CN114656965A - 一种上转换近红外圆偏振发光材料及其制备方法和应用 - Google Patents

一种上转换近红外圆偏振发光材料及其制备方法和应用 Download PDF

Info

Publication number
CN114656965A
CN114656965A CN202210382122.6A CN202210382122A CN114656965A CN 114656965 A CN114656965 A CN 114656965A CN 202210382122 A CN202210382122 A CN 202210382122A CN 114656965 A CN114656965 A CN 114656965A
Authority
CN
China
Prior art keywords
counterfeiting
infrared
luminescent material
conversion
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210382122.6A
Other languages
English (en)
Other versions
CN114656965B (zh
Inventor
段鹏飞
杨雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN202210382122.6A priority Critical patent/CN114656965B/zh
Publication of CN114656965A publication Critical patent/CN114656965A/zh
Application granted granted Critical
Publication of CN114656965B publication Critical patent/CN114656965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)
  • Polarising Elements (AREA)

Abstract

本发明属于光学防伪技术领域,公开了一种上转换近红外圆偏振发光材料及其制备方法和应用。该上转换近红外圆偏振发光材料包含向列相液晶、手性掺杂剂和发光粒子;其中,发光粒子为稀土掺杂的上转换纳米粒子,其最大发射波长≥750nm。本发明使用稀土掺杂上转换纳米粒子,在近红外区域表现出明显的发射特性,与手性向列相液晶复合后得到上转换近红外圆偏振发光材料。该材料在用于隐蔽光防伪时,肉眼不能直接观察到受保护信息;使用近红外区域的激发光照射下,防伪黑条也不能被识别。而在激发光和圆偏振片同时作用下,才能得到受保护信息。本发明的基于上转换近红外发光的光子条形码具有多重信息加密的功能,极大提高了信息安全水平。

Description

一种上转换近红外圆偏振发光材料及其制备方法和应用
技术领域
本发明涉及光学防伪技术领域,尤其涉及一种上转换近红外圆偏振发光材料及其制备方法和应用。
背景技术
防伪技术在日常生活中广泛的存在。但随着科技的发展,现有防伪技术愈发容易被仿,这严重影响到信息的安全。而将多种防伪技术混杂在一起实现的多重防伪技术普遍造价高昂,识别过程繁琐。因此,迫切需要开发一种成本低廉、易于识别且全新有效的防伪技术。在多种防伪策略中,光学防伪由于其良好的光学性能而受到越来越多的关注,如高发光强度、多种发光波长、较长的发射寿命以及多种发光模式,如光致发光、化学发光、力致发光等。
近年来,隐蔽光防伪成为了光学防伪中的一个重要研究领域。因为通过这种方式,肉眼将无法直接识别隐藏的信息,其只能在特定的条件下显示,这大大提高了受保护信息的安全性。在各种隐蔽光中,圆偏振光在实际防伪应用中具有显著的优势,因为它可以隐藏在线偏振光中,其圆二色性可以为被保护的信息提供潜在的安全性。然而,如何构建兼具高发光不对称因子(glum)值仍然是该研究领域的关键问题。
相比于传统的圆偏振发光材料(CPL材料),手性向列相液晶由于其具有独特的光学性能,因此能够获得glum值较高的CPL。这就使其逐渐在CPL防伪领域成为了性能最佳的材料。尤其是它的圆二色性,能够将同手性的圆偏振光反射而透过异手性的圆偏振光。通过这种方式能够将不同手性的圆偏振光分开,因此能够获得高glum值的CPL。但这种方式也会损失一部分发射强度,导致发光强度较低,在实际应用中所需的激发能量大大增加。
因此,如何通过手性向列相液晶获得兼具高glum值和强发光的CPL,并将其作为一种隐蔽光有效地应用于多种防伪领域成为了亟待解决的问题。
发明内容
本发明的目的在于提供一种上转换近红外圆偏振发光材料及其制备方法和应用,解决现有技术提供的圆偏振发光材料不能兼具高glum值和强发光性能的问题。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种上转换近红外圆偏振发光材料,包含以下组分:
向列相液晶、手性掺杂剂和发光粒子;
其中,所述发光粒子为稀土掺杂的上转换纳米粒子;所述发光粒子的最大发射波长≥750nm。
优选的,在上述一种上转换近红外圆偏振发光材料中,所述向列相液晶、手性掺杂剂和发光粒子的质量比为10:1.9:0.5~2。
优选的,在上述一种上转换近红外圆偏振发光材料中,所述发光粒子的制备方法为:
将氯化钇水合物、氯化镱水合物、氯化铥水合物、十八烯和油酸混合,加热进行一次反应;一次反应结束后填充氮气,然后加热进行二次反应;二次反应结束后加入氟化铵和氢氧化钠的甲醇溶液,加热进行三次反应;三次反应结束后去除甲醇溶液,加热进行四次反应,得到发光粒子。
优选的,在上述一种上转换近红外圆偏振发光材料中,所述氯化钇水合物、氯化镱水合物、氯化铥水合物、氟化铵、氢氧化钠、十八烯、油酸、甲醇溶液的摩尔体积比为0.2~0.5mmol:0.1~0.2mmol:0.002~0.01mmol:2~3mmol:0.5~0.8mmol:10~15mL:5~7mL:6~10mL。
优选的,在上述一种上转换近红外圆偏振发光材料中,所述一次反应和二次反应的温度独立的为100~180℃;三次反应的温度为40~60℃;四次反应的温度为270~320℃;一次至四次反应的时间独立的为30~90min。
本发明还提供了一种上转换近红外圆偏振发光材料的制备方法,包括以下步骤:
将向列相液晶、手性掺杂剂、发光粒子和正己烷混合,然后将正己烷加热挥发,得到上转换近红外圆偏振发光材料。
本发明还提供了一种上转换近红外圆偏振发光材料在隐蔽光防伪中的应用。
优选的,在上述应用中,所述隐蔽光防伪的方法为:
将受保护的信息转换为基础条形码,在基础条形码中插入防伪黑条,得到防伪条形码;将防伪条形码刻蚀在石英片上,将刻蚀防伪条形码的石英片与空白石英片组成液晶盒,将液晶材料填充于液晶盒;
其中,所述防伪黑条和基础条形码使用相反手性的液晶材料填充;
所述液晶材料为上述一种上转换近红外圆偏振发光材料。
优选的,在上述应用中,所述防伪黑条的长度大于基础条形码的长度;防伪黑条的长度与基础条形码的长度相差1~4mm。
经由上述的技术方案可知,与现有技术相比,本发明具有如下有益效果:
本发明使用稀土掺杂上转换纳米粒子,使纳米粒子在近红外区域表现出明显的发射特性,与手性向列相液晶复合后得到上转换近红外圆偏振发光材料。该材料在用于隐蔽光防伪时,用肉眼并不能识别受保护信息。而在使用近红外区域的激发光照射下,防伪黑条也不能被识别,在激发光和相应的圆偏振片同时作用下,才能通过相机捕获正确的受保护信息。本发明的基于上转换近红外发光的光子条形码(包含基础条形码和防伪黑条)具有多重信息加密的功能,极大地提高了信息安全水平。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实施例1和2的上转换近红外圆偏振发光材料的发光光谱图;
图2为实施例1和2的上转换近红外圆偏振发光材料的发光不对称因子曲线;
图3为实施例5的防伪条形码示意图;
图4为实施例5和对比例1的防伪性能测试结果图。
具体实施方式
本发明提供一种上转换近红外圆偏振发光材料,包含以下组分:
向列相液晶、手性掺杂剂和发光粒子;
其中,发光粒子为稀土掺杂的上转换纳米粒子;发光粒子的最大发射波长≥750nm。
在本发明中,向列相液晶优选为SLC1717。
在本发明中,手性掺杂剂优选为R811或S811。
在本发明中,向列相液晶、手性掺杂剂和发光粒子的质量比优选为10:1.9:0.5~2,进一步优选为10:1.9:0.7~1.8,更优选为10:1.9:1.2。
在本发明中,发光粒子的制备方法优选为:
将氯化钇水合物、氯化镱水合物、氯化铥水合物、十八烯和油酸混合,加热进行一次反应;一次反应结束后填充氮气,然后加热进行二次反应;二次反应结束后加入氟化铵和氢氧化钠的甲醇溶液,加热进行三次反应;三次反应结束后去除甲醇溶液,加热进行四次反应,得到发光粒子;
其中,氯化钇水合物、氯化镱水合物、氯化铥水合物、氟化铵、氢氧化钠、十八烯、油酸、甲醇溶液的摩尔体积比优选为0.2~0.5mmol:0.1~0.2mmol:0.002~0.01mmol:2~3mmol:0.5~0.8mmol:10~15mL:5~7mL:6~10mL,进一步优选为0.22~0.49mmol:0.13~0.18mmol:0.004~0.007mmol:2.3~2.9mmol:0.6~0.75mmol:11~14mL:5.5~6.8mL:7~9mL,更优选为0.37mmol:0.14mmol:0.006mmol:2.5mmol:0.7mmol:13mL:6mL:8mL;一次反应和二次反应的温度独立的为100~180℃,进一步优选为110~170℃,更优选为140℃;三次反应的温度为40~60℃,进一步优选为42~57℃,更优选为49℃;四次反应的温度为270~320℃,进一步优选为280~310℃,更优选为300℃;一次至四次反应的时间独立的为30~90min,进一步优选为43~85min,更优选为70min。
本发明还提供一种上转换近红外圆偏振发光材料的制备方法,包括以下步骤:
将向列相液晶、手性掺杂剂、发光粒子和正己烷混合,然后将正己烷加热挥发,得到上转换近红外圆偏振发光材料。
在本发明中,发光粒子和正己烷的质量体积比优选为5~7mg:1~3mL,进一步优选为5.2~6.5mg:1~2mL,更优选为5.8mg:1mL。
在本发明中,混合的方法优选为超声处理;超声处理的时间优选为1~10min,进一步优选为3~9min,更优选为6min。
在本发明中,加热的温度优选的小于等于90℃,进一步优选为小于等于86℃,更优选为小于等于75℃。
本发明还提供一种上转换近红外圆偏振发光材料在隐蔽光防伪中的应用。
在本发明中,隐蔽光防伪的方法为:
将受保护的信息转换为基础条形码,在基础条形码中插入防伪黑条,得到防伪条形码;将防伪条形码刻蚀在石英片上,将刻蚀防伪条形码的石英片与空白石英片组成液晶盒,将液晶材料填充于液晶盒;
其中,防伪黑条和基础条形码使用相反手性的液晶材料填充;当基础条形码使用右手性的液晶材料填充时,防伪黑条使用左手性的液晶材料填充;当基础条形码使用左手性的液晶材料填充时,防伪黑条使用右手性的液晶材料填充;
液晶材料为上述一种上转换近红外圆偏振发光材料。
在本发明中,防伪黑条的数量不小于1条。
在本发明中,防伪黑条的长度大于基础条形码的长度;防伪黑条的长度与基础条形码的长度优选的相差1~4mm,进一步优选为1~3mm,更优选为2mm。
在本发明中,刻蚀防伪条形码的石英片与空白石英片之间使用间隔物间隔;间隔物优选为垫片纸;间隔物的厚度优选为20μm。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种上转换近红外圆偏振发光材料,包含以下组分:
10mg向列相液晶SLC1717、1.9mg手性掺杂剂R811和0.5mg发光粒子;
其制备方法包括以下步骤:
将向列相液晶SLC1717、手性掺杂剂R811、发光粒子和0.1mL正己烷混合后超声分散5min,得到混合溶液;然后将载玻片加热至90℃,将混合溶液滴至载玻片上,使正己烷挥发,得到上转换近红外圆偏振发光材料,记为R-手性液晶。
其中,发光粒子的制备方法包括以下步骤:
采用高温共沉淀法制备NaYF4:Yb/Tm发光粒子:将0.4mmol氯化钇水合物、0.1mmol氯化镱水合物、0.005mmol氯化铥水合物、10mL十八烯和6mL油酸组成的混合物加入到三口烧瓶中,加热至120℃反应1h后,真空下抽去水分和氧气,然后用氮气充满三口烧瓶,并加热至160℃,反应30min后冷却至室温,注入含有2.5mmol氟化铵和0.5mmol氢氧化钠的8mL甲醇溶液后,在45℃反应30min;然后升温至100℃抽除甲醇;最后加热至300℃反应1h,降至室温后,使用乙醇沉淀,得到NaYF4:Yb/Tm发光粒子,记为UCNPs。
实施例2
本实施例提供一种上转换近红外圆偏振发光材料,具体参见实施例1,不同之处在于手性掺杂剂为S811,记为L-手性液晶。
将实施例1和2的材料进行发光光谱测试,上转换圆偏振发光光谱图和发光不对称因子结果如图1和2所示。由图1和2可知,基于L-手性液晶能够获得正CPL信号,表明获得了左旋CPL发光;基于R-手性液晶能够获得负CPL信号,表明获得了右旋CPL发光,其相应的glum值最大能够达到0.5。
实施例3
实施例提供一种上转换近红外圆偏振发光材料,具体参见实施例1,不同之处在于发光粒子的用量为2mg。
实施例4
本实施例提供一种上转换近红外圆偏振发光材料,具体参见实施例3,不同之处在于手性掺杂剂为S811。
实施例5
基于上转换近红外圆偏振发光材料进行隐蔽光防伪的方法为:
将受保护的信息转换为基础条形码(长度为8mm),在基础条形码中插入一条防伪黑条(长度为10mm),得到防伪条形码(示意图如图3所示);将防伪条形码刻蚀在石英片上(示意图如图3所示),将刻蚀防伪条形码的石英片与空白石英片使用20μm厚的垫片纸间隔,并组成液晶盒,将实施例1的R-手性液晶填充于基础条形码上,将实施例2的L-手性液晶填充于防伪黑条上。
对比例1
本对比例提供一种基于上转换近红外圆偏振发光材料进行隐蔽光防伪的方法,具体参见实施例5,不同之处在于基础条形码和防伪黑条均填充实施例1的R-手性液晶。
将实施例5和对比例1的液晶盒进行防伪性能测试,结果如图4所示。由图4可知,在激发光照射(LPF)下,实施例5和对比例1的样品通过相机拍摄到的近红外发光的条形码没有显著差异(图4b),同时也无法观察出正确的受保护的信息。当给手机装配相应近红外区域的圆偏振片(CP)时,可以拍摄到两个样品的信息差别,且真实的信息只有在添加了正确的圆偏振片时才能够显现(图4c-d)。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,以及在材料性能和方法上无实质性变化的提升或改进均仍属于本发明方案的范围内。

Claims (9)

1.一种上转换近红外圆偏振发光材料,其特征在于,包含以下组分:
向列相液晶、手性掺杂剂和发光粒子;
其中,所述发光粒子为稀土掺杂的上转换纳米粒子;所述发光粒子的最大发射波长≥750nm。
2.根据权利要求1所述的一种上转换近红外圆偏振发光材料,其特征在于,所述向列相液晶、手性掺杂剂和发光粒子的质量比为10:1.9:0.5~2。
3.根据权利要求1或2所述的一种上转换近红外圆偏振发光材料,其特征在于,所述发光粒子的制备方法为:
将氯化钇水合物、氯化镱水合物、氯化铥水合物、十八烯和油酸混合,加热进行一次反应;一次反应结束后填充氮气,然后加热进行二次反应;二次反应结束后加入氟化铵和氢氧化钠的甲醇溶液,加热进行三次反应;三次反应结束后去除甲醇溶液,加热进行四次反应,得到发光粒子。
4.根据权利要求3所述的一种上转换近红外圆偏振发光材料,其特征在于,所述氯化钇水合物、氯化镱水合物、氯化铥水合物、氟化铵、氢氧化钠、十八烯、油酸、甲醇溶液的摩尔体积比为0.2~0.5mmol:0.1~0.2mmol:0.002~0.01mmol:2~3mmol:0.5~0.8mmol:10~15mL:5~7mL:6~10mL。
5.根据权利要求3所述的一种上转换近红外圆偏振发光材料,其特征在于,所述一次反应和二次反应的温度独立的为100~180℃;三次反应的温度为40~60℃;四次反应的温度为270~320℃;一次至四次反应的时间独立的为30~90min。
6.权利要求1~5任一项所述的一种上转换近红外圆偏振发光材料的制备方法,其特征在于,包括以下步骤:
将向列相液晶、手性掺杂剂、发光粒子和正己烷混合,然后将正己烷加热挥发,得到上转换近红外圆偏振发光材料。
7.权利要求1~5任一项所述的一种上转换近红外圆偏振发光材料在隐蔽光防伪中的应用。
8.根据权利要求7所述的应用,其特征在于,所述隐蔽光防伪的方法为:
将受保护的信息转换为基础条形码,在基础条形码中插入防伪黑条,得到防伪条形码;将防伪条形码刻蚀在石英片上,将刻蚀防伪条形码的石英片与空白石英片组成液晶盒,将液晶材料填充于液晶盒;
其中,所述防伪黑条和基础条形码使用相反手性的液晶材料填充;
所述液晶材料为权利要求1~5任一项所述的一种上转换近红外圆偏振发光材料。
9.根据权利要求8所述的应用,其特征在于,所述防伪黑条的长度大于基础条形码的长度;防伪黑条的长度与基础条形码的长度相差1~4mm。
CN202210382122.6A 2022-04-13 2022-04-13 一种上转换近红外圆偏振发光材料及其制备方法和应用 Active CN114656965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210382122.6A CN114656965B (zh) 2022-04-13 2022-04-13 一种上转换近红外圆偏振发光材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210382122.6A CN114656965B (zh) 2022-04-13 2022-04-13 一种上转换近红外圆偏振发光材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114656965A true CN114656965A (zh) 2022-06-24
CN114656965B CN114656965B (zh) 2023-09-08

Family

ID=82036081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210382122.6A Active CN114656965B (zh) 2022-04-13 2022-04-13 一种上转换近红外圆偏振发光材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114656965B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315270A (zh) * 2017-06-28 2017-11-03 北京大学 具有光写入或光擦除功能的双稳态液晶器件及其制备方法
CN107749237A (zh) * 2017-11-17 2018-03-02 成都菲奥姆光学有限公司 一种能够进行防伪的光学薄膜
CN108912842A (zh) * 2018-07-17 2018-11-30 北京化工大学 一种多重防伪用液晶油墨、制备方法及用途
CN109558762A (zh) * 2018-11-15 2019-04-02 无锡火眼睛睛科技发展有限公司 一种基于条形码的便携式电子防伪追溯装置
CN109583916A (zh) * 2018-11-15 2019-04-05 无锡火眼睛睛科技发展有限公司 一种基于条形码的电子防伪追溯系统
CN110872458A (zh) * 2018-08-30 2020-03-10 国家纳米科学中心 一种圆偏振发光的手性液晶墨水及其制备方法和应用
CN112430247A (zh) * 2019-08-26 2021-03-02 国家纳米科学中心 兼具圆偏振发光和上转换圆偏振发光性质的钙钛矿纳米晶材料及其制备方法和应用
CN113004191A (zh) * 2021-03-22 2021-06-22 中国科学院化学研究所 一种白色圆偏振发光有机微纳晶体材料及其制备方法
CN113004194A (zh) * 2021-03-09 2021-06-22 中国科学院化学研究所 一种圆偏振发光有机微纳晶体材料及其制备方法和应用
CN113178539A (zh) * 2021-04-27 2021-07-27 中国科学技术大学 一种基于非手性聚合物的有机电致圆偏振发光器件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315270A (zh) * 2017-06-28 2017-11-03 北京大学 具有光写入或光擦除功能的双稳态液晶器件及其制备方法
CN107749237A (zh) * 2017-11-17 2018-03-02 成都菲奥姆光学有限公司 一种能够进行防伪的光学薄膜
CN108912842A (zh) * 2018-07-17 2018-11-30 北京化工大学 一种多重防伪用液晶油墨、制备方法及用途
CN110872458A (zh) * 2018-08-30 2020-03-10 国家纳米科学中心 一种圆偏振发光的手性液晶墨水及其制备方法和应用
CN109558762A (zh) * 2018-11-15 2019-04-02 无锡火眼睛睛科技发展有限公司 一种基于条形码的便携式电子防伪追溯装置
CN109583916A (zh) * 2018-11-15 2019-04-05 无锡火眼睛睛科技发展有限公司 一种基于条形码的电子防伪追溯系统
CN112430247A (zh) * 2019-08-26 2021-03-02 国家纳米科学中心 兼具圆偏振发光和上转换圆偏振发光性质的钙钛矿纳米晶材料及其制备方法和应用
CN113004194A (zh) * 2021-03-09 2021-06-22 中国科学院化学研究所 一种圆偏振发光有机微纳晶体材料及其制备方法和应用
CN113004191A (zh) * 2021-03-22 2021-06-22 中国科学院化学研究所 一种白色圆偏振发光有机微纳晶体材料及其制备方法
CN113178539A (zh) * 2021-04-27 2021-07-27 中国科学技术大学 一种基于非手性聚合物的有机电致圆偏振发光器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANGBO ZHAO,ETC: "Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence", 《NATURE NANOTECHNOLOGY》, vol. 8, pages 729 - 734 *
SIMIN YE,ETC: "Modulated Visible Light Upconversion for Luminescence Patterns in Liquid Crystal Polymer Networks Loaded with Upconverting Nanoparticles", 《ADV. OPTICAL MATER.》, vol. 5, pages 1600956 *
WEI LI,ETC: "Tunable Upconverted Circularly Polarized Luminescence in Cellulose Nanocrystal Based Chiral Photonic Films", 《ACS APPL. MATER. INTERFACES》, vol. 11, pages 23512 - 23519 *

Also Published As

Publication number Publication date
CN114656965B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
You et al. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications
Gao et al. Recent advances in persistent luminescence based on molecular hybrid materials
Zhang et al. Stimuli‐Responsive Deep‐Blue Organic Ultralong Phosphorescence with Lifetime over 5 s for Reversible Water‐Jet Anti‐Counterfeiting Printing
Rinkel et al. Synthesis of 10 nm β‐NaYF4: Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores
Zhou et al. Enabling photon upconversion and precise control of donor–acceptor interaction through interfacial energy transfer
Wu et al. Combinations of Superior Inorganic Phosphors for Level‐Tunable Information Hiding and Encoding
Li et al. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials
Liu et al. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting
Bedyal et al. Influence of an adjoining cation on the luminescence performance of the Dy3+ doped A3Gd (PO4) 2;(A= Na, K) phosphors
KR102131757B1 (ko) 염료감응 상향변환 나노형광체 및 그 제조 방법
Campbell et al. One‐Pot Synthesis of Luminescent Polymer‐Nanoparticle Composites from Task‐Specific Ionic Liquids
Manna et al. What is beyond charge trapping in semiconductor nanoparticle sensitized dopant photoluminescence?
Wang et al. Ho3+/Yb3+ codoped Vernier phase Y7O6F9 powders with efficient near-infrared quantum cutting, intense upconversion and downshifting from visible to mid-infrared
EP1047637A1 (en) Self activated rare earth oxide nanoparticles
CN114656965A (zh) 一种上转换近红外圆偏振发光材料及其制备方法和应用
Huang et al. Room temperature phosphorescence based on nitrogen-phosphorus co-doped carbonized polymer dots for information encryption
Benharrat et al. Preparation and characterization of luminescent YPO4: Eu3+ thin films using sol gel spin coating method
Liang et al. General Synthesis of Carbon Dot-Based Composites with Triple-Mode Luminescence Properties and High Stability
Wang et al. Novel strategy for energy transfer via Ho3+ as a bridge in upconversion nanoparticles
Shen et al. Comparative investigation on upconversion luminescence properties of Lu2O3: Er/Yb and Lu2O2S: Er/Yb phosphors
Navya et al. In-situ embedding of carbon dots in perovskite GdAlO3: Eu3+/Li+ composite: Boosting phosphor stability, optical thermometry, flexible displays and data protection applications
Pérez-Hernández et al. Fabrication, structural properties, and tunable light emission of Sm3+, Tb3+ co-doped SrSnO3 perovskite nanoparticles
Zheng et al. Multifaceted luminescence in lanthanide-activated microrods for advanced multicolor anti-counterfeiting
Liu et al. Solvothermal synthesis and luminescent properties of highly uniform LuF3: Ln3+ (Ln= Eu, Tb, Dy) nanocrystals from ionic liquids
Silva et al. Low temperature synthesis of luminescent RE2O3: Eu3+ nanomaterials using trimellitic acid precursors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant