CN114663304A - A Sparse Prior-Based Imaging Enhancement Method for Optical Synthetic Aperture Systems - Google Patents
A Sparse Prior-Based Imaging Enhancement Method for Optical Synthetic Aperture Systems Download PDFInfo
- Publication number
- CN114663304A CN114663304A CN202210257107.9A CN202210257107A CN114663304A CN 114663304 A CN114663304 A CN 114663304A CN 202210257107 A CN202210257107 A CN 202210257107A CN 114663304 A CN114663304 A CN 114663304A
- Authority
- CN
- China
- Prior art keywords
- image
- synthetic aperture
- imaging enhancement
- optical synthetic
- aperture system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000003287 optical effect Effects 0.000 title claims abstract description 35
- 238000003384 imaging method Methods 0.000 title claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000012804 iterative process Methods 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 108091006146 Channels Proteins 0.000 description 25
- 238000001914 filtration Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于稀疏先验的光学合成孔径系统成像增强方法。用来解决光学合成孔径系统由于阵列结构和共相误差影响下导致的成像退化问题。方法特点为将暗通道和图像梯度先验做为稀疏先验设计成像增强模型,方法流程为首先计算合成孔径系统阵列结构下的点扩散函数做为初始糢糊核输入,然后通过半二次分裂法对稀疏先验进行求解,求解模型估计最终的糢糊核和成像增强后的图像。本发明利用合成孔径系统固有的先验理论,具有适用范围广、实现简单以及增强效果好等优点。
The invention discloses an imaging enhancement method of optical synthetic aperture system based on sparse prior. It is used to solve the imaging degradation problem of optical synthetic aperture system due to the influence of array structure and common phase error. The characteristics of the method are that the dark channel and the image gradient prior are used as the sparse prior to design the imaging enhancement model. The method flow is to first calculate the point spread function under the synthetic aperture system array structure as the initial blur kernel input, and then use the semi-quadratic splitting method. The sparse prior is solved, and the solution model estimates the final blur kernel and the image after imaging enhancement. The invention utilizes the inherent a priori theory of the synthetic aperture system, and has the advantages of wide application range, simple implementation, good enhancement effect and the like.
Description
技术领域technical field
本发明涉及图像处理与光学工程技术领域,具体地指光学合成孔径系统图像复原与增强领域,特别涉及一种基于稀疏先验的光学合成孔径系统成像增强方法。The invention relates to the technical fields of image processing and optical engineering, in particular to the field of image restoration and enhancement of optical synthetic aperture systems, and in particular to a sparse prior-based imaging enhancement method of optical synthetic aperture systems.
背景技术Background technique
光学合成孔径系统使用更加易于制造的小孔径在空间中按照一定的排列方式来获得与单一大孔径等效的分辨率。其面临严重的问题是图像的降质模糊,导致的原因主要是阵列结构引起的通光面积减小和共相误差引起的PSF弥散。因此需要从成像增强的角度进行解决。Optical synthetic aperture systems use smaller, easier-to-manufacture apertures arranged in space to achieve resolution equivalent to a single large aperture. The serious problem it faces is the degradation and blurring of the image, which is mainly caused by the reduction of the light transmission area caused by the array structure and the PSF dispersion caused by the common phase error. Therefore, it needs to be solved from the perspective of imaging enhancement.
目前针对合成孔径系统的成像增强方法普遍采用的是维纳滤波方法。维纳滤波基于最小二乘原理,将数字图像看做二维平稳的连续信号,中心思想是使复原图像与退化前图像的均方误差最小、相似度最高。维纳滤波对已知PSF以及噪声类型复原效果好,但是当无法对噪声功率谱有较好的估计时,复原效果较差,同时无法解决相位误差,复原的图像会产生振铃的现象。At present, the commonly used imaging enhancement method for synthetic aperture system is the Wiener filter method. Wiener filtering is based on the principle of least squares, and regards the digital image as a two-dimensional stable continuous signal. Wiener filtering has a good recovery effect on known PSF and noise types, but when the noise power spectrum cannot be well estimated, the recovery effect is poor, and the phase error cannot be resolved, and the recovered image will produce ringing.
发明内容SUMMARY OF THE INVENTION
针对上述目前技术存在的问题,本发明提出一种基于稀疏先验的光学合成孔径系统成像增强方法,如图2,通过对445幅光学合成孔径系统成像仿真的清晰图像与糢糊图像的暗通道值的直方图,可以发现清晰的图像暗通道值接近于0值,而糢糊图像的暗通道值则上升。因此可以采用暗通道做为合成孔径系统图像增强的固有先验,结合图像梯度先验,针对具体的光学合成孔径系统仅需要考虑固定的阵列结构下的点扩散函数,即可对系统的成像效果进行增强。In view of the above-mentioned problems existing in the current technology, the present invention proposes an optical synthetic aperture system imaging enhancement method based on sparse prior. The histogram of , it can be found that the dark channel value of the clear image is close to 0 value, while the dark channel value of the blurred image is rising. Therefore, the dark channel can be used as the inherent prior for image enhancement of the synthetic aperture system. Combined with the image gradient prior, for a specific optical synthetic aperture system, only the point spread function under a fixed array structure needs to be considered, and the imaging effect of the system can be improved. to enhance.
本发明的方法所采用的技术方案是:一种基于稀疏先验的光学合成孔径系统成像增强方法,包括以下步骤:The technical scheme adopted by the method of the present invention is: a sparse prior-based optical synthetic aperture system imaging enhancement method, comprising the following steps:
步骤一:计算光学合成孔径在固定阵列结构下的系统PSF函数。Step 1: Calculate the system PSF function of the optical synthetic aperture under the fixed array structure.
步骤二:提出针对光学合成孔径成像增强的模型:Step 2: Propose a model for optical synthetic aperture imaging enhancement:
其中,第一项为保真项,其中B表示输入的模糊图像矩阵,其m*n*3大小,k表示模糊核矩阵,其p*p大小,I表示估计的清晰图像矩阵,其m*n*3大小,表示卷积的过程,该项使用L2范数约束,用来约束清晰图像与模糊核卷积后的值与模糊图像损失最小;第二项用来正则化模糊核的解,该项使用L2范数约束;第三项为梯度约束项,表示图像的梯度矩阵,该项使用L0范数约束;第四项为暗通道约束项,D(I)表示图像I的暗通道值矩阵,该项使用L0范数约束,α、β和λ为权重参数。Among them, the first is the fidelity term, where B represents the input blurred image matrix with the size of m*n*3, k represents the blur kernel matrix with the size of p*p, and I represents the estimated clear image matrix with the size of m*n*3, Represents the process of convolution. This item uses the L2 norm constraint to constrain the value of the clear image and the blur kernel convolved with the blurred image to minimize the loss; the second item Used to regularize the solution of the fuzzy kernel, this term uses the L2 norm constraint; the third term is the gradient constraint term, Represents the gradient matrix of the image, which uses the L0 norm constraint; the fourth term is the dark channel constraint term, D(I) represents the dark channel value matrix of the image I, this term uses the L0 norm constraint, and α, β and λ are the weight parameters.
步骤三:将图像暗通道和梯度以L0范数的形式在针对光学合成孔径成像增强的模型中作为正则化项稀疏约束。暗通道表示为获取的RGB图像的每个像素点领域3*3范围内三通道的最小值,按照如下方式计算其中x和y分别表示图像像素的位置,P(x)是以x为中心的邻域;c为集合{r,g,b}的颜色通道,D(I)(x)表示图像I在x像素点的暗通道值,表示图像I的任一像素点设置为在其邻域P(x)内RGB三通道中的最小值。梯度表示像素点在水平和垂直两个方向上的变化率,计算方式为:gx和gy分别表示水平和垂直方向的变化率,计算区间为2个像素点。Step 3: Use the image dark channel and gradient in the form of L0 norm as regularization term sparse constraints in the model for optical synthetic aperture imaging enhancement. The dark channel is expressed as the minimum value of the three channels within the 3*3 range of each pixel point of the acquired RGB image, and is calculated as follows where x and y represent the position of the image pixel respectively, P(x) is the neighborhood centered at x; c is the color channel of the set {r, g, b}, D(I)(x) represents the image I at x the dark channel value of the pixel, Any pixel representing image I is set as the minimum value among the three RGB channels in its neighborhood P(x). The gradient represents the rate of change of a pixel in both horizontal and vertical directions, and is calculated as: gx and gy represent the rate of change in the horizontal and vertical directions, respectively, and the calculation interval is 2 pixels.
步骤四:输入合成孔径系统采集的模糊图像以及步骤一中计算的PSF函数做为初始模糊核。Step 4: Input the blurred image collected by the synthetic aperture system and the PSF function calculated in step 1 as the initial blur kernel.
步骤五:将图像按照金字塔的形式进行下采样。下采样的过程首先将采集到的合成孔径系统图像按照输入的模糊核大小KemelSize,计算金字塔的层数num_scales:第一次迭代过程,将图像按层数比例缩小到最小值,之后的迭代按照上一层的结果按图像金字塔层数的比例向上采样。Step 5: Downsample the image in the form of a pyramid. The downsampling process first calculates the number of pyramid layers num_scales according to the input blur kernel size KemelSize of the collected synthetic aperture system image: In the first iteration process, the image is scaled down to the minimum value according to the number of layers, and the subsequent iterations are up-sampled according to the result of the previous layer according to the ratio of the number of image pyramid layers.
步骤六:采用半二次分裂法对模型的目标函数进行求解。模糊核的大小根据初始模糊核大小KernelSize和图像金字塔的层数i=num_scales,按如下方式计算:每次模糊核的估计为上一层计算的结果。Step 6: Use the semi-quadratic splitting method to solve the objective function of the model. The size of the blur kernel is calculated according to the initial blur kernel size KernelSize and the number of layers i=num_scales of the image pyramid, as follows: The estimation of each blur kernel is the result calculated by the previous layer.
本发明提出使用基于梯度和暗通道的稀疏先验的成像增强方法,相对于目前已有的技术,本发明具有如下的优点和创新性:The present invention proposes an imaging enhancement method using sparse prior based on gradients and dark channels. Compared with the existing technology, the present invention has the following advantages and innovations:
1.采用固有的先验:暗通道和梯度先验具有简单、高效的特点,方法仅需输入阵列结构下的点扩散函数作为模糊核估计的初始值,经过多次迭代估计即可得到最终的清晰图像。1. Using inherent priors: Dark channel and gradient priors are simple and efficient. The method only needs to input the point spread function under the array structure as the initial value of the fuzzy kernel estimation, and the final value can be obtained after multiple iterations of estimation. clear image.
2.与现有需要严格光学系统先验的图像增强方法对比,本发明具有更好的泛化能力,能够在不需要光学系统的参数情况下,将糢糊核初始化为零矩阵,对系统成像的糢糊图像进行盲复原。2. Compared with the existing image enhancement methods that require strict optical system priors, the present invention has better generalization ability, and can initialize the blur kernel to a zero matrix without requiring the parameters of the optical system, so as to improve the image quality of the system. Blind restoration of blurred images.
3.本发明能够有效的解决系统成像出现的噪声以及共相误差导致的图像退化问题。3. The present invention can effectively solve the problem of image degradation caused by noise in system imaging and common phase error.
附图说明Description of drawings
图1为本发明一种基于稀疏先验的光学合成孔径系统成像增强方法的流程图。FIG. 1 is a flowchart of an imaging enhancement method for an optical synthetic aperture system based on a sparse prior of the present invention.
图2为本发明验证暗通道先验理论的清晰图像与糢糊图像像素点暗通道值的直方统计图。FIG. 2 is a histogram of the dark channel values of the pixel points of the clear image and the blurred image for verifying the dark channel prior theory according to the present invention.
图3为本发明的仿真实验结果。Fig. 3 is the simulation experiment result of the present invention.
图4为本发明的仿真实验的平均PSNR和SSIM指标结果。FIG. 4 is the average PSNR and SSIM index results of the simulation experiment of the present invention.
图5为本方法实际应用的盲复原结果。Fig. 5 is the blind restoration result of the practical application of this method.
具体实施方式Detailed ways
下面结合附图以及具体实施方式进一步说明本发明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
本发明提出了一种针对合成孔径光学系统的成像增强方法,首先将暗通道和梯度作为固有的先验进行约束,再将光学系统的阵列结构下计算的PSF函数作为初始模糊核,通过迭代求解最终估计的清晰复原图像。该方法能够解决图像噪声、共相误差以及其它因素导致的图像模糊,恢复图像的细节部分。The invention proposes an imaging enhancement method for a synthetic aperture optical system. First, the dark channel and the gradient are used as inherent prior constraints, and then the PSF function calculated under the array structure of the optical system is used as the initial blur kernel, and the solution is iteratively solved. The final estimated sharply restored image. The method can solve the image blur caused by image noise, common phase error and other factors, and restore the details of the image.
如图1所示,本发明提供一种基于L0稀疏先验的光学合成孔径系统成像增强方法,包括以下步骤:As shown in FIG. 1 , the present invention provides an optical synthetic aperture system imaging enhancement method based on L0 sparse prior, including the following steps:
步骤1:计算光学合成孔径在固定阵列结构下的系统PSF函数。计算方式如下:Step 1: Calculate the system PSF function of the optical synthetic aperture under a fixed array structure. It is calculated as follows:
其中,PSF(x,y)为系统的PSF函数;x和y表示坐标平面的位置;N表示合成孔径系统的子孔径数量;n和m表示任意的两个子孔径;λ为中心波长;z为系统出瞳平面与像平面的距离,即合成孔径系统的焦距;am与bm分别为坐标轴上子孔径圆心的位置;PSFsub(x,y)为系统各个子孔径的振幅扩散函数,表示为:Among them, PSF(x,y) is the PSF function of the system; x and y represent the position of the coordinate plane; N represents the number of sub-apertures of the synthetic aperture system; n and m represent any two sub-apertures; λ is the center wavelength; z is the The distance between the exit pupil plane and the image plane of the system is the focal length of the synthetic aperture system; a m and b m are the positions of the center of the sub-apertures on the coordinate axis, respectively; PSF sub (x, y) is the amplitude spread function of each sub-aperture of the system, Expressed as:
其中,r0为子孔径的视场光阑直径,J1为一阶Bessel函数;Among them, r 0 is the field diaphragm diameter of the sub-aperture, and J 1 is the first-order Bessel function;
步骤2:提出一种针对光学合成孔径成像增强的模型:Step 2: Propose a model for optical synthetic aperture imaging enhancement:
第一项为保真项,其中B表示输入的模糊图像矩阵,其m*n*3大小,k表示模糊核矩阵,其p*p大小,I表示估计的清晰图像矩阵,其m*n*3大小,表示卷积的过程,该项使用L2范数约束,用来约束清晰图像与模糊核卷积后的值与模糊图像损失最小;第二项用来正则化模糊核的解,该项使用L2范数约束,可通过快速傅里叶变换求解;第三项为梯度约束项,表示图像的梯度,用来剔除较小的梯度,而保留梯度较大的细节,该项使用L0范数约束;第四项为暗通道约束项,D(I)表示图像I的暗通道值矩阵(大小为m*n),使得估计的清晰图像暗通道稀疏程度尽可能的高,该项使用L0范数约束,α、β和λ为权重参数,分别初始化为0.001、0.004和0.004。the first item is the fidelity term, where B represents the input blurred image matrix with the size of m*n*3, k represents the blur kernel matrix with the size of p*p, and I represents the estimated clear image matrix with the size of m*n*3, Represents the process of convolution. This item uses the L2 norm constraint to constrain the value of the clear image and the blur kernel convolved with the blurred image to minimize the loss; the second item The solution used to regularize the fuzzy kernel, which uses the L2 norm constraint and can be solved by the fast Fourier transform; the third term is the gradient constraint term, Indicates the gradient of the image, which is used to eliminate smaller gradients and retain the details with larger gradients. This item uses the L0 norm constraint; the fourth item is the dark channel constraint term, D(I) represents the dark channel value matrix of image I (size is m*n), so that the estimated clear image dark channel sparse degree is as high as possible, this term uses the L0 norm constraint, α, β and λ are weight parameters, which are initialized to 0.001, 0.004, and 0.004, respectively.
步骤3:将图像暗通道和梯度以L0范数的形式在模型中作为正则化项进行稀疏约束。暗通道表示为获取的光学合成孔径系统的RGB图像的每个像素点领域3*3范围内三通道的最小值,按照如下方式计算其中x和y分别表示图像像素的位置,P(x)是以x为中心的邻域,设置为3*3像素大小;c为集合{r,g,b}的颜色通道,D(l)(x)表示图像I在x像素点的暗通道值,表示图像I的任一像素点设置为在其邻域P(x)内RGB三通道中的最小值。梯度表示像素点在水平和垂直两个方向上的变化率,计算方式为:gX和gy分别表示水平和垂直方向的变化率,计算区间为2个像素点。Step 3: The image dark channel and gradient are sparsely constrained as regularization terms in the model in the form of L0 norm. The dark channel is expressed as the minimum value of the three channels within the 3*3 range of each pixel point of the RGB image of the acquired optical synthetic aperture system, and is calculated as follows Where x and y represent the position of the image pixel respectively, P(x) is the neighborhood of x as the center, set to 3*3 pixel size; c is the color channel of the set {r, g, b}, D(l) (x) represents the dark channel value of image I at x pixels, Any pixel representing image I is set as the minimum value among the three RGB channels in its neighborhood P(x). The gradient represents the rate of change of a pixel in both horizontal and vertical directions, and is calculated as: gX and gy represent the rate of change in the horizontal and vertical directions, respectively, and the calculation interval is 2 pixels.
步骤4:输入合成孔径系统采集的模糊图像以及步骤一中计算的PSF函数做为初始模糊核。Step 4: Input the blurred image collected by the synthetic aperture system and the PSF function calculated in step 1 as the initial blur kernel.
步骤5:将图像按照金字塔的形式进行下采样。下采样的过程首先将采集到的合成孔径系统图像按照输入的模糊核大小KemelSize=35*35,计算金字塔的层数num_scales:第一次迭代过程,将图像按层数比例缩小到最小值,之后的迭代过程按照上一层的结果按图像金字塔层数的比例向上采样。Step 5: Downsample the image in the form of a pyramid. The downsampling process first calculates the number of pyramid layers num_scales according to the input blur kernel size KemelSize=35*35 of the collected synthetic aperture system image: In the first iterative process, the image is reduced to the minimum value according to the number of layers, and the subsequent iterative process is up-sampled according to the result of the previous layer according to the proportion of the number of image pyramid layers.
步骤6:采用半二次分裂法对模型的目标函数进行求解。模糊核的大小根据初始模糊核大小KemelSize和图像金字塔的层数i=num_scales,按如下方式计算:每次模糊核的估计为上一层计算的结果。Step 6: Use the semi-quadratic splitting method to solve the objective function of the model. The size of the blur kernel is calculated according to the initial blur kernel size KemelSize and the number of layers i=num_scales of the image pyramid, as follows: The estimation of each blur kernel is the result calculated by the previous layer.
通过对光学合成孔径系统进行图像仿真退化,将本方法与维纳滤波方法进行对比实验,以子孔径直径d为200mm,外接圆直径D为500mm的Golay-3阵列结构下的合成孔径系统进行仿真成像,成像增强结果如图3所示,峰值信噪比(PSNR)和结构相似度(SSIM)两个客观指标结果如图4所示。同时对本发明的方法进行工程实际实验,结果如图5所示。以上实验结果可以证明本发明对光学合成孔径成像系统的增强是有效的。Through the image simulation degradation of the optical synthetic aperture system, this method is compared with the Wiener filtering method. The synthetic aperture system under the Golay-3 array structure with the sub-aperture diameter d of 200mm and the circumscribed circle diameter D of 500mm is simulated. The results of imaging and imaging enhancement are shown in Figure 3, and the results of two objective indicators, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM), are shown in Figure 4. At the same time, a practical engineering experiment is carried out on the method of the present invention, and the result is shown in FIG. 5 . The above experimental results can prove that the present invention is effective for enhancing the optical synthetic aperture imaging system.
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。It should be understood that the above description of the preferred embodiments is relatively detailed, and therefore should not be considered as a limitation on the scope of the patent protection of the present invention. In the case of the protection scope, substitutions or deformations can also be made, which all fall within the protection scope of the present invention, and the claimed protection scope of the present invention shall be subject to the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210257107.9A CN114663304B (en) | 2022-03-16 | 2022-03-16 | An imaging enhancement method for optical synthetic aperture systems based on sparse priori |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210257107.9A CN114663304B (en) | 2022-03-16 | 2022-03-16 | An imaging enhancement method for optical synthetic aperture systems based on sparse priori |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114663304A true CN114663304A (en) | 2022-06-24 |
CN114663304B CN114663304B (en) | 2023-09-19 |
Family
ID=82028792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210257107.9A Active CN114663304B (en) | 2022-03-16 | 2022-03-16 | An imaging enhancement method for optical synthetic aperture systems based on sparse priori |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114663304B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254810A1 (en) * | 2014-03-07 | 2015-09-10 | The University Of British Columbia | System and method for solving inverse imaging problems |
CN105023245A (en) * | 2015-05-05 | 2015-11-04 | 苏州大学 | Image smoothing method under strength and gradient sparsity constraint |
CN105824030A (en) * | 2016-03-10 | 2016-08-03 | 中国科学院光电技术研究所 | Sparse optical synthetic aperture imaging method based on sub-aperture shutter modulation phase difference method |
CN109633646A (en) * | 2019-01-21 | 2019-04-16 | 中国人民解放军陆军工程大学 | Bistatic ISAR imaging method based on weighted L1 norm constraint |
CN109767404A (en) * | 2019-01-25 | 2019-05-17 | 重庆电子工程职业学院 | Infrared image deblurring method under a kind of salt-pepper noise |
CN109919871A (en) * | 2019-03-05 | 2019-06-21 | 重庆大学 | Blur kernel estimation method based on image and blur kernel mixed constraints |
US20190365355A1 (en) * | 2017-01-18 | 2019-12-05 | Technion Research & Development Foundation Ltd. | Sparsity-based ultrasound super-resolution imaging |
CN113538374A (en) * | 2021-07-15 | 2021-10-22 | 中国科学院上海技术物理研究所 | An infrared image blur correction method for high-speed moving objects |
CN113689336A (en) * | 2021-08-25 | 2021-11-23 | 华北电力大学(保定) | A non-blind super-resolution method for infrared images of power equipment |
CN113963349A (en) * | 2021-08-17 | 2022-01-21 | 大连理工大学 | Method for extracting individual space-time feature vector and tested classification |
-
2022
- 2022-03-16 CN CN202210257107.9A patent/CN114663304B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254810A1 (en) * | 2014-03-07 | 2015-09-10 | The University Of British Columbia | System and method for solving inverse imaging problems |
CN105023245A (en) * | 2015-05-05 | 2015-11-04 | 苏州大学 | Image smoothing method under strength and gradient sparsity constraint |
CN105824030A (en) * | 2016-03-10 | 2016-08-03 | 中国科学院光电技术研究所 | Sparse optical synthetic aperture imaging method based on sub-aperture shutter modulation phase difference method |
US20190365355A1 (en) * | 2017-01-18 | 2019-12-05 | Technion Research & Development Foundation Ltd. | Sparsity-based ultrasound super-resolution imaging |
CN109633646A (en) * | 2019-01-21 | 2019-04-16 | 中国人民解放军陆军工程大学 | Bistatic ISAR imaging method based on weighted L1 norm constraint |
CN109767404A (en) * | 2019-01-25 | 2019-05-17 | 重庆电子工程职业学院 | Infrared image deblurring method under a kind of salt-pepper noise |
CN109919871A (en) * | 2019-03-05 | 2019-06-21 | 重庆大学 | Blur kernel estimation method based on image and blur kernel mixed constraints |
CN113538374A (en) * | 2021-07-15 | 2021-10-22 | 中国科学院上海技术物理研究所 | An infrared image blur correction method for high-speed moving objects |
CN113963349A (en) * | 2021-08-17 | 2022-01-21 | 大连理工大学 | Method for extracting individual space-time feature vector and tested classification |
CN113689336A (en) * | 2021-08-25 | 2021-11-23 | 华北电力大学(保定) | A non-blind super-resolution method for infrared images of power equipment |
Non-Patent Citations (6)
Title |
---|
BIN FAN等: "Effective Spectral Unmixing via Robust Representation and Learning-based Sparsity", pages 1 - 13 * |
ZONGYONG CUI等: "Target recognition in synthetic aperture radar images via non-negative matrix factorisation", vol. 9, no. 9, pages 1376 - 1385, XP006054594, DOI: 10.1049/iet-rsn.2014.0407 * |
廖斌等: "基于多分辨率正则化LR的图像盲复原", no. 9, pages 16 - 17 * |
李霄: "基于稀疏约束的图像盲复原方法研究", no. 3, pages 138 - 4611 * |
郑天宇等: "基于增强拉东变换及稀疏先验的模糊星斑复原", no. 6, pages 189 - 198 * |
高敬坤: "阵列三维成像及雷达增强成像技术研究", no. 1, pages 136 - 295 * |
Also Published As
Publication number | Publication date |
---|---|
CN114663304B (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111709895B (en) | Image blind deblurring method and system based on attention mechanism | |
CN110675347B (en) | Image blind restoration method based on group sparse representation | |
CN114549361B (en) | Image motion blur removing method based on improved U-Net model | |
CN110443761B (en) | Single image rain removing method based on multi-scale aggregation characteristics | |
Rani et al. | A brief review on image restoration techniques | |
CN114820388B (en) | Image defogging method based on codec structure | |
CN112488920B (en) | Image regularization super-resolution reconstruction method based on Gaussian-like fuzzy core | |
CN104616248A (en) | Single image deblurring method combined with margin analysis and total variation | |
CN113538374A (en) | An infrared image blur correction method for high-speed moving objects | |
CN113689346A (en) | A compact deep learning dehazing method based on contrastive learning | |
CN108154482A (en) | Image Blind deblurring method based on dark channel prior and multi-direction Weighted T V | |
CN108122262B (en) | A single-frame image super-resolution reconstruction algorithm based on sparse representation based on main structure separation | |
CN103279934B (en) | A kind of remote sensing image restoration methods based on little support region regularization inverse convolution | |
CN113379647B (en) | Multi-feature image restoration method for optimizing PSF estimation | |
CN114820358A (en) | Arbitrary resolution panchromatic sharpening method and system for hyperspectral images | |
Katkovnik et al. | Frequency domain blind deconvolution in multiframe imaging using anisotropic spatially-adaptive denoising | |
CN114663304B (en) | An imaging enhancement method for optical synthetic aperture systems based on sparse priori | |
CN110648291B (en) | Unmanned aerial vehicle motion blurred image restoration method based on deep learning | |
Zeng et al. | Single image motion deblurring based on modified denseNet | |
Wang et al. | Optical satellite image MTF compensation for remote-sensing data production | |
Esmaeilzehi et al. | UPDCNN: A new scheme for image upsampling and deblurring using a deep convolutional neural network | |
Maik et al. | Blind deconvolution using maximum a posteriori (MAP) estimation with directional edge based priori | |
Wang et al. | Efficient image deblurring via blockwise non-blind deconvolution algorithm | |
CN108681988B (en) | Robust image resolution enhancement method based on multiple images | |
CN108648143B (en) | Image resolution enhancement method using sequence image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |