滴加1mL 1%的HAuCl4母液,制成100 mL 0.01%的HAuCl4水溶液,搅拌加热至沸腾,迅速加入4mL 1%(1g/100mL)柠檬酸三钠水溶液,继续煮沸10min,冷却至室温,即得粒径约为16 nm,浓度约为5 nM的金纳米溶液(GNP);
称取20 mg SH-PEG-NH2溶于10 mL超纯水中,加入上述金纳米溶液中,搅拌6 h;
称取6.75 mg报告分子4-MBN溶于5 mL乙醇中,缓慢滴加如上述金纳米溶液中,搅拌6 h,随后用6000 rpm离心10 min弃上清,将浓缩后的金纳米用超纯水稀释至10 mL并超声分散,即得PEG和4-MBN修饰的金纳米(GPM);
在上述GPM中加入0.2 mL 5%(5g/100mL)戊二醛,37℃搅拌2 h,6000 rpm离心10min弃上清,超纯水超声分散;将2 μL γH2AX抗体溶于5mL水溶液,缓慢加入上述戊二醛化的GPM,37℃孵育2 h,6000 rpm离心10 min弃上清,超纯水超声分散;
将0.78 mg TAT肽(分子量1560)溶于5mL水溶液,缓慢加入上述溶液,搅拌6 h,6000 rpm离心10 min弃上清,1%BSA(1g/100mL)的PBS复溶,超声分散,即得SERS探针AntiγH2AX@GPMT。
探针的表征
通过紫外分光光度计、拉曼光谱仪等手段表征探针的制备与修饰过程,包括GNP、GPM、Anti γH2AX@GPMT,通过粒度仪、透射电镜评价Anti γH2AX@GPMT的形态、粒径和电位。
结果表明,紫外结果显示(图2),随着金纳米SPR峰不断红移,表明金纳米上修饰基团的增多,间接证明修饰过程的发生。Zeta电位结果显示(图3),柠檬酸钠保护的GNP和4-MBN与PEG修饰的GPM电位均为负值,而修饰上TAT肽后,电位翻转,表现为正电性,有利于探针的穿膜与核靶向。经拉曼光谱仪测试(图4),空白GNP无明显拉曼信号,而拉曼分子4-MBN在游离状态下呈现典型的信号峰(1073、1582、2230 cm-1),但响应值较低,而当在SERS探针中则表现出更强的拉曼信号,证明在金属表面存在增强效应。终的SERS探针AntiγH2AX@GPMT在透射电镜下呈稳定分散的球形纳米颗粒,粒径约为15 nm(图5)。
用石英毛细管吸取不同浓度的SERS探针水溶液,在拉曼光谱仪下(638 nm激光照射,功率29 mW,拉曼位移2230 cm-1)测定拉曼信号,确定检测的线性范围。同样地,测定拉曼分子浓度相同的游离水溶液和SERS探针水溶液的拉曼信号,并根据公式EF=(Is*Nf)/(If*Ns)计算增强因子,其中I代表校正拉曼信号强度(实测值-本底值),N代表分子数,s代表SERS探针,f代表游离分子。考察探针的第一重增强效应。将SERS探针溶液与不同浓度效应分子(γH2AX)或其他胞内蛋白分子(H2AX、GSH、H2O2、Arg等)孵育30 min,测定拉曼信号强度变化曲线和透射电镜扫描,考察探针由效应分子诱导构建热点的第二重增强效应。
结果表明,在细胞给药浓度范围内,SERS探针信号-浓度曲线具有良好的线性关系(图6),继而依照计算公式算出SERS探针的增强因子为1.37×104。进一步,取0.0125 nMSERS探针分别与不同浓度γH2AX peptite在体外孵育30 min,并测定拉曼信号强度,结果表明(图7中A),随着蛋白浓度增加,SERS探针发生了聚集,随着聚集程度的增加,拉曼信号呈现指数增长,表明可能形成了热点从而进一步增强信号,在100 ng/mL γH2AX孵育后,拉曼信号的增强因子可以达到2.1×105,有望显著降低检测限,提高检测灵敏度。在图7中A基础上,通过实验组与对照组信号之商的对数拟合,得到线性良好的标准曲线(见图7中B),用于计算效应分子诱导倍数来评价基因毒性。进一步,取0.0125 nM SERS探针分别与100 ng/mL的GSH、H2O2、BSA、H2AX在体外孵育30 min,并测定拉曼信号,结果表明(图8),只有γH2AX能引起SERS探针信号的显著增强,表明探针具有检测专属性。
细胞传感器的构建
3.1 细胞传感器的制备
将人肝细胞系L02培养在含10%胎牛血清的DMEM中,放入37℃、含5%CO2的培养箱中,全程无菌操作。待细胞生长至对数生长期,按照2000个细胞/孔的密度将L02接种至含细胞爬片的24孔板中,待其贴壁后,将培养基更换为浓度为0.05 nM的SERS探针培养基,孵育4h。
细胞传感器的评价
细胞活性:通过体外细胞毒性实验及DNA损伤实验考察GNP和Anti γH2AX@GPMT对L02细胞有无毒性。收集对数生长期的L02细胞,用含10%胎牛血清的DMEM培养基制成适宜浓度的细胞悬液。
(1)MTT实验:取100μL接种于96孔培养板中,培养12 h使细胞贴壁。设置实验组:每孔加入不同浓度的GNP或Anti γH2AX@GPMT的培养基;另设对照组:加入细胞和空白培养基,空白组:不加细胞,只加入培养基;置于37℃、5%CO2培育24 h,取出96孔板,每孔加入10μL MTT溶液(5 mg/ml),置于37℃、含5% CO2的细胞培养箱中继续避光孵育4 h,使用酶标仪在492 nm下测定各孔的吸光度,按下式计算细胞存活率:
Figure DEST_PATH_IMAGE001
其中,As=实验组吸光度,Ab=空白组吸光度,Ac=对照组吸光度。
(2)γH2AX免疫荧光实验:取1mL接种于6孔培养板中,培养12 h使细胞贴壁。设置实验组:每孔加入不同浓度的GNP或Anti γH2AX@GPMT的培养基;另设对照组:加入细胞和空白培养基;置于37℃、5%CO2培育24 h。取出孔板;用4%(4g/100mL)的多聚甲醛固定细胞15min;用0.5% Triton X-100(0.5ml/100 ml PBS)室温通透20 min;滴加2%(2g/100ml)BSA,室温封闭30 min;每孔滴加足够量的用封闭液按1:200比例稀释好的一抗Anti-γ H2AXantibody,4℃孵育过夜;滴加按1:1000比例稀释好的荧光二抗Goat Anti-Rabbit IgG H&L(Alexa Fluor® 488),室温孵育1 h;滴加 DAPI 避光孵育5 min,对标本进行染核。每步结束均用PBS或PBST浸洗,然后在荧光显微镜下观察采集图像。
MTT结果表明(图9),GNP和Anti γH2AX@GPMT对L02细胞的毒性较小,细胞存活率均超过90%,且没有浓度依赖性,表明不存在明显的细胞毒性。γH2AX免疫荧光实验结果表明(图10),探针在0.05 nM的细胞给药浓度时γH2AX呈阴性,表明GNP和Anti γH2AX@GPMT在DNA损伤层面也没有明显毒性。
细胞摄取:吸去孵育后的细胞传感器培养基,用PBS清洗,之后在暗场显微镜下根据金纳米的暗场散射成像功能,观察SERS探针的细胞摄取情况。
结果表明(图11),与空白细胞相比,细胞传感器内分布着数量适中的SERS探针,有利于进行下一步对杂质基因毒性的评价。
杂质基因毒性的评价
将细胞传感器培养基更换为含不同浓度杂质的培养基,持续孵育24 h后,将爬片取出,置于共聚焦倒置显微明暗场成像拉曼光谱仪中检测,比较实验组与对照组的拉曼信号,评价杂质基因毒性。
分别选用甲磺酸甲酯(MMS)、水杨酸(SA)、5-氟尿嘧啶(5-Fu)、N-亚硝基二乙胺(NDEA)作为不同结构类型基因毒性杂质进行测试。给药浓度设置为在相近细胞毒性作用下的浓度,即MMS(50 μg/ml)、SA(50 μg/ml)、5-Fu(0.1 μg/ml)、NDEA(500 μg/ml)。在拉曼mapping成像时,以细胞核中心点为圆心,2 μm为步长,扫一个20×20 μm的正方形(以2230cm-1为特征信号峰),计算信号强度时,以涵盖细胞核区域的格子信号求平均值。将此信号经标准曲线转换为效应分子浓度,计算实验组与对照组的效应分子浓度比值,即为诱导倍数(FI),FI大于1.5时,判定为该类基因毒性杂质,小于等于1.5时判定为非该类基因毒性杂质。
结果表明(图12&表1),已知基因毒性杂质在经此传感器检测,FI值均大于1.5,表明确实存在基因毒性,已知非基因毒性杂质FI值小于1.5,表明该方法能有效评价杂质基因毒性。
表1各杂质经细胞传感器测试的FI值数据
Control MMS NDEA 5-Fu SA
FI 1.00 4.81 3.59 5.19 1.02
实施例2
1. 仪器与试剂
1.1仪器
共聚焦倒置显微荧光明暗场成像拉曼光谱仪(北京卓立汉光,配备Olympus®LUCPLFLN40X 型长焦消色差物镜、Lumenera® INFINITY 3-1 型相机、3刻线光栅、3通道激光光源、荧光光源及滤镜等,可进行明场、暗场成像及拉曼光谱检测并进行mapping成像)、恒温培养箱、超纯水仪等。
试剂
四水合氯金酸(HAuCl4·4H2O)、柠檬酸三钠、SH-PEG-NH2(MW2000)、4-巯基苯甲腈(4-MBN)、4-巯基苯甲酸(4-MBA)、4-巯基苯硼酸(4-MBN)、戊二醛(25%)、PBS、牛血清白蛋白(BSA)、TAT、NLS、Anti-γH2AX (phospho S139) antibody。
拉曼分子的选择优化
由于4-MBN、4-MBA和4-MPBA的结构类似(图13),且均通过巯基作为与金纳米连接的基团,通过苯环形成拉曼散射截面,通过不同的取代基表现特征拉曼信号峰,以上三者已被广泛使用。因此,本发明认为上述三种拉曼分子的选取具有相近的信号报告功能,且不影响细胞传感器的理化性质,均可作为本发明所用拉曼分子。
穿膜肽的选择优化
在实施例1的制备条件下,将TAT肽更换为等摩尔量的NLS肽,进行探针的细胞摄取考察。
结果表明(图14),在细胞摄取4 h时,NLS修饰的SERS探针大量聚集于细胞核中,对本发明后续由基因毒性杂质诱导γH2AX引发的探针聚集造成较大背景干扰。这可能是由于NLS的核靶向能力更强,需进一步优化其修饰比例及细胞摄取浓度和时间,使其满足检测需要,提高信号对比度。
细胞传感载体的选择优化
在实施例1的细胞传感器制备条件下,将L02细胞更换为HepG2和Hepa1-6细胞,进行探针的细胞摄取考察。
结果表明(图15),在细胞摄取4 h时,HepG2和Hepa1-6细胞摄取入核的探针数量均较少,这可能是由于肿瘤细胞的高代谢活性和强外排转运能力,导致细胞传感器包含探针较少,难以实现灵敏的基因毒性检测,需进一步优化探针的孵育浓度和时间,使其满足检测需要,提高信号灵敏度。

Claims (9)

1.一种基于表面增强拉曼散射的细胞传感器,其特征在于:该细胞传感器是将表面增强拉曼散射探针导入人源肝细胞系构建得到的;
所述的表面增强拉曼散射探针是以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元,SH-PEG-NH2为稳定链,穿膜肽为辅助穿透单元制备得到的;
所述的基因损伤效应分子抗体为γH2AX抗体;
所述的拉曼分子包括4-巯基苯甲腈、4-巯基苯甲酸和4-巯基苯硼酸中的至少一种;
所述的人源肝细胞系为人肝细胞L02、人肝癌细胞HepG2和人肝癌细胞Hepa1-6中的至少一种;
所述的穿膜肽包括TAT和NLS中的至少一种;
所述的表面增强拉曼散射探针采用以下步骤制备:
步骤(1):采用柠檬酸三钠还原法制备金纳米溶液:
步骤(2):SH-PEG-NH2修饰金纳米:将SH-PEG-NH2加入到步骤(1)制备的金纳米溶液中搅拌反应得到SH-PEG-NH2修饰的金纳米溶液;
步骤(3):拉曼分子修饰金纳米:将拉曼分子溶液缓慢加入到步骤(2)制备的金纳米溶液中搅拌反应,然后离心弃上清并加入超纯水分散均匀得到SH-PEG-NH2和拉曼分子修饰的金纳米溶液;
步骤(4):基因损伤效应分子抗体修饰金纳米:向步骤(3)制备的金纳米溶液中加入5%的戊二醛溶液搅拌反应,然后离心弃上清并加入超纯水分散均匀得到戊二醛化的金纳米溶液,再加入基因损伤效应分子抗体水溶液孵育后离心弃上清并加入超纯水分散均匀得到基因损伤效应分子抗体修饰的金纳米溶液;
步骤(5):穿膜肽修饰金纳米:将穿膜肽加入到步骤(4)制备的金纳米溶液中,搅拌反应,然后离心弃上清并用含1%BSA的PBS复溶并分散均匀得到表面增强拉曼散射探针。
2.根据权利要求1所述的细胞传感器,其特征在于,所述的金纳米的粒径为10-50 nm。
3.根据权利要求1所述的细胞传感器,其特征在于,步骤(1)中采用柠檬酸三钠还原法制备金纳米溶液的过程为:将0.01%的HAuCl4水溶液加热至沸腾,迅速加入1%柠檬酸三钠水溶液,煮沸7~10min;其中,0.01%HAuCl4水溶液与1%柠檬酸三钠水溶液体积比为20:1~100:1。
4.根据权利要求1所述的细胞传感器,其特征在于,
步骤(2)中所述SH-PEG-NH2分子量为2000-5000;所述金纳米与SH-PEG-NH2的摩尔比为1:1×103~1:2×106
步骤(3)中所述的金纳米与拉曼分子的摩尔比为1:1×103~1:1×106
步骤(4)中所述的金纳米与戊二醛的摩尔比为1:1×103~1:2×106;所述的金纳米与基因损伤效应分子抗体的投料比为5pmol:2 μL~5nmol:2 μL;
步骤(5)中所述的金纳米与穿膜肽的摩尔比为1: 1×102~1×1:105
5.根据权利要求1所述的细胞传感器,其特征在于,步骤(2)、步骤(3)和步骤(5)中所述搅拌反应的时间各自独立的为搅拌5~10小时;步骤(4)中所述搅拌反应的时间为1~3小时,所述孵育的条件为25~38℃孵育1~3小时。
6.权利要求1、3~5中任意一项所述的细胞传感器在基因毒性杂质评价中的应用。
7.一种基于表面增强拉曼散射的基因毒性杂质评价方法,其特征在于,以金纳米为检测基底,基因损伤效应分子抗体为识别单元,拉曼分子为报告单元,SH-PEG-NH2为稳定链,穿膜肽为辅助穿透单元制备表面增强拉曼散射探针;将所述的表面增强拉曼散射探针导入人源肝细胞系构建细胞传感器;将所述的细胞传感器暴露于不同DNA损伤机制的药物杂质,检测拉曼信号,评价药物杂质的基因毒性水平;所述的细胞传感器为权利要求1、3~5中任意一项所述的细胞传感器。
8.根据权利要求7所述的方法,其特征在于,当基因损伤发生时,效应分子在损伤处过表达,诱导所述的表面增强拉曼散射探针聚集形成热点,产生表面增强拉曼散射增强信号,在拉曼显微镜下进行原位实时监测,通过基因损伤过程中拉曼信号的强度变化评价药物杂质的基因毒性水平。
9.根据权利要求7所述的方法,其特征在于,所述药物杂质的浓度应保证细胞传感器的细胞存活率在75%以上;检测拉曼信号时,拉曼光谱仪光源激发波长为638 nm,检测信号采用拉曼位移在1800 cm-1后的特征拉曼峰的峰高值;将所述的检测信号经标准曲线转换为效应分子浓度,计算实验组与对照组的效应分子浓度比值,即为诱导倍数FI,FI大于1.5时,判定为DNA损伤类基因毒性杂质,小于等于1.5时判定为非DNA损伤类基因毒性杂质。
CN202210577889.4A 2022-05-26 2022-05-26 一种基于表面增强拉曼散射的细胞传感器及其应用 Active CN114674806B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210577889.4A CN114674806B (zh) 2022-05-26 2022-05-26 一种基于表面增强拉曼散射的细胞传感器及其应用
PCT/CN2023/075166 WO2023226476A1 (zh) 2022-05-26 2023-02-09 一种基于表面增强拉曼散射的细胞传感器及其应用
US18/570,741 US20240280493A1 (en) 2022-05-26 2023-02-09 Cellular sensors based on surface-enhanced raman scattering and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210577889.4A CN114674806B (zh) 2022-05-26 2022-05-26 一种基于表面增强拉曼散射的细胞传感器及其应用

Publications (2)

Publication Number Publication Date
CN114674806A CN114674806A (zh) 2022-06-28
CN114674806B true CN114674806B (zh) 2022-08-12

Family

ID=82080351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210577889.4A Active CN114674806B (zh) 2022-05-26 2022-05-26 一种基于表面增强拉曼散射的细胞传感器及其应用

Country Status (3)

Country Link
US (1) US20240280493A1 (zh)
CN (1) CN114674806B (zh)
WO (1) WO2023226476A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674806B (zh) * 2022-05-26 2022-08-12 中国药科大学 一种基于表面增强拉曼散射的细胞传感器及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346148A (zh) * 2011-08-18 2012-02-08 江南大学 一种基于自组装材料对癌细胞表面增强拉曼检测的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795628B2 (en) * 2007-05-04 2014-08-05 The Board Of Trustees Of The Leland Stanford Junior University Molecular imaging of living subjects using Raman spectroscopy and labeled Raman nanoparticles
CN101821411A (zh) * 2007-08-13 2010-09-01 斯特拉斯克莱德大学 核酸序列的鉴定
US8323618B2 (en) * 2007-11-07 2012-12-04 University Of Houston System Ultrasmall superparamagnetic iron oxide nanoparticles and uses thereof
DE102010041958A1 (de) * 2010-10-04 2012-04-05 Medicyte Gmbh Geeignete Hepatozyten für in-vitro Genotoxitätstests
US8580769B2 (en) * 2011-03-10 2013-11-12 The United States Of America As Represented By The Department Of Veterans Affairs Treatment of obesity, metabolic syndrome, and diabetes with protein kinase C inhibitors
US20120263793A1 (en) * 2011-04-14 2012-10-18 Franco Vitaliano Bio-nano-plasmonic elements and platforms
US10145845B2 (en) * 2015-10-01 2018-12-04 The Florida International University Board Of Trustees On-chip assay for environmental surveillance
US20170322211A1 (en) * 2016-04-26 2017-11-09 Colorado School Of Mines Pathogen detection by sers nanoparticles
CN106367510B (zh) * 2016-09-20 2019-06-14 江南大学 一种用于胞内癌症标志物双重检测的卫星状纳米组装体的制备方法及应用
CN107941781B (zh) * 2017-11-13 2020-10-02 江南大学 一种利用sers光谱表征毒素对活细胞损伤作用的方法
CN111351886B (zh) * 2018-12-24 2023-06-23 成都平和安康医药科技有限公司 一种测定酚磺乙胺药物中含有的杂质及其主药含量的方法
CN113916856B (zh) * 2021-10-09 2022-10-04 江南大学 一种荧光-拉曼双模式的纳米传感器及其制备方法与其在硫醇检测中的应用
CN114674806B (zh) * 2022-05-26 2022-08-12 中国药科大学 一种基于表面增强拉曼散射的细胞传感器及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346148A (zh) * 2011-08-18 2012-02-08 江南大学 一种基于自组装材料对癌细胞表面增强拉曼检测的方法

Also Published As

Publication number Publication date
CN114674806A (zh) 2022-06-28
WO2023226476A1 (zh) 2023-11-30
US20240280493A1 (en) 2024-08-22

Similar Documents

Publication Publication Date Title
Xu et al. Dual-mode of magnetic assisted Au@ Ag SERS tags and cationic conjugated UCNPs for qualitative and quantitative analysis of multiple foodborne pathogens
Kumar et al. Myoglobin and polydopamine‐engineered Raman nanoprobes for detecting, imaging, and monitoring reactive oxygen species in biological samples and living cells
Cheng et al. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients
Urban et al. Plasmonic nanoparticles and their characterization in physiological fluids
Zhang et al. Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B 12 and cobalt (II)
Fu et al. Post-modified metal-organic framework as ratiometric fluorescence-scattering probe for trace ciprofloxacin residue based on competitive coordination
Guo et al. An “OFF–ON” fluorescent chemosensor for highly selective and sensitive detection of Al (III) in aqueous solution
CN114674806B (zh) 一种基于表面增强拉曼散射的细胞传感器及其应用
Han et al. Single-particle enumeration-based ultrasensitive enzyme activity quantification with fluorescent polymer nanoparticles
Chen et al. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration
Hu et al. A ratiometric fluorescence sensor for ultra-sensitive detection of trypsin inhibitor in soybean flour using gold nanocluster@ carbon nitride quantum dots
Shen et al. Tandem detection of aluminum ion and norfloxacin by Au-doped copper nanoclusters based on AIE and coordination reaction
Yan et al. WS 2 quantum dots-MnO 2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione
Zhou et al. Hypersensitive detection of IL-6 on SERS substrate calibrated by dual model
Berlina et al. Combination of phenylboronic acid and oligocytosine for selective and specific detection of lead (ii) by lateral flow test strip
Wang et al. Engineering of onsite point-of-care testing of Fe3+ with visual ratiometric fluorescent signals of copper nanoclusters-driven portable smartphone
Guo et al. Employing CuInS 2 quantum dots modified with vancomycin for detecting Staphylococcus aureus and iron (iii)
Liu et al. Multifunctional carbon dots for glutathione detection and Golgi imaging
Davis et al. Development and application of a ratiometric nanosensor for measuring pH inside the gastrointestinal tract of zooplankton
Al-mashriqi et al. Gold nanoclusters reversible switches based on aluminum ions-triggered for detection of pyrophosphate and acid phosphatase activity
Wang et al. Constructing self-assembled nanohybrids for the ratiometric fluorescent sensing of acetylcholinesterase activity
Wang et al. Simultaneous fluorescence sensing of vitamin B2 and sulfur ions based on fluorescent copper nanoparticles
KR20100002434A (ko) 금 할로우 나노입자 및 광학 이미징 기술을 이용한 암세포판별법
Behzadifar et al. A new ratiometric fluorescent detection of Glucose-6-phosphate dehydrogenase enzyme based on dually emitting carbon dots and silver nanoparticles
Xu et al. A cell wall-targeted organic-inorganic hybrid nano-catcher for ultrafast capture and SERS detection of invasive fungi

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant