CN114650133A - 一种量子密钥分发的偏振编码装置以及量子密钥分发系统 - Google Patents

一种量子密钥分发的偏振编码装置以及量子密钥分发系统 Download PDF

Info

Publication number
CN114650133A
CN114650133A CN202210333160.2A CN202210333160A CN114650133A CN 114650133 A CN114650133 A CN 114650133A CN 202210333160 A CN202210333160 A CN 202210333160A CN 114650133 A CN114650133 A CN 114650133A
Authority
CN
China
Prior art keywords
polarization
port
beam splitter
bidirectional
modulation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210333160.2A
Other languages
English (en)
Other versions
CN114650133B (zh
Inventor
赵义博
王东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou Institute of Zhejiang University
Original Assignee
Beijing Zhongkeguoguang Quantum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhongkeguoguang Quantum Technology Co ltd filed Critical Beijing Zhongkeguoguang Quantum Technology Co ltd
Priority to CN202210333160.2A priority Critical patent/CN114650133B/zh
Publication of CN114650133A publication Critical patent/CN114650133A/zh
Application granted granted Critical
Publication of CN114650133B publication Critical patent/CN114650133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种量子密钥分发的偏振编码装置,包括第一环形器和双向偏振调制模块,所述偏振编码装置内部均为保偏光纤;所述第一环形器的第一端口作为偏振编码装置的输入端口In;所述第一环形器的第二端口与双向偏振调制模块的第一端口通过45°偏振旋转器相连;所述双向偏振调制模块的第二端口通过保偏光纤L2与第一环形器第三端口相连。与现有技术相比,本发明可以稳定制备6种偏振态,无需多激光器,消除了多激光器波长不一致导致的安全性漏洞,制备偏振态非常稳定,无需任何补偿,接收端只需2个单光子探测器,降低了系统的复杂度和成本。另外,本发明的偏振编码装置可用于实现BB84协议、6态协议和参考系无关协议。

Description

一种量子密钥分发的偏振编码装置以及量子密钥分发系统
技术领域
本发明涉及量子相位编码技术领域,特别涉及一种量子密钥分发的偏振编码装置以及量子密钥分发系统。
背景技术
量子密钥分发(quantum key distribution,QKD)可以为远距离的通信双方提供 无条件安全的密钥分发,其信息理论安全性由量子力学的基本原理来保障。目前,BB84协议量子 密钥分发系统日益成熟,已走向实用化。在自由空间应用场景中,一般采用偏振编码方式。BB84 协议常用的偏振编码的4种偏振态为
Figure 980191DEST_PATH_IMAGE001
Figure 683705DEST_PATH_IMAGE002
Figure 307585DEST_PATH_IMAGE003
Figure 45733DEST_PATH_IMAGE004
。为 了提高量子密钥分发系统的安全性,研究者提出了6态协议,即在BB84协议4态的基础上增 加2个偏振态
Figure 722965DEST_PATH_IMAGE005
Figure 913775DEST_PATH_IMAGE006
,可以进一步限制窃听者获取的信 息量。然而,现有技术中制备6种偏振态的偏振编码装置具有较高的复杂度,如图1所示的一 种典型的6态协议偏振编码QKD系统。其发送端每种偏振态都由一个激光器产生,通过偏振 分束器PBS及分束器BS等耦合到同一路光纤中。接收端通过分束器分成三路,分成三组基 矢,再经过偏振分束器进行偏振分析,之后在单光子探测器上进行探测。这种偏振编码的 QKD方案需要6个激光器,以及6个单光子探测器。因此,该系统不仅具有体积大、成本高、系 统复杂、稳定性差等缺点,还因为多激光器存在波长不一致而导致侧信道信息泄露,安全性 降低。
为了解决多激光器造成的安全性问题和稳定性差的缺点,专利CN105897413A和CN110545180A分别提出了两种基于萨格纳克环的偏振调制方案,通过萨格纳克环中的相位调制器PM调节环内两个方向的偏振分量之间的相位差来产生偏振态,制备的偏振态非常稳定。然而这两种方案仅能产生4种BB84偏振态,无法产生6态协议所需的另外2种偏振态。因此需要一种无需多激光器的能够稳定产生6种偏振态的偏振编码装置。
发明内容
针对现有技术存在以上缺陷,本发明提出一种量子密钥分发偏振编码装置及系统。
本发明的技术方案是这样实现的:
一种量子密钥分发的偏振编码装置,包括第一环形器和双向偏振调制模块,所述偏振编码装置内部均为保偏光纤;所述第一环形器的第一端口作为偏振编码装置的输入端口In;所述第一环形器的第二端口与双向偏振调制模块的第一端口通过45°偏振旋转器相连;所述双向偏振调制模块的第二端口通过保偏光纤L2与第一环形器第三端口相连;所述第一环形器的第四端口作为偏振编码装置的输出端口;所述双向偏振调制模块用于调制从第一端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第一端口输出,随后调制从第二端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第二端口输出。
优选地,所述双向偏振调制模块包括第一偏振分束器、第二偏振分束器、第一法拉第镜、第二法拉第镜以及第一相位调制器,所述第一偏振分束器的第一端口、第二偏振分束器的第四端口分别作为双向偏振调制模块的第一端口、第二端口;所述第一偏振分束器的第二端口、第三端口分别通过保偏光纤L3、L4与第二偏振分束器的第二端口、第三端口相连;所述第一相位调制器位于保偏光纤L3中;所述第二偏振分束器的第一端口通过保偏光纤L5与第一法拉第镜相连;所述第一偏振分束器的第四端口通过保偏光纤L6与第二法拉第镜相连。
优选地,所述双向偏振调制模块包括第三偏振分束器、第四偏振分束器2-7和第二相位调制器,所述第三偏振分束器的第一端口、第四端口分别作为双向偏振调制模块的第一端口、第二端口;所述第三偏振分束器的第二端口、第三端口分别通过保偏光纤L7、L8与第四偏振分束器的第二端口、第三端口相连;所述第二相位调制器位于保偏光纤L7中,并且保偏光纤L7进行90°熔接;所述第四偏振分束器的第一端口和第四端口通过保偏光纤L9进行90°熔接后相连。
优选地,所述双向偏振调制模块包括第五偏振分束器、法拉第旋转器和第三相位调制器,所述第五偏振分束器的第一端口、第四端口分别作为双向偏振调制模块的第一端口、第二端口;所述第五偏振分束器的第二端口依次连接第三相位调制器、法拉第旋转器之后与第三端口相连,构成萨格纳克环;所述法拉第旋转器的偏振旋转角度为90°,支持双轴工作,两端的偏振方向均与保偏光纤慢轴对准。
优选地,所述45°偏振旋转器为进行45°熔接的保偏光纤L1。
优选地,所述45°偏振旋转器为半波片,所述半波片的慢轴与所连接保偏光纤的慢轴夹角为22.5°。
本发明还提供了一种量子密钥分发系统,包括通过自由空间信道连接的发射端Alice以及接收端Bob,所述发射端Alice包括上述的偏振编码装置。
与现有技术相比,本发明有以下有益效果:
本发明提出一种量子密钥分发偏振编码装置及系统,可以稳定制备6种偏振态,无需多激光器,消除了多激光器波长不一致导致的安全性漏洞,制备偏振态非常稳定,无需任何补偿,接收端只需2个单光子探测器,降低了系统的复杂度和成本。另外,本发明的偏振编码装置可用于实现BB84协议、6态协议和参考系无关协议。
附图说明
图1为现有技术6态偏振编解码方案的原理框图;
图2为本发明量子密钥分发偏振编码装置的原理框图;
图3为本发明量子密钥分发偏振编码装置实施例一的原理框图;
图4为本发明量子密钥分发偏振编码装置实施例二的原理框图;
图5为本发明量子密钥分发偏振编码装置实施例三的原理框图;
图6为本发明量子密钥分发系统的原理框图。
图中:第一环形器-1、双向偏振调制模块-2、第一偏振分束器-2-1、第二偏振分束器-2-2、第一法拉第镜-2-3、第二法拉第镜-2-4、第一相位调制器-2-5、第三偏振分束器-2-6、第四偏振分束器-2-7、第二相位调制器-2-8、第五偏振分束器-2-9、第三相位调制器-2-10、法拉第旋转器-2-11。
具体实施方式
下面将结合本发明实施例中的附图,对本发明进行清楚、完整地描述。
如图2所示,一种量子密钥分发偏振编码装置,包括第一环形器1和双向偏振调制模块2,所述偏振编码装置内部均为保偏光纤;所述第一环形器1的第一端口作为偏振编码装置的输入端口In;所述第一环形器1的第二端口与双向偏振调制模块2的第一端口通过保偏光纤L1进行45°熔接后相连,另外第一环形器1的第二端口与双向偏振调制模块2的第一端口之间也可设置半波片,从而替换保偏光纤45°熔接,所述半波片的慢轴与所连接保偏光纤的慢轴夹角为22.5°,45度保偏光纤熔接实现起来比较简单,但是半波片调准也较为容易;所述双向偏振调制模块2的第二端口通过保偏光纤L2与第一环形器CIR第三端口相连;所述第一环形器1的第四端口作为偏振编码装置的输出端口;所述双向偏振调制模块2用于调制从第一端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第一端口输出,随后调制从第二端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第二端口输出。
具体偏振编码过程如下:
水平偏振的光脉冲进入所述偏振编码装置的输入端口In,首先从第一环形器1的 第一端口进入从第二端口出射,经过45°熔接点偏振旋转后,偏振态变为
Figure 341345DEST_PATH_IMAGE007
,水 平偏振分量H沿保偏光纤L1慢轴传播,竖直偏振分量沿保偏光纤L1快轴传播,随后到达双向 偏振调制模块2的第一端口,两个偏振分量被双向偏振调制模块2分别旋转90°,并且二者之 间调制相位差
Figure 934000DEST_PATH_IMAGE008
,从双向偏振调制模块2的第一端口出射。经第一次偏振调制后的光脉冲再 次经过保偏光纤L1和45°偏振旋转之后进入第一环形器1的第二端口,从其第三端口出射, 并沿保偏光纤L2到达双向偏振调制模块2的第二端口进行第二次偏振调制。与第一次偏振 调制类似,光脉冲的两个偏振分量被双向偏振调制模块2分别旋转90°,并对二者之间调制 相位差
Figure 546247DEST_PATH_IMAGE009
,从双向偏振调制模块2的第二端口出射,再次经过保偏光纤L2之后回到第一环形 器1的第三端口,从其第四端口出射,最终从偏振编码装置的输出端口Out出射,可以通过琼 斯矩阵计算输出的偏振态。
偏振编码装置的输入光脉冲偏振态为水平偏振,可写为
Figure 224353DEST_PATH_IMAGE010
光脉冲依次经过45°偏振旋转、保偏光纤A1、双向偏振调制模块2第一次偏振调制、保偏光纤L2以及双向偏振调制模块2第二次偏振调制,最终从偏振编码装置输出的偏振态为
Figure 190035DEST_PATH_IMAGE011
其中保偏光纤L1、L2、45°偏振旋转、第一次和第二次双向偏振调制BPM1、BPM2的琼斯矩阵分别为
Figure 637197DEST_PATH_IMAGE012
Figure 420345DEST_PATH_IMAGE013
Figure 585747DEST_PATH_IMAGE014
忽略全局相位因子,可以得到光脉冲的偏振态为
Figure 355120DEST_PATH_IMAGE015
。 可以看出制备的偏振态仅与调制的相位差
Figure 656789DEST_PATH_IMAGE008
Figure 610838DEST_PATH_IMAGE009
有关,因此偏振编码装置的态制备非常稳 定,不存在相位漂移,无需进行任何补偿。通过调制不同的相位差
Figure 263536DEST_PATH_IMAGE008
Figure 571021DEST_PATH_IMAGE009
,可以制备X、Y、Z基 下的6种偏振态,如表1所示。
表1. 相位差
Figure 992775DEST_PATH_IMAGE008
Figure 616261DEST_PATH_IMAGE009
与制备的偏振态关系标
Figure 490676DEST_PATH_IMAGE016
如图3所示,本发明量子密钥分发偏振编码装置实施例一:
所述偏振编码装置的结构为:所述双向偏振调制模块2包括第一偏振分束器2-1、第二偏振分束器2-2、第一法拉第镜2-3、第二法拉第镜2-4以及第一相位调制器2-5,所述第一偏振分束器2-1的第一端口、第二偏振分束器2-2的第四端口分别作为双向偏振调制模块2的第一端口、第二端口;所述第一偏振分束器2-1的第二端口、第三端口分别通过保偏光纤L3、L4与第二偏振分束器2-2的第二端口、第三端口相连;所述第一相位调制器2-5位于保偏光纤L3中;所述第二偏振分束器2-2的第一端口通过保偏光纤L5与第一法拉第镜2-3相连;所述第一偏振分束器2-1的第四端口通过保偏光纤L6与第二法拉第镜2-4相连。
实施例一偏振编码过程为:
水平偏振的光脉冲P1进入所述偏振编码装置的输入端口In,首先从第一环形器1 的第一端口进入从第二端口出射,经过45°熔接点偏振旋转后,偏振态变为
Figure 867431DEST_PATH_IMAGE017
,水平偏振分量P11沿保偏光纤L1慢轴传播,竖直偏振分量P12沿保偏光纤L1快轴传播,随后 到达第一偏振分束器2-1的第一端口,其中P11从第三端口透射,沿保偏光纤L4慢轴传播到 达第二偏振分束器2-2的第三端口,并透射到第一端口,沿保偏光纤L5的慢轴传播,到达第 一法拉第镜2-3被反射后,偏振态旋转90°,沿保偏光纤L5的快轴传播,到达第二偏振分束器 2-2的第一端口后被反射到第二端口,沿保偏光纤L3的慢轴传播,经过第一相位调制器2-5 时被调制相位
Figure 143691DEST_PATH_IMAGE018
,然后到达第一偏振分束器2-1的第二端口,反射到第一端口出射,沿保偏 光纤快轴传播。可以看出P11从第一偏振分束器2-1的第一端口入射时沿保偏光纤L1的慢轴 传播,再次出射时沿快轴传播,偏振旋转了90°。
P12从第一偏振分束器2-1的第二端口反射,沿保偏光纤L3慢轴传播,经过第一相位调制器2-5时不调相,然后到达第二偏振分束器2-2的第二端口,被反射到第一端口,沿保偏光纤L5的快轴传播,到达第一法拉第镜2-3被反射后,偏振态旋转90°,沿保偏光纤L5的慢轴传播,到达第二偏振分束器2-2的第一端口后透射到第三端口,沿保偏光纤L4的慢轴传播,然后到达第一偏振分束器2-1的第三端口,从第一端口出射,沿保偏光纤慢轴传播。可以看出P12从第一偏振分束器2-1的第一端口入射时沿保偏光纤L1的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P11和P12均经过了保偏光纤L3、L4的慢轴和L5的快慢轴,二者所经历的相位 变化相同,而由于P11经过第一相位调制器2-5时调制了相位
Figure 439543DEST_PATH_IMAGE018
,P12经过时不调相,所以二 者之间的相位差为
Figure 801255DEST_PATH_IMAGE018
。因此,双向偏振调制模块2第一次偏振调制的作用可以表示为
Figure 450542DEST_PATH_IMAGE019
光脉冲P11和P12从第一偏振分束器2-1的第一端口出射后合成一个脉冲P2,再次 经过保偏光纤L1和45°偏振旋转之后进入第一环形器1的第二端口,从其第三端口出射,并 沿保偏光纤L2到达第二偏振分束器2-2的第四端口。其中,沿保偏光纤L2慢轴传播的偏振分 量P21被反射到第三端口,沿保偏光纤L4的快轴传播,随后到达第一偏振分束器2-1的第三 端口,并从第四端口出射,沿保偏光纤L6的慢轴传播,被第二法拉第镜2-4反射后沿保偏光 纤L6的快轴传播,回到第一偏振分束器2-1的第四端口,被透射到第二端口后沿保偏光纤L3 的快轴传播,经过第一相位调制器2-5时调制相位
Figure 846888DEST_PATH_IMAGE020
,然后到达第二偏振分束器2-2的第二 端口,从第四端口出射,沿保偏光纤快轴传播。可以看出P21从第二偏振分束器2-2的第四端 口入射时沿保偏光纤L2的慢轴传播,再次出射时沿快轴传播,偏振旋转了90°。
沿保偏光纤L2快轴传播的偏振分量P22透射到第二偏振分束器2-2的第二端口,沿保偏光纤L3的快轴传播,经过第一相位调制器2-5时不调相,随后到达第一偏振分束器2-1的第二端口,并从第四端口出射,沿保偏光纤L6的快轴传播,被第二法拉第镜2-4反射后沿保偏光纤L6的慢轴传播,回到第一偏振分束器2-1的第四端口,被反射到第三端口后沿保偏光纤L4的快轴传播,然后到达第二偏振分束器2-2的第三端口,从第四端口出射,沿保偏光纤慢轴传播。可以看出P22从第二偏振分束器2-2的第四端口入射时沿保偏光纤L2的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P21和P22均经过了保偏光纤L3、L4的快轴和L6的快慢轴,二者所经历的相位 变化相同,而由于P21经过第一相位调制器2-5时调制了相位
Figure 313641DEST_PATH_IMAGE020
,P22经过时不调相,所以二 者之间的相位差为
Figure 162649DEST_PATH_IMAGE020
。因此,双向偏振调制模块2第二次偏振调制的作用可以表示为
Figure 615627DEST_PATH_IMAGE021
光脉冲P21和P22从第二偏振分束器2-2的第四端口出射后合成一个脉冲P3,再次经过保偏光纤L2之后回到第一环形器1的第三端口,从其第四端口出射,最终从偏振编码装置的输出端口Out出射,可以通过琼斯矩阵计算输出的偏振态。光脉冲依次经过45°偏振旋转、保偏光纤A1、双向偏振调制模块2第一次偏振调制、保偏光纤L2以及双向偏振调制模块2第二次偏振调制,最终从偏振编码装置输出的偏振态为
Figure 866480DEST_PATH_IMAGE022
忽略全局相位因子,可以得到光脉冲的偏振态为
Figure 504134DEST_PATH_IMAGE023
。 可以看出制备的偏振态仅与调制的相位差
Figure 840438DEST_PATH_IMAGE018
Figure 97107DEST_PATH_IMAGE020
有关,因此偏振编码装置的态制备非常稳 定,不存在相位漂移,无需进行任何补偿。通过调制不同的相位差
Figure 202466DEST_PATH_IMAGE018
Figure 512487DEST_PATH_IMAGE020
,可以制备X、Y、Z基 下的6种偏振态,如表1所示。
如图4所示,本发明量子密钥分发偏振编码装置实施例二:
所述偏振编码装置的结构为:所述双向偏振调制模块2包括第三偏振分束器2-6、第四偏振分束器2-7和第二相位调制器2-8,所述第三偏振分束器2-6的第一端口、第四端口分别作为双向偏振调制模块2的第一端口、第二端口;所述第三偏振分束器2-6的第二端口、第三端口分别通过保偏光纤L7、L8与第四偏振分束器2-7的第二端口、第三端口相连;所述第二相位调制器2-8位于保偏光纤L7中,并且保偏光纤L7进行90°熔接;所述第四偏振分束器2-7的第一端口和第四端口通过保偏光纤L9进行90°熔接后相连。
实施例二偏振编码过程为:
水平偏振的光脉冲P1进入所述偏振编码装置的输入端口In,首先从第一环形器1 的第一端口进入从第二端口出射,经过45°熔接点偏振旋转后,偏振态变为
Figure 70507DEST_PATH_IMAGE024
,水平偏振分量P11沿保偏光纤L1慢轴传播,竖直偏振分量P12沿保偏光纤L1快轴传播,随后 到达第三偏振分束器2-6的第一端口,其中P11从第三端口透射,沿保偏光纤L8慢轴传播到 达第四偏振分束器2-7的第三端口,并透射到第一端口,沿保偏光纤L9的慢轴传播,经过90° 偏振旋转后沿保偏光纤快轴传播,随后从第四偏振分束器2-7的第四端口透射到第二端口, 沿保偏光纤L7的快轴传播,经过90°偏振旋转后沿保偏光纤的慢轴传播,经过第二相位调制 器2-8时被调制相位
Figure 130867DEST_PATH_IMAGE018
,然后到达第三偏振分束器2-6的第二端口,反射到第一端口出射,沿 保偏光纤快轴传播。可以看出P11从第三偏振分束器2-6的第一端口入射时沿保偏光纤L1的 慢轴传播,再次出射时沿快轴传播,偏振旋转了90°。
P12从第三偏振分束器2-6的第二端口反射,沿保偏光纤L3慢轴传播,经过第二相位调制器2-8时不调相,经过90°偏振旋转后沿保偏光纤快轴传播,然后到达第四偏振分束器2-7的第二端口,从第四端口透射,沿保偏光纤L9的快轴传播,经过90°偏振旋转之后,沿保偏光纤的慢轴传播,到达第四偏振分束器2-7的第一端口后透射到第三端口,沿保偏光纤L8的慢轴传播,然后到达第三偏振分束器2-6的第三端口,从第一端口出射,沿保偏光纤慢轴传播。可以看出P12从第三偏振分束器2-6的第一端口入射时沿保偏光纤L1的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P11和P12均经过了保偏光纤L7、L8和L9的快慢轴,二者所经历的相位变化相 同,而由于P11经过第二相位调制器2-8时调制了相位
Figure 825154DEST_PATH_IMAGE018
,P12经过时不调相,所以二者之间 的相位差为
Figure 742294DEST_PATH_IMAGE018
。因此,双向偏振调制模块2第一次偏振调制的作用可以表示为
Figure 115506DEST_PATH_IMAGE025
光脉冲P11和P12从第三偏振分束器2-6的第一端口出射后合成一个脉冲P2,再次 经过保偏光纤L1和45°偏振旋转之后进入第一环形器1的第二端口,从其第三端口出射,并 沿保偏光纤L2到达第三偏振分束器2-6的第四端口。其中,沿保偏光纤L2慢轴传播的偏振分 量P21被反射到第三端口,沿保偏光纤L8的快轴传播,随后到达第四偏振分束器2-7的第三 端口,并从第四端口出射,沿保偏光纤L9的慢轴传播,经过90°偏振旋转后沿保偏光纤快轴 传播,到达第四偏振分束器2-7的第一端口,被反射到第二端口后沿保偏光纤L7的慢轴传 播,经过90°偏振旋转后沿保偏光纤快轴传播,经过第二相位调制器2-8时调制相位
Figure 979557DEST_PATH_IMAGE026
,然后 到达第三偏振分束器2-6的第二端口,从第四端口出射,沿保偏光纤快轴传播。可以看出P21 从第三偏振分束器2-6的第四端口入射时沿保偏光纤L2的慢轴传播,再次出射时沿快轴传 播,偏振旋转了90°。
沿保偏光纤L2快轴传播的偏振分量P22透射到第三偏振分束器2-6的第二端口,沿保偏光纤L7的快轴传播,经过第二相位调制器2-8时不调相,经过90°偏振旋转后沿保偏光纤慢轴传播,随后到达第四偏振分束器2-7的第二端口,被反射到第一端口,沿保偏光纤L9的快轴传播,经过90°偏振旋转后沿保偏光纤慢轴传播,到达第四偏振分束器2-7的第四端口,反射到第三端口后沿保偏光纤L8的快轴传播,然后到达第三偏振分束器2-6的第三端口,从第四端口出射,沿保偏光纤慢轴传播。可以看出P22从第三偏振分束器2-6的第四端口入射时沿保偏光纤L2的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P21和P22均经过了保偏光纤L7、L8和L9的快慢轴,二者所经历的相位变化相 同,而由于P21经过第二相位调制器2-8时调制了相位
Figure 528350DEST_PATH_IMAGE020
,P22经过时不调相,所以二者之间 的相位差为
Figure 881971DEST_PATH_IMAGE020
。因此,双向偏振调制模块2第二次偏振调制的作用可以表示为
Figure 476901DEST_PATH_IMAGE027
光脉冲P21和P22从第三偏振分束器2-6的第四端口出射后合成一个脉冲P3,再次经过保偏光纤L2之后回到第一环形器1的第三端口,从其第四端口出射,最终从偏振编码装置的输出端口Out出射,可以通过琼斯矩阵计算输出的偏振态。光脉冲依次经过45°偏振旋转、保偏光纤A1、双向偏振调制模块2第一次偏振调制、保偏光纤L2以及双向偏振调制模块2第二次偏振调制,最终从偏振编码装置输出的偏振态为
Figure 675801DEST_PATH_IMAGE028
忽略全局相位因子,可以得到光脉冲的偏振态为
Figure 547942DEST_PATH_IMAGE029
。 可以看出制备的偏振态仅与调制的相位差
Figure 72464DEST_PATH_IMAGE030
Figure 889110DEST_PATH_IMAGE020
有关,因此偏振编码装置的态制备非常稳 定,不存在相位漂移,无需进行任何补偿。通过调制不同的相位差
Figure 157281DEST_PATH_IMAGE018
Figure 883928DEST_PATH_IMAGE031
,可以制备X、Y、Z基 下的6种偏振态,如表1所示。
如图5所示,本发明量子密钥分发偏振编码装置实施例三:
所述偏振编码装置的结构为:所述双向偏振调制模块2包括第五偏振分束器2-9、法拉第旋转器2-11和第三相位调制器2-10,所述第五偏振分束器2-9的第一端口、第四端口分别作为双向偏振调制模块2的第一端口、第二端口;所述第五偏振分束器2-9的第二端口依次连接第三相位调制器2-10、法拉第旋转器2-11之后与第三端口相连,构成萨格纳克环;所述法拉第旋转器的偏振旋转角度为90°,支持双轴工作,两端的偏振方向均与保偏光纤慢轴对准。
实施例三偏振编码过程为:
水平偏振的光脉冲P1进入所述偏振编码装置的输入端口In,首先从第一环形器1 的第一端口进入从第二端口出射,经过45°熔接点偏振旋转后,偏振态变为
Figure 48193DEST_PATH_IMAGE024
,水平偏振分量P11沿保偏光纤L1慢轴传播,竖直偏振分量P12沿保偏光纤L1快轴传播,随后 到达第五偏振分束器2-9的第一端口,其中P11从第三端口透射,沿保萨格纳克环内的保偏 光纤慢轴传播,经过90°法拉第旋转器2-11之后偏振旋转了90°,仍然沿保偏光纤慢轴传播, 经过第三相位调制器2-10时调制相位
Figure 555398DEST_PATH_IMAGE018
,然后到达第五偏振分束器2-9的第二端口,反射到 第一端口,沿保偏光纤快轴传播。可以看出P11从第五偏振分束器2-9的第一端口入射时沿 保偏光纤L1的慢轴传播,再次出射时沿快轴传播,偏振旋转了90°。
P12从第五偏振分束器2-9的第二端口反射,沿萨格纳克环的保偏光纤慢轴传播,经过第三相位调制器2-10时不调相,随后经过90°法拉第旋转器偏振旋转90°后仍沿保偏光纤慢轴传播,最后到达第五偏振分束器2-9的第三端口,透射到第一端口,沿保偏光纤慢轴传播。可以看出P12从第三偏振分束器2-6的第一端口入射时沿保偏光纤L1的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P11和P12均经过了萨格纳克环的保偏光纤慢轴,二者所经历的相位变化相 同,而由于P11经过第三相位调制器2-10时调制了相位
Figure 188111DEST_PATH_IMAGE030
,P12经过时不调相,所以二者之间 的相位差为
Figure 769265DEST_PATH_IMAGE018
。因此,双向偏振调制模块2第一次偏振调制的作用可以表示为
Figure 370011DEST_PATH_IMAGE032
光脉冲P11和P12从第五偏振分束器2-9的第一端口出射后合成一个脉冲P2,再次 经过保偏光纤L1和45°偏振旋转之后进入第一环形器1的第二端口,从其第三端口出射,并 沿保偏光纤L2到达第五偏振分束器2-9的第四端口。其中,沿保偏光纤L2慢轴传播的偏振分 量P21被反射到第三端口,沿保萨格纳克环内的保偏光纤快轴传播,经过90°法拉第旋转器 2-11之后偏振旋转了90°,仍然沿保偏光纤快轴传播,经过第三相位调制器2-10时调制相位
Figure 98933DEST_PATH_IMAGE031
,然后到达第五偏振分束器2-9的第二端口,透射到第四端口,沿保偏光纤快轴传播。可以 看出P21从第五偏振分束器2-9的第四端口入射时沿保偏光纤L2的慢轴传播,再次出射时沿 快轴传播,偏振旋转了90°。
P22从第五偏振分束器2-9的第二端口透射,沿萨格纳克环的保偏光纤快轴传播,经过第三相位调制器2-10时不调相,随后经过90°法拉第旋转器偏振旋转90°后仍沿保偏光纤快轴传播,最后到达第五偏振分束器2-9的第三端口,反射到第四端口,沿保偏光纤慢轴传播。可以看出P12从第五偏振分束器2-9的第四端口入射时沿保偏光纤L2的快轴传播,再次出射时沿慢轴传播,偏振旋转了90°。
由于P21和P22均经过了萨格纳克环的保偏光纤快轴,二者所经历的相位变化相 同,而由于P21经过第三相位调制器2-10时调制了相位
Figure 771222DEST_PATH_IMAGE031
,P22经过时不调相,所以二者之间 的相位差为
Figure 534779DEST_PATH_IMAGE020
。因此,双向偏振调制模块2第二次偏振调制的作用可以表示为
Figure 244109DEST_PATH_IMAGE033
光脉冲P21和P22从第五偏振分束器2-9的第四端口出射后合成一个脉冲P3,再次经过保偏光纤L2之后回到第一环形器1的第三端口,从其第四端口出射,最终从偏振编码装置的输出端口Out出射,可以通过琼斯矩阵计算输出的偏振态。光脉冲依次经过45°偏振旋转、保偏光纤A1、双向偏振调制模块2第一次偏振调制、保偏光纤L2以及双向偏振调制模块2第二次偏振调制,最终从偏振编码装置输出的偏振态为
Figure 725906DEST_PATH_IMAGE034
忽略全局相位因子,可以得到光脉冲的偏振态为
Figure 936307DEST_PATH_IMAGE035
。 可以看出制备的偏振态仅与调制的相位差
Figure 554371DEST_PATH_IMAGE018
Figure 434602DEST_PATH_IMAGE020
有关,因此偏振编码装置的态制备非常稳 定,不存在相位漂移,无需进行任何补偿。通过调制不同的相位差
Figure 872536DEST_PATH_IMAGE018
Figure 824312DEST_PATH_IMAGE020
,可以制备X、Y、Z基 下的6种偏振态,如表1所示。
本发明还公开了一种偏振编码量子密钥分发系统,实施例的结构如图6所示,包括发射端Alice以及接收端Bob,发射端Alice包括激光器、强度调制器、偏振编码装置以及可调衰减器,所述偏振编码装置采用实施例三中的具体接受,所述发射端Alice中,激光器通过强度调制器连接偏振编码装置的输入端口,所述偏振编码装置的输出端口连接可调衰减器后耦合到空间中,通过自由空间信道与接收端Bob相连。所述接收端Bob包括偏振解码装置、第七偏振分束器、第一单光子探测器和第二单光子探测器SPD2,所述偏振解码装置包括第二环形器、第六偏振分束器、第二法拉第旋转器、第四相位调制器,结构与发射端Alice的偏振编码结构相同,唯一的区别在于将45°熔接点从环形器第二端口之后移到第三端口之后。从自由空间信道进入接收端Bob的光信号通过光纤耦合后进入第二环形器的第一端口,经过解码之后从第二环形器的第四端口出射,最后通过第七偏振分束器、第一单光子探测器和第二单光子探测器进行探测。
具体偏振解码过程为:
从发射端Alice发出的量子态为
Figure 359199DEST_PATH_IMAGE036
,按照表1制备6 种偏振态,经过信道传输后到达接收端Bob,首先从第二环形器的第一端口到达第二端口, 经过保偏光纤到达第六偏振分束器,两个偏振分量经过萨格纳克环后偏振均旋转90°,二者 之间的相位差被第四相位调制器调制为
Figure 738227DEST_PATH_IMAGE037
,然后经过保偏光纤返回第二环形器的第二端 口,从第三端口出射,经过45°偏振旋转之后沿保偏光纤到达第六偏振分束器,两个偏振分 量经过萨格纳克环后偏振均旋转90°,二者之间的相位差被第四相位调制器调制为
Figure 866720DEST_PATH_IMAGE038
,然后 经过保偏光纤和45°偏振旋转后返回第二环形器的第三端口,从第四端口出射,最后到达第 七偏振分束器,水平分量透射进入第二单光子探测器,竖直分量反射进入第一单光子探测 器。解码过程与编码过程类似,可以通过琼斯矩阵来描述解码过程,得到两个单光子探测器 的探测概率。
由前面的分析可知,往返两次经过同一段保偏光纤对偏振态无影响,只增加了整体相位,因此其作用可以忽略,作为单位矩阵来处理。因此,从第二环形器的第四端口出射的偏振态可写为
Figure 356607DEST_PATH_IMAGE039
Figure 513045DEST_PATH_IMAGE040
时,忽略全局相位因子,出射偏振态为
Figure 62975DEST_PATH_IMAGE041
因此,第一单光子探测器和第二单光子探测器探测到光子的概率分别为
Figure 413184DEST_PATH_IMAGE042
Figure 706763DEST_PATH_IMAGE043
,当相位差
Figure 216241DEST_PATH_IMAGE044
时,SPD1=0,SPD2=1,即 第一单光子探测器不响应,第二单光子探测器响应;当相位差
Figure 671493DEST_PATH_IMAGE045
时,SPD1=1,SPD2 =0,即第一单光子探测器响应,第二单光子探测器不响应,这两种情况说明发射端和接收端 的基矢匹配;当相位差
Figure 40158DEST_PATH_IMAGE046
时,SPD1=0.5,SPD2=0.5,即第一单光子探测器和第 二单光子探测器响应的概率均为50%,这两种情况说明发射端和接收端的基矢不匹配。因 此,通过调制
Figure 606268DEST_PATH_IMAGE047
即可对发射端所发出的6种偏振态进行完备地测量,可完整实现6态协 议。
特别地,保持
Figure 907937DEST_PATH_IMAGE048
时,量子密钥分发系统可制备4种偏振态并进行相应地 测量,即可以实现BB84协议。
综合本发明实施例可知,本发明提出一种量子密钥分发偏振编码装置及系统,可以稳定制备6种偏振态,无需多激光器,消除了多激光器波长不一致导致的安全性漏洞,制备偏振态非常稳定,无需任何补偿,接收端只需2个单光子探测器,降低了系统的复杂度和成本。另外,本发明的偏振编码装置可用于实现BB84协议、6态协议和参考系无关协议。

Claims (7)

1.一种量子密钥分发的偏振编码装置,其特征在于,包括第一环形器(1)和双向偏振调制模块(2),所述偏振编码装置内部均为保偏光纤;所述第一环形器(1)的第一端口作为偏振编码装置的输入端口In;所述第一环形器(1)的第二端口与双向偏振调制模块(2)的第一端口通过45°偏振旋转器相连;所述双向偏振调制模块(2)的第二端口通过保偏光纤L2与第一环形器(1)第三端口相连;所述第一环形器(1)的第四端口作为偏振编码装置的输出端口;所述双向偏振调制模块(2)用于调制从第一端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第一端口输出,随后调制从第二端口入射光脉冲的两个偏振分量之间的相位差,并分别将所述两个偏振分量旋转90°后从第二端口输出。
2.如权利要求1所述的量子密钥分发的偏振编码装置,其特征在于,所述双向偏振调制模块(2)包括第一偏振分束器(2-1)、第二偏振分束器(2-2)、第一法拉第镜(2-3)、第二法拉第镜(2-4)以及第一相位调制器(2-5),所述第一偏振分束器(2-1)的第一端口、第二偏振分束器(2-2)的第四端口分别作为双向偏振调制模块(2)的第一端口、第二端口;所述第一偏振分束器(2-1)的第二端口、第三端口分别通过保偏光纤L3、L4与第二偏振分束器(2-2)的第二端口、第三端口相连;所述第一相位调制器(2-5)位于保偏光纤L3中;所述第二偏振分束器(2-2)的第一端口通过保偏光纤L5与第一法拉第镜(2-3)相连;所述第一偏振分束器2-1的第四端口通过保偏光纤L6与第二法拉第镜(2-4)相连。
3.如权利要求1所述的量子密钥分发的偏振编码装置,其特征在于,所述双向偏振调制模块(2)包括第三偏振分束器(2-6)、第四偏振分束器(2-7)和第二相位调制器(2-8),所述第三偏振分束器(2-6)的第一端口、第四端口分别作为双向偏振调制模块(2)的第一端口、第二端口;所述第三偏振分束器(2-6)的第二端口、第三端口分别通过保偏光纤L7、L8与第四偏振分束器(2-7的第二端口、第三端口相连;所述第二相位调制器(2-8)位于保偏光纤L7中,并且保偏光纤L7进行90°熔接;所述第四偏振分束器(2-7)的第一端口和第四端口通过保偏光纤L9进行90°熔接后相连。
4.如权利要求1所述的量子密钥分发的偏振编码装置,其特征在于,所述双向偏振调制模块(2)包括第五偏振分束器(2-9)、法拉第旋转器(2-11)和第三相位调制器(2-10),所述第五偏振分束器(2-9)的第一端口、第四端口分别作为双向偏振调制模块(2)的第一端口、第二端口;所述第五偏振分束器(2-9)的第二端口依次连接第三相位调制器(2-10)、法拉第旋转器(2-11)之后与第三端口相连,构成萨格纳克环;所述法拉第旋转器的偏振旋转角度为90°,支持双轴工作,两端的偏振方向均与保偏光纤慢轴对准。
5.如权利要求1-4任意一种所述的量子密钥分发的偏振编码装置,其特征在于,所述45°偏振旋转器为进行45°熔接的保偏光纤L1。
6.如权利要求1-4任意一种所述的量子密钥分发的偏振编码装置,其特征在于,所述45°偏振旋转器为半波片,所述半波片的慢轴与所连接保偏光纤的慢轴夹角为22.5°。
7.一种量子密钥分发系统,包括通过自由空间信道连接的发射端Alice以及接收端Bob,其特征在于,所述发射端Alice包括权利要求1或2或3或4中的偏振编码装置。
CN202210333160.2A 2022-03-31 2022-03-31 一种量子密钥分发的偏振编码装置以及量子密钥分发系统 Active CN114650133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210333160.2A CN114650133B (zh) 2022-03-31 2022-03-31 一种量子密钥分发的偏振编码装置以及量子密钥分发系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210333160.2A CN114650133B (zh) 2022-03-31 2022-03-31 一种量子密钥分发的偏振编码装置以及量子密钥分发系统

Publications (2)

Publication Number Publication Date
CN114650133A true CN114650133A (zh) 2022-06-21
CN114650133B CN114650133B (zh) 2022-11-08

Family

ID=81995873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210333160.2A Active CN114650133B (zh) 2022-03-31 2022-03-31 一种量子密钥分发的偏振编码装置以及量子密钥分发系统

Country Status (1)

Country Link
CN (1) CN114650133B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296131A (zh) * 2022-10-09 2022-11-04 武汉中科锐择光电科技有限公司 一种产生超短脉冲的虚拟环形腔激光器
RU2806811C1 (ru) * 2023-02-21 2023-11-07 Открытое Акционерное Общество "Российские Железные Дороги" Устройство квантовой рассылки ключа на боковых частотах с повышенной устойчивостью к шумам в волоконно-оптической линии связи

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579564A (zh) * 2014-12-30 2015-04-29 华南师范大学 相位调制偏振编码的四态量子编码器和解码器及量子密钥分发系统
CN109586907A (zh) * 2018-12-30 2019-04-05 华南师范大学 一种量子通信与量子时频传输的融合网络系统与方法
CN110601839A (zh) * 2019-10-30 2019-12-20 赵义博 一种偏振与相位复合编码的量子密钥分发系统
CN111526019A (zh) * 2020-05-26 2020-08-11 中国科学技术大学 两级偏振编码装置、编码方法及量子密钥分发光源
CN111585747A (zh) * 2019-02-19 2020-08-25 科大国盾量子技术股份有限公司 用于实现六种偏振态编码的发送端、编码方法及量子通信系统
CN112799185A (zh) * 2021-04-14 2021-05-14 武汉恩达通科技有限公司 一种用于单纤双向通信的四端口环形器及光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579564A (zh) * 2014-12-30 2015-04-29 华南师范大学 相位调制偏振编码的四态量子编码器和解码器及量子密钥分发系统
CN109586907A (zh) * 2018-12-30 2019-04-05 华南师范大学 一种量子通信与量子时频传输的融合网络系统与方法
WO2020140851A1 (zh) * 2018-12-30 2020-07-09 华南师范大学 一种量子通信与量子时频传输的融合网络系统与方法
CN111585747A (zh) * 2019-02-19 2020-08-25 科大国盾量子技术股份有限公司 用于实现六种偏振态编码的发送端、编码方法及量子通信系统
CN110601839A (zh) * 2019-10-30 2019-12-20 赵义博 一种偏振与相位复合编码的量子密钥分发系统
CN111526019A (zh) * 2020-05-26 2020-08-11 中国科学技术大学 两级偏振编码装置、编码方法及量子密钥分发光源
CN112799185A (zh) * 2021-04-14 2021-05-14 武汉恩达通科技有限公司 一种用于单纤双向通信的四端口环形器及光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姬一鸣等: "基于量子差分相移系统的混合编码设计方案", 《量子电子学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296131A (zh) * 2022-10-09 2022-11-04 武汉中科锐择光电科技有限公司 一种产生超短脉冲的虚拟环形腔激光器
RU2806811C1 (ru) * 2023-02-21 2023-11-07 Открытое Акционерное Общество "Российские Железные Дороги" Устройство квантовой рассылки ключа на боковых частотах с повышенной устойчивостью к шумам в волоконно-оптической линии связи

Also Published As

Publication number Publication date
CN114650133B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
KR102151014B1 (ko) 인코딩 장치, 및 그에 기반한 양자 키 분포 장치와 시스템
CN113676323B (zh) 一种偏振编码测量设备无关量子密钥分发系统
CN114900245B (zh) 一种偏振无关相位解码集成芯片及量子密钥分发系统
CN113708931B (zh) 用于量子密钥分发的偏振编码装置及量子密钥分发系统
CN113708932B (zh) 用于量子密钥分发的相位编码装置及量子密钥分发系统
CN114726451B (zh) 一种偏振不敏感的高效量子密钥分发解码装置
CN113872701B (zh) 一种时间相位编码装置以及量子密钥分发系统
CN101150371A (zh) 一种相位编码偏振检测的量子密钥分配系统
WO2021128557A1 (zh) 量子通信光路系统和量子通信方法
CN110601839A (zh) 一种偏振与相位复合编码的量子密钥分发系统
CN114374441B (zh) 一种免疫信道扰动的量子密钥分发相位解码装置
CN103475425A (zh) 基于法拉第-萨格奈克环的单光子源及其实现方法
CN101572600A (zh) 一种即插即用量子密钥分发装置
CN114553421B (zh) 一种免疫信道扰动的量子密钥分发解码装置
CN110620663A (zh) 一种偏振与相位复合编码的量子密钥分发系统
CN116318682A (zh) 一种抗信道扰动的可重构量子密钥分发网络
CN114650133B (zh) 一种量子密钥分发的偏振编码装置以及量子密钥分发系统
CN114338020B (zh) 一种量子密钥分发编码装置
CN115001593A (zh) 一种用于量子密钥分发的混合集成接收芯片
US10511437B1 (en) Fast polarization encoding using electrooptical phase modulator
EP4049387B1 (en) Polarization modulation method of photonic pulses for generating quantum cryptographic keys, and related polarization modulator
CN210629516U (zh) 一种偏振与相位复合编码的量子密钥分发系统
CN114465725B (zh) 一种量子密钥分发编码装置
CN114285572B (zh) 一种参考系无关量子密钥分发编码装置
CN110620664A (zh) 一种相位与偏振复合编码的量子密钥分发系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230928

Address after: 2-3 / F, building B1 and B2, science and technology innovation complex, South Taihu new area, 819 Xisaishan Road, Huzhou City, Zhejiang Province, 313000

Patentee after: Huzhou Research Institute of Zhejiang University

Address before: Room 04-171, 8th floor, No. 18, Zhongguancun Street, Haidian District, Beijing 100086

Patentee before: Beijing zhongkeguoguang Quantum Technology Co.,Ltd.