CN114645113A - 一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺 - Google Patents

一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺 Download PDF

Info

Publication number
CN114645113A
CN114645113A CN202210209662.4A CN202210209662A CN114645113A CN 114645113 A CN114645113 A CN 114645113A CN 202210209662 A CN202210209662 A CN 202210209662A CN 114645113 A CN114645113 A CN 114645113A
Authority
CN
China
Prior art keywords
temperature
stainless steel
austenitic stainless
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210209662.4A
Other languages
English (en)
Inventor
严伟
徐海涛
史显波
燕春光
单以银
肖常志
戎利建
付晓刚
杨红义
李依依
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
China Institute of Atomic of Energy
Original Assignee
Institute of Metal Research of CAS
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS, China Institute of Atomic of Energy filed Critical Institute of Metal Research of CAS
Priority to CN202210209662.4A priority Critical patent/CN114645113A/zh
Publication of CN114645113A publication Critical patent/CN114645113A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

本发明属于不锈钢加工工艺领域,具体涉及一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺。该工艺包括如下步骤:(1)均质化处理:将冶炼浇铸的高Nb奥氏体不锈钢铸锭放入高温炉均质化处理;(2)铸锭热加工:将均质化后的铸锭进行热锻或者热轧成锻棒或板材;(3)固溶热处理:将热锻或热轧的锻棒或板材进行固溶处理;(4)冷变形:将热处理后的锻棒或板材进行冷拉拔或冷轧;(5)退火热处理:冷拉拔或冷轧后的锻棒或板材在800~900℃保温2~4小时,空冷。本发明可以消除高Nb奥氏体不锈钢在凝固后期形成的一次粗大NbC,获得数量密度高、尺寸细小、弥散分布的NbC,可对高Nb奥氏体不锈钢的综合性能产生积极影响。

Description

一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺
技术领域
本发明属于不锈钢加工工艺领域,具体涉及一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,实现细化高Nb奥氏体不锈钢中碳化铌尺寸和使其均匀分布。
背景技术
铌(Nb)是奥氏体不锈钢中常用的合金化元素,与C的结合力较强,奥氏体不锈钢中加入Nb的主要作用是与钢中的C优先结合形成NbC,以防止形成对晶间腐蚀有害的含Cr碳化物。除此之外,奥氏体不锈钢中加入适当的Nb和C之后,形成的纳米尺寸NbC还可以提高高温强度、持久/蠕变强度、抗松弛性能等高温性能。
根据热力学粗略计算,如果将奥氏体中的C全部固定为NbC,Nb含量需要加入C含量的7.78倍,考虑到Nb还要与钢中的O、N等化合形成相应的氧化物、氮化物而部分消耗,所以标准中规定奥氏体不锈钢中的Nb含量应不少于10倍的C含量。由此可见,随着奥氏体不锈钢中C含量的增加,Nb含量呈10倍的增加。然而,Nb在钢中是一种易偏析元素,当Nb在奥氏体不锈钢中的含量较高时,钢液熔炼后浇注凝固过程中会形成一次粗大的含Nb碳化物。粗大含Nb碳化物在后续的热加工过程中不能完全消除,不但起不到应有的作用,反而会恶化材料的其他性能,例如疲劳性能、高温强度、持久性能、抗应力松弛性能等等。因此,在不改变Nb含量前提下如何将粗大一次含Nb碳化物调控为纳米尺寸的细小均匀分布的NbC是高Nb奥氏体不锈钢的一个工程技术难题。
发明内容
本发明的目的在于提供一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,将高Nb奥氏体不锈钢中初生的粗大NbC通过冷变形的方法细化成均匀分布的纳米尺寸NbC,从而获得高Nb奥氏体不锈钢优异的综合性能。
本发明的技术方案是:
一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,包括如下步骤:
(1)均质化处理:将冶炼浇铸的高Nb奥氏体不锈钢铸锭放入高温炉均质化处理,具体工艺为:铸锭在室温随炉升至1200~1280℃,保温时间不少于12小时,出炉空冷至室温;
(2)铸锭热加工:将均质化后的铸锭进行热锻或者热轧成锻棒或板材;
(3)固溶热处理:将热锻或热轧的锻棒或板材进行固溶处理:在1000~1150℃保温0.5~2小时,空冷至室温;
(4)冷变形:将热处理后的锻棒或板材进行冷拉拔或冷轧;
(5)退火热处理:冷拉拔或冷轧后的锻棒或板材在800~900℃保温2~4小时,空冷至室温。
所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,步骤(2)中,热锻工艺为:铸锭于室温随炉升至1150~1200℃,保温时间不少于8小时;初锻温度1080~1180℃,终锻温度850~950℃,锻造中进行纵-横-纵三向反复大压下量锻打,反复次数不小于6次,单次变形量>10%,总锻造比>20,锻造后空冷至室温。
所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,步骤(2)中,热轧工艺为:铸锭于室温随炉升至1150~1200℃,保温时间不少于8小时;初轧温度1130~1180℃,终轧温度800~900℃;单道次压下量不小于20%,总压下量不小于90%,轧制后空冷至室温。
所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,步骤(4)中,冷拉拔工艺为:锻棒的每道次冷拉拔变形量不小于10%,中间退火次数不超过2次,退火温度900~1000℃,保温300~600秒,总变形量>40%。
所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,步骤(4)中,冷轧工艺为:室温下单道次轧制变形量>5%,道次间不进行退火,总变形量>70%。
所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,按重量百分比计,高Nb奥氏体不锈钢的化学成分如下:C:≤0.12%;Si:≤3.0%;Mn:≤2.0%;S:0~0.01%;P:0~0.01%;Cr:13.0~17.0%;Ni:8.0~15.0%;Cu:≤1.0%;Mo:≤2.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。
本发明的设计思想为:
本发明通过四个制备工艺阶段对高Nb奥氏体不锈钢进行粗大NbC的调控:
一是高温均质化阶段,该阶段利用NbC随均质化温度升高而固溶度增加的原理,尽可能提高均质化温度,从而让更多的在凝固后期形成的粗大NbC溶解进入钢的基体;
二是热加工阶段,利用多向反复热加工,使未完全溶解的一次NbC尽可能均匀分布,结合形变诱导析出原理,溶解基体内的Nb以细小弥散分布的NbC形式析出;
三是冷加工阶段,此阶段最为关键,通过大变形冷加工物理破碎方法,使热加工遗留下的大尺寸的一次NbC发生机械破碎细化,尺寸更加均匀;
四是冷变形后的稳定化退火阶段,通过高应变储能驱动纳米析出相析出的原理,进一步析出大量细小尺寸的NbC。
本发明的优点及有益效果是:
1、本发明钢通过四个制备工艺阶段对高Nb奥氏体不锈钢进行粗大NbC的调控可以消除高Nb奥氏体不锈钢在凝固后期形成的一次粗大NbC。
2、本发明可在高Nb奥氏体不锈钢中获得数量密度高、尺寸细小、弥散分布的NbC。
3、本发明钢可对高Nb奥氏体不锈钢的强度、持久强度尤其是抗应力松弛性能产生积极影响。
附图说明
图1为实施例1的显微组织。
图2为实施例2的显微组织。
图3为实施例3的显微组织。
图4为实施例4的显微组织。
图5为实施例5的显微组织。
图6为实施例6的显微组织。
图7为实施例7的显微组织。
具体实施方式
在具体实施过程中,本发明的主要加工工艺如下所述,个别实施例与主要加工工艺不同之处在相应处进行了补充说明,以便用以比较。
所有实施例所用的高Nb奥氏体不锈钢铸锭的化学成分如下:
C:0.12%;Si:2.3%;Mn:0.81%;S:0.0015%;P:0.008%;Cr:14.2%;Ni:12.24%;Cu:0.90;Mo:1.53%;Nb:0.97%;O:0.0016%;N:0.004%;Fe余量。
铸锭为真空感应冶炼浇铸获得,整个铸锭重量为182kg。
(1)将同一铸锭切分成等长度若干段。
(2)对铸锭段进行均质化处理:铸锭段于室温随炉升至1260℃,保温18小时,出炉空冷至室温。
(3)热锻:铸锭段于室温随炉升至1160℃,保温10小时;在约1140℃初锻,在约920℃终锻,锻造中进行纵-横-纵三向反复大压下量锻打,反复次数9次,单次变形量约15%,总锻造比约22,锻造成直径为40mm圆棒后空冷至室温。
(4)热轧:铸锭段于室温随炉升至1200℃,保温10小时;在约1170℃初轧,在约850℃终轧;单道次压下量约25%,总压下量约100%,轧制成厚度为4mm板材后空冷至室温。
(5)对热锻或热轧的锻棒或板材在1070℃固溶处理1.0小时,空冷至室温。
(6)冷拉拔:对直径40mm锻棒进行3次冷拉拔,第1道次冷拔变形量约20%,第2道次冷拔变形量约12%,第2次拉拔后在930℃保温420秒退火1次,炉冷至室温。第3道次冷拔变形量约13%,总的冷拉拔变形量约45%。
(7)冷轧:对厚度为4mm板材进行冷轧,单道次轧制变形量约6%,道次间不进行退火,总变形量约75%。
(8)对冷拉拔或冷轧后的锻棒或板材在850℃保温3小时,空冷至室温。
下面,通过实施例对本发明进一步详细阐述。
实施例1
实施例1的加工工艺为上述步骤中的(1),实施例1为原始铸态锭。
实施例2
实施例2的加工工艺为上述步骤中的(1)→(3),实施例2为原始铸锭锻造的圆棒。
实施例3
实施例3的加工工艺为上述步骤中的(1)→(2)→(3)→(5)→(6)→(8)。
实施例4
实施例4的加工工艺为上述步骤中的(1)→(2)→(4)→(5)→(7)→(8)。
实施例5
实施例5的加工工艺为上述步骤中的(1)→(3)→(5)→(6)→(8),与实施例3相比,未做均质化处理。
实施例6
实施例6的加工工艺为上述步骤中的(1)→(2)→(4)→(5)→(8),与实施例4相比,未做冷轧工艺。
实施例7
实施例7的加工工艺为上述步骤中的(1)→(2)→(3)→(5)→(8),与实施例3相比,未做冷拉拔工艺。
如图1所示,实施例1铸锭原始组织形貌,可见黑色粗大的一次NbC沿枝晶偏聚,尺寸达几百微米,布满整个晶界区。
如图2所示,实施例2浇注后直接锻造的组织形貌,可见分布在晶界处的粗大微米级NbC经过锻造后沿着锻造流线分布,未减轻NbC的尺寸和分布。
如图3所示,实施例3工艺后的组织形貌,可见粗大一次NbC明显减少,微米级短链状NbC局部聚集明显减轻,基体中出现高密度纳米NbC,而且分布均匀。
如图4所示,实施例4工艺后的组织形貌,可见粗大一次NbC明显减少,成均匀分布状态,基体中出现高密度纳米NbC。
如图5所示,实施例5工艺后的组织形貌,与实施例3相比,未做均质化处理后有可见的未完全溶解的粗大NbC,但尺寸和分布形态好于只进行锻造处理的实施例2.
如图6所示,实施例6工艺后的组织形貌,与实施例4相比,未做冷轧工艺后仍有可见的未完全破碎的粗大NbC。
如图7所示,实施例7工艺后的组织形貌,与实施例3相比,未做冷拉拔工艺后仍有可见的未完全拉断的链状的粗大NbC。
通过上述实施例的比较可知,按照本发明的加工工艺调控高Nb钢中的碳化物(实施例3和实施例4),可以将铸态粗大的微米级NbC尺寸显著细化,而且尺寸分布更加均匀。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,包括如下步骤:
(1)均质化处理:将冶炼浇铸的高Nb奥氏体不锈钢铸锭放入高温炉均质化处理,具体工艺为:铸锭在室温随炉升至1200~1280℃,保温时间不少于12小时,出炉空冷至室温;
(2)铸锭热加工:将均质化后的铸锭进行热锻或者热轧成锻棒或板材;
(3)固溶热处理:将热锻或热轧的锻棒或板材进行固溶处理:在1000~1150℃保温0.5~2小时,空冷至室温;
(4)冷变形:将热处理后的锻棒或板材进行冷拉拔或冷轧;
(5)退火热处理:冷拉拔或冷轧后的锻棒或板材在800~900℃保温2~4小时,空冷至室温。
2.根据权利要求1所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,步骤(2)中,热锻工艺为:铸锭于室温随炉升至1150~1200℃,保温时间不少于8小时;初锻温度1080~1180℃,终锻温度850~950℃,锻造中进行纵-横-纵三向反复大压下量锻打,反复次数不小于6次,单次变形量>10%,总锻造比>20,锻造后空冷至室温。
3.根据权利要求1所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,步骤(2)中,热轧工艺为:铸锭于室温随炉升至1150~1200℃,保温时间不少于8小时;初轧温度1130~1180℃,终轧温度800~900℃;单道次压下量不小于20%,总压下量不小于90%,轧制后空冷至室温。
4.根据权利要求1所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,步骤(4)中,冷拉拔工艺为:锻棒的每道次冷拉拔变形量不小于10%,中间退火次数不超过2次,退火温度900~1000℃,保温300~600秒,总变形量>40%。
5.根据权利要求1所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,步骤(4)中,冷轧工艺为:室温下单道次轧制变形量>5%,道次间不进行退火,总变形量>70%。
6.按照权利要求1~5任一所述的调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺,其特征在于,按重量百分比计,高Nb奥氏体不锈钢的化学成分如下:C:≤0.12%;Si:≤3.0%;Mn:≤2.0%;S:0~0.01%;P:0~0.01%;Cr:13.0~17.0%;Ni:8.0~15.0%;
Cu:≤1.0%;Mo:≤2.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。
CN202210209662.4A 2022-03-04 2022-03-04 一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺 Pending CN114645113A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210209662.4A CN114645113A (zh) 2022-03-04 2022-03-04 一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210209662.4A CN114645113A (zh) 2022-03-04 2022-03-04 一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺

Publications (1)

Publication Number Publication Date
CN114645113A true CN114645113A (zh) 2022-06-21

Family

ID=81994075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210209662.4A Pending CN114645113A (zh) 2022-03-04 2022-03-04 一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺

Country Status (1)

Country Link
CN (1) CN114645113A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256114A (ja) * 2004-03-12 2005-09-22 Nippon Yakin Kogyo Co Ltd 高耐磨耗高耐食性ステンレス鋼材の製造方法
CN102808138A (zh) * 2011-05-31 2012-12-05 中国核动力研究设计院 超临界水冷堆中燃料包壳的奥氏体不锈钢新材料及制造工艺
CN102994905A (zh) * 2012-11-01 2013-03-27 北京科技大学 一种含Nb的微/纳结构超高强塑性不锈钢的制备方法
CN106244945A (zh) * 2016-08-26 2016-12-21 浙江隆达不锈钢有限公司 耐高温耐腐蚀无缝不锈钢管及该无缝不锈钢管的制备方法
CN109504830A (zh) * 2018-12-22 2019-03-22 中南大学 一种铜铌抗蚀奥氏体不锈钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256114A (ja) * 2004-03-12 2005-09-22 Nippon Yakin Kogyo Co Ltd 高耐磨耗高耐食性ステンレス鋼材の製造方法
CN102808138A (zh) * 2011-05-31 2012-12-05 中国核动力研究设计院 超临界水冷堆中燃料包壳的奥氏体不锈钢新材料及制造工艺
CN102994905A (zh) * 2012-11-01 2013-03-27 北京科技大学 一种含Nb的微/纳结构超高强塑性不锈钢的制备方法
CN106244945A (zh) * 2016-08-26 2016-12-21 浙江隆达不锈钢有限公司 耐高温耐腐蚀无缝不锈钢管及该无缝不锈钢管的制备方法
CN109504830A (zh) * 2018-12-22 2019-03-22 中南大学 一种铜铌抗蚀奥氏体不锈钢及其制备方法

Similar Documents

Publication Publication Date Title
CN106498278B (zh) 一种高强度高延伸率低密度的中厚板及其制备方法
CN102439191B (zh) 由基于镍的高温合金生产部件的方法、及相应的部件
CN107779746B (zh) 超高强度高韧性耐蚀耐氧化超细晶合金钢及其制备方法
CN105821250A (zh) 一种高强度镍基高温合金及其制造方法
JP7267430B2 (ja) 鋼板の調製方法
CN106756567B (zh) 一种强塑积≥40GPa·%的热轧低密度钢的制备方法
CN111363905B (zh) 一种铸造合金化高锰钢辙叉的热处理方法
CN110484826B (zh) 05Cr17Ni4Cu4Nb马氏体不锈钢及其热处理工艺方法
CN106167877B (zh) 马氏体时效钢
CN111826587A (zh) 一种大规格风电螺栓用冷镦钢热轧盘条及其制备方法
CN106566997A (zh) 一种高性能压铸模用热作模具钢及其冶金制造方法
CN110408850A (zh) 纳米金属间化合物析出强化的超级钢及其制备方法
CN112251679A (zh) 一种双相高强钢及其制备方法
CN102644024A (zh) 一种低合金低屈强比海洋工程结构用钢及其生产方法
CN114657475B (zh) 高温紧固件用耐液态铅铋腐蚀奥氏体不锈钢及其制备方法
CN112410680A (zh) 超高强度低密度钢及其制备方法
CN114561517A (zh) 一种低密度高塑韧性钢及其制备方法和应用
CN110408835A (zh) 稀土型微合金化高碳马氏体不锈钢及其制备方法
CN109967674A (zh) 核电蒸汽发生器用高温合金锻件的制造方法
CN101812634B (zh) 低碳低焊接裂纹敏感性的高强度钢、钢板及其制造方法
CN113667905A (zh) 一种超高强高性能马氏体时效不锈钢及其温轧制备方法
CN109055691B (zh) 一种Fe-Cr-Zr系铁素体耐热合金及其制备方法
CN105603303B (zh) 一种高强度超厚钢板
CN108251751A (zh) 具备超塑性的中锰钢及其制造方法
JP2002167652A (ja) 高強度・高耐疲労特性に優れた薄板材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination