CN114638538B - A controller fatigue warning method, device, system and warning threshold acquisition method - Google Patents
A controller fatigue warning method, device, system and warning threshold acquisition method Download PDFInfo
- Publication number
- CN114638538B CN114638538B CN202210351997.XA CN202210351997A CN114638538B CN 114638538 B CN114638538 B CN 114638538B CN 202210351997 A CN202210351997 A CN 202210351997A CN 114638538 B CN114638538 B CN 114638538B
- Authority
- CN
- China
- Prior art keywords
- air
- fatigue
- controller
- time
- person
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 230000001105 regulatory effect Effects 0.000 claims description 49
- 238000012360 testing method Methods 0.000 claims description 46
- 230000036626 alertness Effects 0.000 claims description 15
- 230000027288 circadian rhythm Effects 0.000 claims description 13
- 230000001815 facial effect Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 abstract description 10
- 238000009661 fatigue test Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 206010016256 fatigue Diseases 0.000 description 414
- 230000010006 flight Effects 0.000 description 16
- 230000006399 behavior Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 6
- 230000008520 organization Effects 0.000 description 3
- 238000012954 risk control Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 241001282135 Poromitra oscitans Species 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 206010048232 Yawning Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 210000000744 eyelid Anatomy 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06398—Performance of employee with respect to a job function
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Educational Administration (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Air Conditioning Control Device (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及预警领域,具体涉及一种管制员疲劳预警方法、装置、系统及预警阈值获取方法。The present application relates to the field of early warning, and specifically to a controller fatigue early warning method, device, system and early warning threshold acquisition method.
背景技术Background technique
保障民航运输安全是民航管制单位的基本职责,民航空中交通管制员(也称为管制员)在民航运输安全中扮演的关键角色,因此,对管制员在岗值勤中疲劳风险管控成为了一项重要且复杂的任务。近几年,出现了一些对管制员疲劳状态进行实时监测的相关技术,然而,这些技术更着重于对管制员本身在岗状态进行实时监控,如果发现管制员疲劳再采取措施,往往使航空安全处于高风险状态;并且国际民航组织在《疲劳管理做法监督手册》(Doc 9966,第二版,2019修订)文件中明确指出,疲劳是一种人体脑力或体力降低的生理状态,会损害人的警觉度以及履行与安全相关运行职责的能力,即疲劳判断与岗位安全职责密切相关,疲劳风险的管理目标是确保相关人员(管制员)在履行职责时保存充分的警觉性(可接受的疲劳程度),显而易见现有管制员疲劳检测/监测技术,不能提前预判管制员的当前疲劳程度是否能够应对即将要执行的工作需要,难以满足民航安全管理实际需求。此外,当前的技术也无法对整个管制行业、每个管制单位以及管制单位中的班组进行提前预判并整体评估。因此,如何分别在管制单位组织层面战略阶段、班组层面预战术(岗前)阶段、个体层面战术(在岗值勤)阶段实现对行业整体、独立管制单位、班组和管制员个体上实现疲劳检测、未来岗位疲劳需求预测、以及疲劳预警,进而从多方位对不同需求进行疲劳风险管控,保障航空安全,是当前现有技术急需要解决的技术问题。Ensuring civil aviation transportation safety is the basic responsibility of civil aviation control units. Civil aviation air traffic controllers (also known as controllers) play a key role in civil aviation transportation safety. Therefore, fatigue risk control of controllers on duty has become an important and complex task. In recent years, some technologies have emerged to monitor the fatigue status of controllers in real time. However, these technologies focus more on real-time monitoring of the controller's own on-the-job status. If measures are taken when the controller is found to be fatigued, aviation safety is often at high risk. In addition, ICAO clearly pointed out in the "Manual on Oversight of Fatigue Management Practices" (Doc 9966, Second Edition, 2019 Revision) that fatigue is a physiological state in which the human body's mental or physical strength is reduced, which will impair a person's alertness and ability to perform safety-related operational duties. That is, fatigue judgment is closely related to job safety duties. The management goal of fatigue risk is to ensure that relevant personnel (controllers) maintain sufficient alertness (acceptable fatigue level) when performing their duties. It is obvious that the existing controller fatigue detection/monitoring technology cannot predict in advance whether the current fatigue level of the controller can cope with the needs of the upcoming work, and it is difficult to meet the actual needs of civil aviation safety management. In addition, current technology is unable to make advance predictions and overall assessments of the entire control industry, each control unit, and the teams in the control unit. Therefore, how to achieve fatigue detection, future job fatigue demand prediction, and fatigue warning for the industry as a whole, independent control units, teams, and individual controllers at the strategic stage at the control unit organization level, the pre-tactical (pre-job) stage at the team level, and the tactical (on-duty) stage at the individual level, and then conduct fatigue risk control for different needs from multiple perspectives to ensure aviation safety is a technical problem that the current existing technology urgently needs to solve.
发明内容Summary of the invention
针对上述技术问题,本申请采用的技术方案为:一种管制员疲劳预警方法,该方法包括以下步骤:S100,判断当前需求符合第一疲劳判定需求、第二疲劳判定需求还是第三疲劳判定需求;当所述当前需求符合第一疲劳判定需求时,执行步骤S210,当所述当前需求符合第二疲劳判定需求时,执行步骤S310,否则执行步骤S410;S210,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N;S220,基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数 Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位夜间岗位值勤时长Air_night_timei的函数;Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数;S230,根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,和/或基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中疲劳系数较高组的管制单位进行疲劳预警;S310,获取第i个管制单位的班组管制员在岗前第二预设时间段内的测试疲劳值Set_PreIoF=[Set_PreIoF1,Set_PreIoF2,...,Set_PreIoFM],M为该班组管制员的总人数,其中,第k个管制员的测试疲劳值Set_PreIoFk根据第k个管制员的视频测试数据、警觉性测试数据和主观量表数据中的至少一种数据获得,1≤k≤M;S320,计算所述班组管制员的预警值Set_AL=[Set_AL1,Set_AL2,...,Set_ALM],并基于所述预警值Set_AL进行预警,其中Set_ALk=Set_PreIoFk-Set_ALPk,Set_ALPk为第k个管制员关于将要值勤岗位的疲劳预警阈值,班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],根据所述班组将要值勤时间段中指定时间区间内的预警阈值参数获取,所述预警阈值参数至少包括班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性;S410,获取一管制员Person的管制员综合疲劳程度数值Person_IoF=Person_C1×F_pose+Person_C2×F_face+Person_C3×F_voice,其中F_pose是当前基于行为姿态的管制员疲劳程度数值,F_face是当前基于面部特征的管制员疲劳程度数值,F_voice是当前基于陆空通话的管制员疲劳程度数值,Person_C1是F_pose的权重系数,Person_C2是F_face的权重系数,Person_C3是F_voice的权重系数;S420,计算所述管制员Person的预警值Person_AL=Person_IoF-Person_ALP,并基于所述预警值Person_AL进行预警,其中,管制员的个体疲劳预警阈值Person_ALP根据岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数获取,所述预警阈值判定参数至少包括与值勤中岗位相关的预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性。In view of the above technical problems, the technical solution adopted in the present application is: a fatigue warning method for air traffic controllers, the method comprising the following steps: S100, judging whether the current demand meets the first fatigue determination demand, the second fatigue determination demand or the third fatigue determination demand; when the current demand meets the first fatigue determination demand, executing step S210, when the current demand meets the second fatigue determination demand, executing step S310, otherwise executing step S410; S210, obtaining fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 ,..., Air_PN ) of all control units within a first preset time period, N is the number of all control units, wherein the fatigue warning parameters Air_P i of the i-th control unit at least include unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty air traffic controllers Air_num i , total number of air traffic controllers on duty at night Air_num_night i , the total number of controllers on duty during peak traffic period Air_num_high i , the duty time of controllers Air_time i , the duty time of controllers at their posts Air_work_time i , the duty time of controllers at their posts at night Air_night_time i , the duty time of controllers at their posts during peak traffic period Air_high_time i , the non-duty time of controllers Air_rwork_time i , the duty time of controllers at their posts for other operations Air_other_time i , 1≤i≤N; S220, based on the fatigue warning parameter Air_P, obtaining the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein, Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0. Otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i . Air_fm i is the weighted coefficient of other working time of the ith control unit. Air_Fi3 is a function of the altitude Air_height i of the ith control unit. When the hourly aircraft support flight volume of the ith control unit is ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period. When the ith control unit is in the non-peak flow period, Air_Fi4 = 0. Otherwise, Air_Fi4 = Air_num_high i × Air_high_time i / Air_work_time i , Air_Fi5 = Air_num_night i × Air_night_time i / Air_work_time i , is a function of the night duty time Air_night_time i of the ith control unit; Air_F i6 is a function of the control mode Air_manage i of the ith control unit, Air_F i7 is a function of the control area Air_area i of the ith control unit, and Air_F i8 is a weighted coefficient of the non-duty time of the ith control unit; S230, fatigue warning is performed on the entire control industry according to the overall fatigue coefficient IoF, and/or fatigue warning is performed on control units with higher fatigue coefficients in different control unit types based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P; S310, obtain the test fatigue value Set_PreIoF=[Set_PreIoF 1 ,Set_PreIoF 2 ,...,Set_PreIoF M ] of the team controller of the ith control unit in the second preset time period before taking up the post, where M is the total number of the team controllers, and the test fatigue value Set_PreIoF of the kth controller is k is obtained according to at least one of the video test data, alertness test data and subjective scale data of the k-th controller, 1≤k≤M; S320, calculating the warning value Set_AL=[Set_AL 1 , Set_AL 2 , ..., Set_AL M ] of the team controller, and giving a warning based on the warning value Set_AL, wherein Set_AL k =Set_PreIoF k -Set_ALP k , Set_ALP k is the fatigue warning threshold of the k-th controller for the post to be on duty, and the team fatigue warning threshold Set_ALP=[Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ], obtain the warning threshold parameters within the specified time interval of the team's upcoming duty time, the warning threshold parameters at least including the team's duty time, predicted flight volume, predicted duty duration, predicted weather conditions, predicted special conditions, and predicted attributes of the controller itself; S410, obtain a controller's comprehensive fatigue level value Person_IoF = Person_C 1 ×F_pose+Person_C 2 ×F_face+Person_C 3 ×F_voice, where F_pose is the current controller fatigue level value based on behavior and posture, F_face is the current controller fatigue level value based on facial features, F_voice is the current controller fatigue level value based on air-ground communication, Person_C 1 is the weight coefficient of F_pose, Person_C 2 is the weight coefficient of F_face, and Person_C 3 is the weight coefficient of F_voice; S420, calculate the warning value Person_AL=Person_IoF-Person_ALP of the controller Person, and give a warning based on the warning value Person_AL, wherein the controller's individual fatigue warning threshold Person_ALP is obtained according to the warning threshold judgment parameters set in the future time zone during the duty period of the controller Person on duty, and the warning threshold judgment parameters include at least the predicted flight volume related to the duty post, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller Person itself.
一种管制员疲劳预警装置,该装置包括:第一数据获取模块,用于当当前需求符合第一疲劳判定需求时,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N;第一数据处理模块,用于基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数 Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位夜间岗位值勤时长Air_night_timei的函数;Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数;第一疲劳预警模块,用于根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,和/或基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中疲劳系数较高组的管制单位进行疲劳预警;第二数据获取模块,用于当当前需求符合第二疲劳判定需求时,获取第i个管制单位的班组管制员在岗前第二预设时间段内的测试疲劳值Set_PreIoF=[Set_PreIoF1,Set_PreIoF2,...,Set_PreIoFM],M为该班组管制员的总人数,其中,第k个管制员的测试疲劳值Set_PreIoFk根据第k个管制员的视频测试数据、警觉性测试数据和主观量表数据中的至少一种数据获得,1≤k≤M;第二数据处理模块,用于计算所述班组管制员的预警值Set_AL=[Set_AL1,Set_AL2,...,Set_ALM],其中Set_ALk=Set_PreIoFk-Set_ALPk,Set_ALPk为第k个管制员关于将要值勤岗位的疲劳预警阈值,班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],根据所述班组将要值勤时间段中指定时间区间内的预警阈值参数获取,所述预警阈值参数至少包括班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性;第二疲劳预警模块,用于基于所述预警值Set_AL进行预警。第三数据获取模块,用于当当前需求符合第三疲劳判定需求时,获取一管制员Person的管制员综合疲劳程度数值Person_IoF=Person_C1×F_pose+Person_C2×F_face+Person_C3×F_voice,其中F_pose是当前基于行为姿态的管制员疲劳程度数值,F_face是当前基于面部特征的管制员疲劳程度数值,F_voice是当前基于陆空通话的管制员疲劳程度数值,Person_C1是F_pose的权重系数,Person_C2是F_face的权重系数,Person_C3是F_voice的权重系数;第三数据处理模块,用于计算所述管制员Person的预警值Person_AL=Person_IoF-Person_ALP,其中,管制员的个体预警阈值Person_ALP根据岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数获取,所述预警阈值判定参数至少包括与值勤中岗位相关的预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性;第三疲劳预警模块,用于基于所述预警值Person_AL进行预警。A fatigue warning device for a traffic controller comprises: a first data acquisition module, for obtaining fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 , ..., Air_PN ) of all control units within a first preset time period when a current demand meets a first fatigue determination demand, wherein N is the number of all control units, wherein the fatigue warning parameter Air_P i of the i-th control unit at least comprises unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic flow period Air_num_high i , duty time of controller Air_time i , duty time of controller post Air_work_time i , duty time of controller post at night Air_night_time i , duty time of controller post during peak traffic flow period Air_high_time i , non-job duty time of the controller Air_rwork_time i , job duty time of the controller for other operations Air_other_time i , 1≤i≤N; a first data processing module, used to obtain the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units based on the fatigue warning parameter Air_P = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein, Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0. Otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i . Air_fm i is the weighted coefficient of other working time of the ith control unit. Air_Fi3 is a function of the altitude Air_height i of the ith control unit. When the hourly aircraft support flight volume of the ith control unit is ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period. When the ith control unit is in the non-peak flow period, Air_Fi4 = 0. Otherwise, Air_Fi4 = Air_num_high i × Air_high_time i / Air_work_time i , Air_Fi5 = Air_num_night i × Air_night_time i / Air_work_time i , is a function of the night duty time Air_night_time i of the ith control unit; Air_F i6 is a function of the control mode Air_manage i of the ith control unit, Air_F i7 is a function of the control area Air_area i of the ith control unit, and Air_F i8 is a weighted coefficient of the non-duty time of the ith control unit; a first fatigue warning module, used to perform fatigue warning on the entire control industry according to the overall fatigue coefficient IoF, and/or based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P, perform fatigue warning on the control units of different control unit types with higher fatigue coefficients; a second data acquisition module, used to obtain the test fatigue value Set_PreIoF=[Set_PreIoF 1 ,Set_PreIoF 2 ,...,Set_PreIoF M] of the team controller of the ith control unit within the second preset time period before taking up the post when the current demand meets the second fatigue judgment demand ], M is the total number of controllers in the team, wherein the test fatigue value Set_PreIoF k of the k-th controller is obtained according to at least one of the video test data, alertness test data and subjective scale data of the k-th controller, 1≤k≤M; a second data processing module is used to calculate the warning value Set_AL=[Set_AL 1 ,Set_AL 2 ,...,Set_AL M ] of the team controller, wherein Set_AL k =Set_PreIoF k -Set_ALP k , Set_ALP k is the fatigue warning threshold of the k-th controller about the post to be on duty, and the team fatigue warning threshold Set_ALP=[Set_ALP 1 ,Set_ALP 2 ,...,Set_ALP M ], based on the warning threshold parameters within the specified time interval of the team's upcoming duty period, the warning threshold parameters at least include the team's duty time, predicted flight volume, predicted duty duration, predicted weather conditions, predicted special situations, and predicted attributes of the controller itself; the second fatigue warning module is used to issue a warning based on the warning value Set_AL. The third data acquisition module is used to obtain a controller's comprehensive fatigue level value Person_IoF = Person_C 1 ×F_pose+Person_C 2 ×F_face+Person_C 3 ×F_voice of a controller Person when the current demand meets the third fatigue judgment demand, where F_pose is the current controller fatigue level value based on behavioral posture, F_face is the current controller fatigue level value based on facial features, F_voice is the current controller fatigue level value based on land-air communication, Person_C 1 is the weight coefficient of F_pose, Person_C 2 is the weight coefficient of F_face, and Person_C 3 is the weight coefficient of F_voice; the third data processing module is used to calculate the warning value Person_AL of the controller Person = Person_IoF-Person_ALP, wherein the individual warning threshold Person_ALP of the controller is obtained according to the warning threshold judgment parameters set in the future time area during the duty period of the controller Person on duty, and the warning threshold judgment parameters at least include the predicted flight volume related to the duty post, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller Person itself; the third fatigue warning module is used to issue a warning based on the warning value Person_AL.
一种管制员疲劳预警系统,该系统包括有处理器和用于存储至少一条指令或至少一段程序的非瞬时性存储介质,该至少一条指令或该至少一段程序由该处理器加载并执行以实现以上所述的疲劳预警方法。A controller fatigue warning system includes a processor and a non-transitory storage medium for storing at least one instruction or at least one program. The at least one instruction or at least one program is loaded and executed by the processor to implement the fatigue warning method described above.
一种管制行业的整体疲劳系数预警阈值Total_ALP获取方法,包括以下步骤:S231,获取所述全部管制单位在多个不同历史时间段内的整体疲劳系数、不安全事件数量;S232,利用所述多个不同历史时间段内的整体疲劳系数和不安全事件数量进行数据驱动迭代以获取所述整体疲劳系数预警阈值Total_ALP。A method for obtaining an overall fatigue coefficient warning threshold value Total_ALP of a regulated industry comprises the following steps: S231, obtaining the overall fatigue coefficient and the number of unsafe events of all regulated units in a plurality of different historical time periods; S232, performing data-driven iteration using the overall fatigue coefficient and the number of unsafe events in the plurality of different historical time periods to obtain the overall fatigue coefficient warning threshold value Total_ALP.
一种获取全部管制单位的整体疲劳系数以及各单位的单位疲劳系数方法,该方法包括以下步骤:S210,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N;S220,基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数 Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位夜间岗位值勤时长Air_night_timei的函数,Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数。A method for obtaining an overall fatigue coefficient of all control units and a unit fatigue coefficient of each unit, the method comprising the following steps: S210, obtaining fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 , ..., Air_PN ) of all control units in a first preset time period, where N is the number of all control units, wherein the fatigue warning parameters Air_P i of the i-th control unit at least include unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic period Air_num_high i , controller duty time Air_time i , controller post duty time Air_work_time i , controller post duty time at night Air_night_time i , controller post duty time during peak traffic period Air_high_time i , the non-job duty time of the controller Air_rwork_time i , the job duty time of the controller for other operations Air_other_time i , 1≤i≤N; S220, based on the fatigue warning parameter Air_P, obtaining the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein, Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0. Otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i . Air_fm i is the weighted coefficient of other working time of the ith control unit. Air_Fi3 is a function of the altitude Air_height i of the ith control unit. When the hourly aircraft support flight volume of the ith control unit is ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period. When the ith control unit is in the non-peak flow period, Air_Fi4 = 0. Otherwise, Air_Fi4 = Air_num_high i × Air_high_time i / Air_work_time i , Air_Fi5 = Air_num_night i × Air_night_time i / Air_work_time i , is a function of the night duty time Air_night_time i of the ith control unit, Air_F i6 is a function of the control method Air_manage i of the ith control unit, Air_F i7 is a function of the control area Air_area i of the ith control unit, and Air_F i8 is the weighted coefficient of the non-duty time of the ith control unit.
一种获取班组疲劳预警阈值Set_ALP的方法,包括:S331,获取所述班组将要值勤时间段中的指定时间区间内的预警阈值参数,所述预警阈值参数至少包括该班组的值勤时间、预测的航班量、预测的值勤时长、预测特情、预测的天气状况、预测的管制员本身属性,所述指定时间区间的时长取值范围为[20分钟,300分钟];S332,根据所述预警阈值参数获取所述班组的班组基础疲劳值Set_P=[Set_P1,Set_P2,...,Set_PM],其中Set_Pk表示该班组第k个管制员的基础疲劳值;S333,基于Set_P获取所述班组的班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],其中Set_ALPk=Set_C×Set_Pk,Set_C是班组岗位调节系数。A method for obtaining a team fatigue warning threshold Set_ALP comprises: S331, obtaining warning threshold parameters within a specified time interval in a time period during which the team is to be on duty, wherein the warning threshold parameters at least include the duty time of the team, predicted flight volume, predicted duty duration, predicted special conditions, predicted weather conditions, and predicted attributes of the controller itself, and the duration of the specified time interval has a value range of [20 minutes, 300 minutes]; S332, obtaining a team basic fatigue value Set_P=[Set_P 1 , Set_P 2 , ..., Set_P M ] of the team according to the warning threshold parameters, wherein Set_P k represents the basic fatigue value of the kth controller of the team; S333, obtaining a team fatigue warning threshold Set_ALP=[Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ] of the team based on Set_P, wherein Set_ALP k =Set_C×Set_P k , and Set_C is a team post adjustment coefficient.
一种获取管制员的个体疲劳预警阈值Person_ALP的方法,包括:S431,获取岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数,所述预警阈值判定参数至少包括预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性,所述设定未来时间区域的时长取值范围为[3分钟,20分钟];S432,根据所述预警阈值判定参数获取所述管制员的值勤岗位疲劳程度基础需求值Person_Fb;S433,根据所述值勤岗位疲劳程度基础需求值Person_Fb获取所述管制员的个体疲劳预警阈值Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_Fb,Person_A1是在岗值勤时间管制员个体所处人体昼夜节律系数,Person_A2是岗位系数,用于表明管制员所在岗位对于疲劳程度的需要;Person_A3是岗位任务要求系数,用于表明预期的飞行计划交通流态势对管制员疲劳程度的需要。A method for obtaining an individual fatigue warning threshold Person_ALP of a controller, comprising: S431, obtaining a warning threshold determination parameter set in a future time zone in a post duty time period of a controller Person on duty, wherein the warning threshold determination parameter at least includes a predicted flight volume, a predicted weather condition, a predicted special situation, and a predicted attribute of the controller Person, and the duration of the set future time zone has a value range of [3 minutes, 20 minutes]; S432, obtaining a basic requirement value Person_F b of fatigue degree of the controller on duty according to the warning threshold determination parameter; S433, obtaining the individual fatigue warning threshold Person_ALP of the controller according to the basic requirement value Person_F b of fatigue degree of the controller on duty = (Person_A1+Person_A2×Person_A3)×Person_F b Person_A1 is the circadian rhythm coefficient of the controller during the duty time; Person_A2 is the position coefficient, which is used to indicate the fatigue level required by the controller's position; Person_A3 is the position task requirement coefficient, which is used to indicate the fatigue level required by the expected flight plan traffic flow situation.
本申请至少具有以下技术效果:通过获取全部管制单位预设时间段内的疲劳预警参数,获取整个管制行业甚至各个管制单位的疲劳系数,并在该疲劳系数的基础上,对整个管制行业以及高危的管制单位、班组、个人进行疲劳监测和预测、预警。另外,通过比较岗前疲劳测试获取的班组疲劳程度与通过预测所述班组将要值勤岗位的岗位疲劳需求而获得的班组预警阈值、通过比较岗中疲劳监测获取的管制员个人疲劳程度与通过预测所述管制员在未来一段时间段内的岗位值勤疲劳需求而得到的管制员个体疲劳预警阈值,可在岗前检测出管制人员是否能够应对将要值勤岗位的工作需要,且即使管制员上岗后,也可以判断岗中人员在未来3-20分钟是否出现疲劳异常,即从多个角度预判了管制员是否可以应对将来的航空安全需求。实现了分别在管制单位组织层面战略阶段、班组层面预战术(岗前)阶段、个体层面战术(在岗值勤)阶段对行业整体、独立管制单位、班组和管制员个体上的疲劳检测、未来岗位疲劳需求预测和疲劳预警,有利于从多方位对不同需求进行疲劳风险管控,保障航空安全。This application has at least the following technical effects: by obtaining fatigue warning parameters of all control units within a preset time period, the fatigue coefficient of the entire control industry or even each control unit is obtained, and based on the fatigue coefficient, fatigue monitoring, prediction and warning are performed on the entire control industry and high-risk control units, teams and individuals. In addition, by comparing the fatigue level of the team obtained by the pre-job fatigue test with the team warning threshold obtained by predicting the job fatigue requirements of the job that the team will be on duty, and by comparing the personal fatigue level of the controller obtained by the fatigue monitoring during the job with the individual fatigue warning threshold of the controller obtained by predicting the job fatigue requirements of the controller in the future, it is possible to detect whether the control personnel can cope with the work requirements of the job to be on duty before the job, and even after the controller takes up the job, it is possible to judge whether the personnel on the job will have fatigue abnormalities in the next 3-20 minutes, that is, to predict from multiple angles whether the controller can cope with future aviation safety needs. It realizes fatigue detection, prediction of future job fatigue demand and fatigue warning for the industry as a whole, independent control units, teams and individual controllers at the strategic stage at the organizational level of control units, the pre-tactical (pre-job) stage at the team level, and the tactical (on-duty) stage at the individual level. This is conducive to fatigue risk management for different needs from multiple angles and ensure aviation safety.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.
图1为本申请实施例提供的一种管制员疲劳预警方法流程图;FIG1 is a flow chart of a controller fatigue warning method provided by an embodiment of the present application;
图2为本申请一实施例提供的一种管制员疲劳预警装置结构图;FIG2 is a structural diagram of a controller fatigue warning device provided by an embodiment of the present application;
图3为本申请另一实施例提供的一种获取班组疲劳预警阈值Set_ALP的方法;FIG3 is a method for obtaining a team fatigue warning threshold Set_ALP provided by another embodiment of the present application;
图4为本申请另一实施例提供的一种获取管制员的个体疲劳预警阈值Person_ALP的方法;FIG4 is a method for obtaining an individual fatigue warning threshold Person_ALP of a controller provided by another embodiment of the present application;
图5为本申请另一实施例提供的一种管制员疲劳预警方法流程图。FIG5 is a flow chart of a controller fatigue warning method provided in another embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of this application.
图1为本申请实施例提供一种管制员疲劳预警方法,该方法包括以下步骤:FIG1 is a controller fatigue warning method provided by an embodiment of the present application, the method comprising the following steps:
S100,判断当前需求符合第一疲劳判定需求、第二疲劳判定需求还是第三疲劳判定需求,当所述当前需求符合第一疲劳判定需求时,执行步骤S210,当所述当前需求符合第二疲劳判定需求时,执行步骤S310,否则执行步骤S410。其中,第一疲劳判定需求例如为管制单位组织层面战略阶段的疲劳判定需求,第二疲劳判定需求例如为班组层面预战术阶段的疲劳判定需求,第三疲劳判定需求例如为个体层面战术阶段的疲劳判定需求,通过区分不同的阶段,可以从三个不同方面来满足不同的需求,例如在管制单位组织层面战略阶段,通过计算可以对整个管制行业的疲劳系数,可以从整体上判断整个管制行业的当前状况,并根据当前状况来对整个管制行业进行调控,例如管制员工数量不足,可以增加管制人员等。还可以对不同管制单位进行疲劳系数的计算,并判断该管制单位的相关情况,并据此进行例如员工调整等。S100, judging whether the current demand meets the first fatigue determination demand, the second fatigue determination demand or the third fatigue determination demand. When the current demand meets the first fatigue determination demand, executing step S210, when the current demand meets the second fatigue determination demand, executing step S310, otherwise executing step S410. The first fatigue determination demand is, for example, the fatigue determination demand at the strategic stage of the control unit organization level, the second fatigue determination demand is, for example, the fatigue determination demand at the pre-tactical stage of the team level, and the third fatigue determination demand is, for example, the fatigue determination demand at the tactical stage of the individual level. By distinguishing different stages, different demands can be met from three different aspects. For example, at the strategic stage of the control unit organization level, the fatigue coefficient of the entire control industry can be calculated, and the current status of the entire control industry can be judged as a whole, and the entire control industry can be regulated according to the current status. For example, if the number of control employees is insufficient, the control personnel can be increased. The fatigue coefficient of different control units can also be calculated, and the relevant situation of the control unit can be judged, and employee adjustments can be made accordingly.
S210,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N。S210, obtaining fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 , ..., Air_PN ) of all control units in a first preset time period, where N is the number of all control units, wherein the fatigue warning parameters Air_P i of the i-th control unit at least include unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic period Air_num_high i , duty time of controllers Air_time i , duty time of controllers at work Air_work_time i , duty time of controllers at work at night Air_night_time i , duty time of controllers at work during peak traffic period Air_high_time i , and non-duty time of controllers Air_rwork_time i , the duty time of the controller for other operations Air_other_time i , 1≤i≤N.
在本申请中,所述第一预设时间段可以为历史时间段,也可以是未来的时间段,该时间段的长短可以根据具体需求来设置,例如,可以是一个星期,一个月等等。当该第一预设时间段为未来的时间段时,可以根据管制单位的飞行计划以及管制员的工作时间来获取相关的疲劳预警参数,并依据该疲劳参数判断未来时间段内管制行业和/或管制单位的安全风险问题,以便提前进行员工变动等。In the present application, the first preset time period can be a historical time period or a future time period, and the length of the time period can be set according to specific needs, for example, it can be a week, a month, etc. When the first preset time period is a future time period, the relevant fatigue warning parameters can be obtained according to the flight plan of the control unit and the working hours of the controller, and the safety risk issues of the control industry and/or control unit in the future time period can be judged based on the fatigue parameters, so as to make employee changes in advance.
本申请中,管制单位的类型Air_typei可以为预先设定的多个类型,例如可以为区域管制型管制单位、进近管制型管制单位、塔台管制且年吞吐量在50-200万的民用管制单位等等。所述管制单位类型的总数可以根据实际情况进行划分。管制单位的海拔高度Air_heighti可以通过多种途径获取,例如查询地理资料等。管制方式Air_managei可以分为程序管制、雷达管制、雷达监视管制及其它四大类型。管制区域Air_areai根据实际情况测量得到。第i个管制单位的值勤管制员总数Air_numi、第i个管制单位夜间在岗值勤的管制员总数Air_num_nighti、第i个管制单位高峰流量期在岗值勤的管制员总数Air_num_highi一方面可以采集管制员的唯一标识以及管制员的实际工作时间点来获取,另一方面可以根据飞行计划安排来获取所述各个参数。同样的方式也可用于获取第i个管制单位的管制员值勤时长Air_timei、第i个管制单位的管制员岗位值勤时长Air_work_timei、第i个管制单位的管制员夜间岗位值勤时长Air_night_timei、第i个管制单位的管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、管制单位其它作业的管制员值勤时长Air_other_timei。此外,在本申请中,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期。所述预设流量阈值Air_FTi时根据管制单位的实际飞行数据或者是飞行计划来设置。In the present application, the type of control unit Air_type i can be a plurality of pre-set types, for example, it can be an area control type control unit, an approach control type control unit, a tower control and a civil control unit with an annual throughput of 500,000 to 2 million, etc. The total number of control unit types can be divided according to actual conditions. The altitude Air_height i of the control unit can be obtained through a variety of channels, such as querying geographic information, etc. The control method Air_manage i can be divided into four major types: procedural control, radar control, radar surveillance control and others. The control area Air_area i is measured according to actual conditions. The total number of on-duty controllers Air_num i of the i-th control unit, the total number of controllers on duty at night Air_num_night i of the i-th control unit, and the total number of controllers on duty during peak traffic periods Air_num_high i of the i-th control unit can be obtained by collecting the unique identifier of the controller and the actual working time of the controller, and on the other hand, the various parameters can be obtained according to the flight plan arrangement. The same method can also be used to obtain the controller's duty time Air_time i of the i-th control unit, the controller's post duty time Air_work_time i of the i-th control unit, the controller's night post duty time Air_night_time i of the i-th control unit, the controller's post duty time during peak traffic period Air_high_time i of the i-th control unit, the controller's non-post duty time Air_rwork_time i , and the controller's duty time for other operations of the control unit Air_other_time i . In addition, in the present application, when the aircraft hourly support flight volume of the i-th control unit is ≥ the preset traffic threshold Air_FT i , the i-th control unit is determined to be in the peak traffic period. The preset traffic threshold Air_FT i is set according to the actual flight data or flight plan of the control unit.
S220,基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数 Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,其取值范围为[1.00,4.00],优选为1.80;Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,其取值范围为[0.00,8.00],优选为4.21;在本申请中,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位管制员夜间岗位值勤时长Air_num_nighti的函数;Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,取值范围为[0.00,6.00];Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,取值范围为[0.00,7.00];Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数,其取值范围为[0.20,1.00],优选为0.64。S220, based on the fatigue warning parameter Air_P, obtaining the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein: Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0, otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i , where Air_fm i is the weighted coefficient of other working time of the ith control unit, and its value range is [1.00, 4.00], preferably 1.80; Air_Fi3 is a function of the altitude Air_height i of the ith control unit, and its value range is [0.00, 8.00], preferably 4.21; in the present application, when the hourly aircraft support flights of the ith control unit ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period, and when the ith control unit is in the non-peak flow period, Air_Fi4 = 0; otherwise, Air_Fi4 =Air_num_high i ×Air_high_time i /Air_work_time i , Air_F i5 =Air_num_night i ×Air_night_time i /Air_work_time i , which is a function of the night duty time Air_num_night i of the controller of the i-th control unit; Air_F i6 is a function of the control mode Air_manage i of the i-th control unit, and its value range is [0.00,6.00]; Air_F i7 is a function of the control area Air_area i of the i-th control unit, and its value range is [0.00,7.00]; Air_F i8 is the weighted coefficient of the non-duty time of the i-th control unit, and its value range is [0.20,1.00], and is preferably 0.64.
根据上述内容可知,本申请首先获取了影响管制单位和管制行业的相关客观参数,包括每个单位的单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,并在这些参数的基础上结合特定的计算方法进而计算出管制行业的整体疲劳系数以及各个管制单位的疲劳系数,通过综合多种影响因素,可以更为准确、客观地评估整个行业以及各个管制单位的真实疲劳程度,使得该疲劳系数获取方法的适用性、可推广性更强。According to the above content, this application first obtains the relevant objective parameters that affect the control units and control industries, including the unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic Air_num_high i , duty time of controllers Air_time i , duty time of controllers at work Air_work_time i , duty time of controllers at work at night Air_night_time i , duty time of controllers at work during peak traffic Air_high_time i , non-duty time of controllers at work Air_rwork_time i , duty time of controllers at work for other operations Air_other_time i , and on the basis of these parameters combined with specific calculation methods, the overall fatigue coefficient of the regulated industry and the fatigue coefficient of each regulated unit are calculated. By integrating multiple influencing factors, the actual fatigue degree of the entire industry and each regulated unit can be evaluated more accurately and objectively, making the fatigue coefficient acquisition method more applicable and generalizable.
S230,根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,和/或基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中疲劳系数较高组的管制单位进行疲劳预警。具体的,一个实施例中,基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中的疲劳系数较高组的管制单位进行疲劳预警为:将不同类型的管制单位按照疲劳系数大小进行排序,之后对不同类型管制单位中的数值排序靠前的管制单位进行预警提示,其中,管制单位类型数据可以从所述疲劳预警参数Air_P中获取,对应的疲劳相关数据从所述疲劳系数Air_IoF中获取。例如,对于第一类管制单位有4个,分别对应的疲劳系数为200、100、150、300,那么按照大小排序后为300、200、150、100,当需要对前两个进行预警时,此时需要对疲劳系数分别为300和200的两个管制单位进行预警。其中,所述第一类管制单位有4个为便于解释预警方式而进行的举例,并不表示事实上的管制单位数量,事实上的第一类管制单位数据根据实际获取的数量为准。在本申请中,可以设置预警报警基准,当管制单位的疲劳系数大于或者是等于该预警报警基准时,就对该管制单位进行预警,否则不用预警。所述预警报警基准可以根据历史经验来获取,还可以采用其他方式来获取,本申请中所述预警报警基准的获取方式不受具体限制。另一个实施例中,基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中的疲劳系数较高组的管制单位进行疲劳预警为:首先,基于所述疲劳预警参数Air_P对所述全部管制单位进行分类,其次,对每类管制单位按照疲劳系数大小进行排序,然后,对排序后的每类管制单位采用聚类方法进行等级划分,分为疲劳系数较低、中、较高组,最后,在每类管制单位中,对聚类后进入数值较高组的管制单位进行预警提示,通过聚类的方式对各个管制单位的疲劳系数进行聚类,能够更好地挖掘出数据之间内在的分布规律。具体的,可以使用常用的K-mean聚类方法进行疲劳系数的聚类,且本申请中使用的聚类方法可以为现有技术中的任一聚类方法。S230, fatigue warning is performed on the entire regulated industry according to the overall fatigue coefficient IoF, and/or fatigue warning is performed on the regulated units of the group with higher fatigue coefficients among different regulated unit types based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P. Specifically, in one embodiment, fatigue warning is performed on the regulated units of the group with higher fatigue coefficients among different regulated unit types based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P as follows: different types of regulated units are sorted according to the size of fatigue coefficients, and then warning is performed on the regulated units with higher numerical ranking among different types of regulated units, wherein the regulated unit type data can be obtained from the fatigue warning parameter Air_P, and the corresponding fatigue-related data is obtained from the fatigue coefficient Air_IoF. For example, there are 4 regulated units of the first type, and the corresponding fatigue coefficients are 200, 100, 150, and 300, respectively. Then, after sorting by size, they are 300, 200, 150, and 100. When warning is required for the first two, warning is required for the two regulated units with fatigue coefficients of 300 and 200, respectively. Among them, there are 4 examples of the first type of control units for the convenience of explaining the warning method, which does not represent the actual number of control units. The actual data of the first type of control units shall be based on the actual number obtained. In this application, a warning alarm benchmark can be set. When the fatigue coefficient of the control unit is greater than or equal to the warning alarm benchmark, the control unit will be warned, otherwise no warning is required. The warning alarm benchmark can be obtained based on historical experience or in other ways. The method for obtaining the warning alarm benchmark described in this application is not subject to specific restrictions. In another embodiment, based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P, fatigue warning is performed on control units with higher fatigue coefficients in different control unit types as follows: first, all control units are classified based on the fatigue warning parameter Air_P, and then, each type of control unit is sorted according to the size of the fatigue coefficient. Then, each type of control unit after sorting is graded using a clustering method and divided into groups with lower, medium, and higher fatigue coefficients. Finally, in each type of control unit, a warning is given to the control unit that enters a higher value group after clustering. Clustering the fatigue coefficients of each control unit by clustering can better mine the inherent distribution law between data. Specifically, the commonly used K-mean clustering method can be used to cluster the fatigue coefficients, and the clustering method used in this application can be any clustering method in the prior art.
具体的,根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,一个实施例中,可以将整体疲劳系数IoF和整个行业的历史整体疲劳系数进行比较,当所述整体疲劳系数IoF比历史整体疲劳系数大时进行预警,另一个实施例中,当整体疲劳系数IoF比历史整体疲劳系数增大到一定程度时进行预警,具体的,该一定程度可以结合管制单位的第一预设时间段内(当该第一预设时间段为历史时间段时)的不安全事件来判断是否进行预警。又一个实施例中,当整体疲劳系数IoF≥整体疲劳系数预警阈值Total_ALP时进行预警,其中,所述整体疲劳系数预警阈值Total_ALP基于多个不同历史时间段内获取的全部管制单位的整体疲劳系数、全部管制单位不安全事件数量进行数据驱动迭代来获取。例如,全部的管制单位在第一历史时间段内的整体疲劳系数IoF_1为第一数值,不安全事件数量为0,在第二历史时间段内的整体疲劳系数IoF_2为第二数值,不安全事件数量为0,那么尽管第二数值IoF_2>第一数值IoF_1,但因为在第二历史时间段内的不安全事件为0,因此,该IoF_2不作为整体疲劳系数预警阈值Total_ALP,如果第三历史时间段内的整体疲劳系数IoF_3为第三数值,不安全事件数量为2,那么由于第三数值IoF_3>第二数值IoF_2,且在第三历史时间段内出现了较多的不安全事件,因此,该IoF_3可作为整体疲劳系数预警阈值Total_ALP,以此类推,通过综合各历史时间段内的整体疲劳系数以及不安全事件,可最终获取所述整体疲劳系数预警阈值Total_ALP。且第一历史时间段、第二历史时间段、第三历史时间段的时长可以为一个月、一周等,适当选择统计时长可以快速且有效地获取所述整体疲劳系数预警阈值Total_ALP。Specifically, fatigue warning is performed on the regulated industry as a whole according to the overall fatigue coefficient IoF. In one embodiment, the overall fatigue coefficient IoF can be compared with the historical overall fatigue coefficient of the entire industry. When the overall fatigue coefficient IoF is larger than the historical overall fatigue coefficient, a warning is performed. In another embodiment, when the overall fatigue coefficient IoF increases to a certain degree compared with the historical overall fatigue coefficient, a warning is performed. Specifically, the certain degree can be combined with the unsafe events within the first preset time period of the regulated unit (when the first preset time period is a historical time period) to determine whether to issue a warning. In another embodiment, a warning is performed when the overall fatigue coefficient IoF ≥ the overall fatigue coefficient warning threshold Total_ALP, wherein the overall fatigue coefficient warning threshold Total_ALP is obtained by data-driven iteration based on the overall fatigue coefficients of all regulated units and the number of unsafe events of all regulated units obtained in multiple different historical time periods. For example, the overall fatigue coefficient IoF_1 of all control units in the first historical time period is a first value, and the number of unsafe events is 0; the overall fatigue coefficient IoF_2 in the second historical time period is a second value, and the number of unsafe events is 0. Although the second value IoF_2 is greater than the first value IoF_1, because the number of unsafe events in the second historical time period is 0, IoF_2 is not used as the overall fatigue coefficient warning threshold Total_ALP. If the overall fatigue coefficient IoF_3 in the third historical time period is a third value, and the number of unsafe events is 2, because the third value IoF_3 is greater than the second value IoF_2, and more unsafe events occurred in the third historical time period, IoF_3 can be used as the overall fatigue coefficient warning threshold Total_ALP. By analogy, the overall fatigue coefficient and unsafe events in each historical time period can be comprehensively considered to finally obtain the overall fatigue coefficient warning threshold Total_ALP. Furthermore, the duration of the first historical time period, the second historical time period, and the third historical time period may be one month, one week, etc., and appropriate selection of the statistical duration may enable the overall fatigue coefficient warning threshold value Total_ALP to be quickly and effectively obtained.
本发明的实施例还公开了一种整体疲劳系数预警阈值Total_ALP获取方法,包括以下步骤:The embodiment of the present invention also discloses a method for obtaining an overall fatigue coefficient warning threshold value Total_ALP, comprising the following steps:
S231,获取所述全部管制单位在多个不同历史时间段内的整体疲劳系数、不安全事件数量;S231, obtaining the overall fatigue coefficient and the number of unsafe events of all the control units in multiple different historical time periods;
S232,利用多个不同历史时间段内的整体疲劳系数和不安全事件数量进行数据驱动迭代以获取所述整体疲劳系数预警阈值Total_ALP。S232: Perform data-driven iteration using the overall fatigue coefficient and the number of unsafe events in multiple different historical time periods to obtain the overall fatigue coefficient warning threshold Total_ALP.
通过获取管制单位的客观指标,进而可以获取管制行业的整体疲劳系数以及各个管制单位的单位疲劳系数,通过整体疲劳系数和单位疲劳系数可以有效地、客观地检测出整个管制行业以及管制单位是否存在安全风险,当存在较大安全风险时,一方面可以从整体上把控管制行业的相关情况并作出适当调整,另一方面也可以及时提醒疲劳系数较高组的管制单位做出适当调整以降低疲劳风险。By obtaining the objective indicators of the control units, we can obtain the overall fatigue coefficient of the control industry and the unit fatigue coefficient of each control unit. The overall fatigue coefficient and the unit fatigue coefficient can effectively and objectively detect whether there are safety risks in the entire control industry and the control units. When there are greater safety risks, on the one hand, we can control the relevant situation of the control industry as a whole and make appropriate adjustments. On the other hand, we can also promptly remind the control units in the group with higher fatigue coefficients to make appropriate adjustments to reduce fatigue risks.
S310,获取第i个管制单位的班组管制员在岗前第二预设时间段内的测试疲劳值Set_PreIoF=[Set_PreIoF1,Set_PreIoF2,...,Set_PreIoFM],M为该班组管制员的总人数。其中,所述第二预设时间段的长短可以自行设置,例如10分钟、5分钟、3分钟等等,优选的,在本申请中,所述第二预设时间段长度为5分钟,一方面可以在测试过程中确保管制员的检测真实度,另一方面,可以避免因为测试时间过长造成管制员伪疲劳,进而影响测试的真实性。具体的,在本申请中,第k个管制员的测试疲劳值Set_PreIoFk根据第k个管制员的视频测试数据、警觉性测试数据和主观量表数据中的至少一种数据获得,1≤k≤M。一个实施例中,Set_PreIoFk=Ak1×Wk+Ak2×Uk+Ak3×Vk,Ak1、Ak2、Ak3为比重系数,Ak1的取值范围为[0,3],优选为2.4,Ak2的取值范围为[4,8],优选为6,Ak3的取值范围为[2,5],优选为3。其中,警觉性测试数据Vk=(Vo+Ve)/Vt,其中Vo是忽略目标字母的个数,Ve是所选错误字母的个数,Vt是目标字母的总数;警觉性测试数据Uk=t/tT,t是警觉性测试过程中的正确反应时间,tT=500ms,为反应时间阈值。视频测试数据其中FPs表示每秒的帧率,tv表示所述视频的长度,W(l)表示第l帧时被测人员眼球的覆盖率,sign{}表示指示函数,其中sign{ture}=1,sign{false}=0,1≤l≤p,p=FPs×tv,为该段视频的帧数。S310, obtain the test fatigue value Set_PreIoF=[Set_PreIoF 1 , Set_PreIoF 2 ,..., Set_PreIoF M ] of the team controller of the i-th control unit before taking up the post, where M is the total number of the team controllers. The length of the second preset time period can be set by oneself, such as 10 minutes, 5 minutes, 3 minutes, etc. Preferably, in the present application, the length of the second preset time period is 5 minutes, which can ensure the authenticity of the controller's detection during the test on the one hand, and avoid pseudo fatigue of the controller due to the long test time on the other hand, thereby affecting the authenticity of the test. Specifically, in the present application, the test fatigue value Set_PreIoF k of the k-th controller is obtained based on at least one of the video test data, alertness test data and subjective scale data of the k-th controller, 1≤k≤M. In one embodiment, Set_PreIoF k =A k1 ×W k +A k2 ×U k +A k3 ×V k , where A k1 , A k2 , and A k3 are weight coefficients, the value range of A k1 is [0, 3], preferably 2.4, the value range of A k2 is [4, 8], preferably 6, and the value range of A k3 is [2, 5], preferably 3. Wherein, the alertness test data V k = (Vo+Ve)/Vt, where Vo is the number of ignored target letters, Ve is the number of selected incorrect letters, and Vt is the total number of target letters; the alertness test data U k = t/t T , t is the correct reaction time during the alertness test, and t T = 500 ms, which is the reaction time threshold. Video test data Wherein FPs represents the frame rate per second, tv represents the length of the video, W(l) represents the coverage of the eyeball of the person being tested at the lth frame, and sign{} represents the indicator function, where sign{true}=1, sign{false}=0, 1≤l≤p, p=FPs×tv, which is the number of frames of the video.
S320,计算所述班组管制员的预警值Set_AL=[Set_AL1,Set_AL2,...,Set_ALM],并基于所述预警值Set_AL进行预警,其中Set_ALk=Set_PreIoFk-Set_ALPk,Set_ALPk为第k个管制员关于将要值勤岗位的疲劳预警阈值,班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],根据所述班组将要值勤时间段中指定时间区间内的预警预警阈值参数获取,所述预警预警阈值参数至少包括班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性。具体的,当Set_ALk≥Set_ALPk,即Set_ALk≥0时,系统对该管制员进行预警,班组可及时安排其他符合管理要求的管制员进行替换。S320, calculate the warning value Set_AL=[Set_AL 1 , Set_AL 2 ,..., Set_AL M ] of the team controller, and issue a warning based on the warning value Set_AL, wherein Set_AL k =Set_PreIoF k -Set_ALP k , Set_ALP k is the fatigue warning threshold of the kth controller for the post to be on duty, and the team fatigue warning threshold Set_ALP=[Set_ALP 1 , Set_ALP 2 ,..., Set_ALP M ] is obtained according to the warning threshold parameters in the specified time interval of the team's upcoming duty period, and the warning threshold parameters at least include the team's duty time, predicted flight volume, predicted duty duration, predicted weather conditions, predicted special conditions, and predicted attributes of the controller itself. Specifically, when Set_AL k ≥Set_ALP k , that is, Set_AL k ≥0, the system issues a warning to the controller, and the team can promptly arrange other controllers that meet the management requirements to replace them.
在本发明的一个实施例中,还公开了一种获取班组疲劳预警阈值Set_ALP的方法,如图3所示,该方法包括:In one embodiment of the present invention, a method for obtaining a team fatigue warning threshold Set_ALP is also disclosed. As shown in FIG3 , the method includes:
S331,获取所述班组将要值勤时间段中指定时间区间内的预警阈值参数,所述预警阈值参数至少包括该班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性。其中所述所述指定时间区间的时长取值范围为[20分钟,300分钟],优选为120分钟,例如该班组是下午4点开始上班,那么我们将所述指定时间区间设置为4点到6点。值勤时间例如可以是早上、晚上等,航班量是预测的航班量,其可以基于管制单位的飞行计划进行预测得到,例如在指定时间区域间内飞行计划航班量为3,但不排除临时降落的航班等,此时,需要基于上述的飞行计划和临时因素预测该班组在该指定时间区间内的航班量。同样,值勤时长也是该班组预测的值勤时长,例如为1小时、2小时等,管制员本身属性例如包括疲劳状态、昼夜节律类型、近期睡眠状况、前序值班情况、性别、年龄、工龄等。S331, obtain the warning threshold parameters within the specified time interval in the duty time period of the team, and the warning threshold parameters at least include the duty time of the team, the predicted number of flights, the predicted duty time, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller itself. The duration of the specified time interval ranges from [20 minutes to 300 minutes], preferably 120 minutes. For example, if the team starts work at 4 pm, then we set the specified time interval to 4 to 6 pm. The duty time can be, for example, morning, evening, etc. The number of flights is the predicted number of flights, which can be predicted based on the flight plan of the control unit. For example, the number of flights in the flight plan within the specified time zone is 3, but temporary landing flights are not excluded. At this time, it is necessary to predict the number of flights of the team in the specified time interval based on the above-mentioned flight plan and temporary factors. Similarly, the duty time is also the duty time predicted by the team, such as 1 hour, 2 hours, etc. The attributes of the controller itself include fatigue status, circadian rhythm type, recent sleep status, previous duty status, gender, age, length of service, etc.
S332,根据所述预警阈值参数获取所述班组的班组基础疲劳值Set_P=[Set_P1,Set_P2,...,Set_PM],其中,Set_Pk表示该班组第k个管制员的基础疲劳值。具体的,在该实施例中,所述第k个管制员的基础疲劳值Set_Pk为该管制员的所述预警阈值参数的函数,例如,分配给班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测的第k个管制员本身属性赋于不同的权重值后进行求和来获得所述基础疲劳值Set_Pk。S332, according to the warning threshold parameter, obtain the team basic fatigue value Set_P = [Set_P 1 , Set_P 2 , ..., Set_PM ] of the team, wherein Set_P k represents the basic fatigue value of the kth controller of the team. Specifically, in this embodiment, the basic fatigue value Set_P k of the kth controller is a function of the warning threshold parameter of the controller, for example, the duty time assigned to the team, the predicted number of flights, the predicted duty time, the predicted weather conditions, and the predicted attributes of the kth controller itself are assigned different weight values and then summed to obtain the basic fatigue value Set_P k .
S333,基于Set_P获取所述班组的班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],其中Set_ALPk=Set_C×Set_Pk,Set_C是班组岗位调节系数,其取值范围为[1.0,5.0],例如管制席和协调席的岗位调节、管制席不同扇区的岗位调节,该调节系数表达了该班组为了应对将要值勤岗位可允许的最大内部岗位调整量。通过使用班组岗位调节系数,可以使得所述预警标准更符合实际情况,进而使得所述预警更精确,此外,还可以满足班组对于将要值勤岗位有整体的把握,便于管制员工作调整部署。进一步,Set_P根据预警虚报率和漏报率进行持续优化。S333, based on Set_P, obtain the team fatigue warning threshold Set_ALP = [Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ] of the team, wherein Set_ALP k = Set_C × Set_P k , Set_C is the team post adjustment coefficient, and its value range is [1.0, 5.0], such as the post adjustment of the control seat and the coordination seat, and the post adjustment of different sectors of the control seat. The adjustment coefficient expresses the maximum internal post adjustment amount that the team can allow in order to cope with the job to be on duty. By using the team post adjustment coefficient, the warning standard can be made more in line with the actual situation, and thus the warning can be made more accurate. In addition, it can also satisfy the team's overall grasp of the job to be on duty, which is convenient for the controller to adjust the work deployment. Further, Set_P is continuously optimized according to the false alarm rate and missed alarm rate of the warning.
通过在岗前对班组的管制人员进行疲劳测试,可以获取岗前管制员最真实的疲劳程度,且由于所述班组基础疲劳值是根据班组将要值勤岗位的相关计划以及管制员本身属性来获取的,因此,更能客观地反应出班组未来指定时间内的实际需求,通过将两者进行比较,更能准确、有效地使班组获取整个班组管制员的疲劳状况,并据此作出工作调整,管控因为管制员疲劳而产生安全风险。By conducting fatigue tests on the team's controllers before taking up their posts, the most realistic fatigue level of the controllers before taking up their posts can be obtained. Since the team's basic fatigue value is obtained based on the team's plans for the posts they will be on duty and the controller's own attributes, it can more objectively reflect the team's actual needs within a specified time in the future. By comparing the two, the team can more accurately and effectively obtain the fatigue status of the entire team's controllers, and make work adjustments accordingly, thereby controlling safety risks caused by controller fatigue.
S310,获取一管制员Person的管制员综合疲劳程度数值Person_IoF=Person_C1×F_pose+Person_C2×F_face+Person_C3×F_voice,其中F_pose是当前基于行为姿态的管制员疲劳程度数值,F_face是当前基于面部特征的管制员疲劳程度数值,F_voice是当前基于陆空通话的管制员疲劳程度数值,Person_C1是F_pose的权重系数,Person_C2是F_face的权重系数,Person_C3是F_voice的权重系数。Person_C1的取值范围为[0.00,0.80],优选为0.65,Person_C2的取值范围为[0.00,0.40],优选为0.20,Person_C3的取值范围为[0.00,0.25],优选为0.15,且Person_C1、Person_C2和Person_C3三者不能同时取0.00。S310, obtaining a comprehensive fatigue level value of a controller Person Person_IoF = Person_C 1 ×F_pose+Person_C 2 ×F_face+Person_C 3 ×F_voice, wherein F_pose is the current fatigue level value of the controller based on behavior and posture, F_face is the current fatigue level value of the controller based on facial features, F_voice is the current fatigue level value of the controller based on ground-to-air communication, Person_C 1 is the weight coefficient of F_pose, Person_C 2 is the weight coefficient of F_face, and Person_C 3 is the weight coefficient of F_voice. The value range of Person_C 1 is [0.00, 0.80], preferably 0.65, the value range of Person_C 2 is [0.00, 0.40], preferably 0.20, the value range of Person_C 3 is [0.00, 0.25], preferably 0.15, and Person_C 1 , Person_C 2 and Person_C 3 cannot be 0.00 at the same time.
在本申请中,通过和管制大厅或塔台监视摄像头链接实时采集管制员在岗值勤中行为姿态信息,例如睡岗、离岗等,通过安置在管制屏幕适当位置的高清摄像头,采集管制员在岗值勤中面部特征信息,管制员陆空对话信息通过实时采集获取。具体的,分析处理采集的管制员行为姿态信息,分析管制员身体和姿态的动态数据获取当前基于行为姿态的管制员疲劳程度数值F_pose;分析处理采集的管制员面部信息,分析管制员打哈气、眨眼、眼睑闭合度等获取当前基于面部特征的管制员疲劳程度数值F_face;分析处理采集的管制员陆空对话信息,识别管制员声音,识别分析管制员语义以及反应时间等获取当前基于陆空通话的管制员疲劳程度数值F_voice。且F_pose、F_face、F_voice均可以采用现有技术中的任一种方法来实现,在此不再赘述。In this application, the behavior and posture information of the controller on duty is collected in real time by linking with the control hall or tower surveillance camera, such as sleeping on duty, leaving the post, etc., and the facial feature information of the controller on duty is collected by placing a high-definition camera at an appropriate position on the control screen, and the controller's land-air conversation information is obtained by real-time collection. Specifically, the collected behavior and posture information of the controller is analyzed and processed, and the dynamic data of the controller's body and posture are analyzed to obtain the current controller fatigue level value F_pose based on the behavior and posture; the collected facial information of the controller is analyzed and processed, and the controller's yawning, blinking, eyelid closure, etc. are analyzed to obtain the current controller fatigue level value F_face based on facial features; the collected land-air conversation information of the controller is analyzed and processed, the controller's voice is recognized, and the controller's semantics and reaction time are recognized and analyzed to obtain the current controller fatigue level value F_voice based on land-air conversation. And F_pose, F_face, and F_voice can all be implemented by any method in the existing technology, which will not be repeated here.
S320,计算所述管制员Person的预警值Person_AL=Person_IoF-Person_ALP,并基于所述预警值Person_AL进行预警。具体的,当Person_IoF≥Person_ALP时,所述系统进行预警,其中,管制员的个体疲劳预警阈值Person_ALP根据岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数获取,所述预警阈值判定参数至少包括与值勤中岗位相关的预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性。S320, calculate the warning value Person_AL of the controller Person = Person_IoF-Person_ALP, and issue a warning based on the warning value Person_AL. Specifically, when Person_IoF≥Person_ALP, the system issues a warning, wherein the controller's individual fatigue warning threshold Person_ALP is obtained based on the warning threshold determination parameters set in the future time zone during the duty period of the controller Person on duty, and the warning threshold determination parameters at least include the predicted flight volume related to the duty post, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller Person itself.
在本发明的一个实施例中,还公开了一种获取管制员的个体疲劳预警阈值Person_ALP的方法,如图4所示,该方法包括:In one embodiment of the present invention, a method for obtaining an individual fatigue warning threshold Person_ALP of a controller is also disclosed. As shown in FIG4 , the method includes:
S431,获取岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数,所述预警阈值判定参数至少包括预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性,所述设定未来时间区域的时长取值范围为[3分钟,20分钟],优选为5分钟。管制员本身属性例如可以包括对管制员疲劳具有影响作用的因素,例如疲劳状态、昼夜节律类型、近期睡眠状况、前序值班情况、性别、年龄、工龄等。S431, obtain the warning threshold determination parameters set in the future time zone in the duty time period of the controller Person on duty, the warning threshold determination parameters at least include the predicted flight volume, predicted weather conditions, predicted special conditions, predicted controller Person's own attributes, and the duration of the set future time zone has a value range of [3 minutes, 20 minutes], preferably 5 minutes. The controller's own attributes may include factors that have an impact on the controller's fatigue, such as fatigue status, circadian rhythm type, recent sleep status, previous duty situation, gender, age, length of service, etc.
S432,根据所述预警阈值判定参数获取所述管制员的值勤岗位疲劳程度基础需求值Person_Fb。具体的,在该实施例中,所述值勤岗位疲劳程度基础需求值Person_Fb为该管制员的所述预警阈值判定参数的函数,例如分配给预测的航班量、预测的天气状况、预测的管制员Person本身属性赋于不同的权重值后进行求和来获得。S432, obtaining the duty post fatigue basic requirement value Person_F b of the controller according to the warning threshold determination parameter. Specifically, in this embodiment, the duty post fatigue basic requirement value Person_F b is a function of the warning threshold determination parameter of the controller, for example, obtained by summing up different weight values assigned to the predicted flight volume, predicted weather conditions, and predicted attributes of the controller Person.
S433,根据所述值勤岗位疲劳程度基础需求值Person_Fb获取所述管制员的个体疲劳预警阈值Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_Fb,Person_A1是在岗值勤时间管制员个体所处人体昼夜节律系数,即是关于时间的函数,例如夜班时该系数高,白班时该系数低;Person_A2是岗位系数,用于表明管制员所在岗位对于疲劳程度的需要,例如,当在管制席时该系数小,在协调席时该系数较大,繁忙扇区系数较小,一般扇区系数较大;Person_A3是岗位任务要求系数,用于表明预期的飞行计划交通流态势对管制员疲劳程度的需要,例如当流量大时,对管制员要求高,此时该系数较小,否则该系数较大。进一步,Person_ALP根据预警虚报率和漏报率进行持续优化。S433, according to the basic requirement value of fatigue degree of the duty post Person_F b, the individual fatigue warning threshold value of the controller Person_ALP = (Person_A1 + Person_A2 × Person_A3) × Person_F b is obtained, where Person_A1 is the human circadian rhythm coefficient of the controller during the duty time, that is, a function of time, for example, the coefficient is high during the night shift and low during the day shift; Person_A2 is the post coefficient, which is used to indicate the need for fatigue degree of the controller's post, for example, when the controller is in the control seat, the coefficient is small, when the coordination seat, the coefficient is large, the busy sector coefficient is small, and the general sector coefficient is large; Person_A3 is the post task requirement coefficient, which is used to indicate the need for fatigue degree of the controller for the expected flight plan traffic flow situation, for example, when the traffic volume is large, the controller is required to be high, and the coefficient is small at this time, otherwise the coefficient is large. Further, Person_ALP is continuously optimized according to the false alarm rate and missed alarm rate of the warning.
通过对在岗人员的实时数据进行采集以及根据值勤岗位未来指定时间内的参数获取的判断阈值,可以真实、准确计算出岗位上管制员的工作状态,对该管制员的实时状态进行监督,判断管制员当前的疲劳状态是否可以满足未来指定时间内的安全疲劳需求,且当判断管制员无法满足安全疲劳需求时及时进行报警并进行人员替换,可以有效避免在岗情况下因为管制员疲劳造成的安全风险。By collecting real-time data of on-duty personnel and obtaining judgment thresholds based on parameters of the duty post within a specified time in the future, the working status of the controller on the post can be truly and accurately calculated, the real-time status of the controller can be monitored, and it can be judged whether the controller's current fatigue status can meet the safety fatigue requirements within a specified time in the future. When it is judged that the controller cannot meet the safety fatigue requirements, an alarm will be issued in time and personnel will be replaced, which can effectively avoid safety risks caused by controller fatigue while on duty.
综合上述内容可知,通过获取全部管制单位预设时间段内的疲劳预警参数,获取整个管制行业甚至各个管制单位的疲劳系数,并在该疲劳系数的基础上,对整个管制行业以及疲劳系数较高组的管制单位进行疲劳监测和预警。另外,通过比较岗前疲劳测试获取的班组疲劳程度与通过预测所述班组将要值勤岗位的岗位疲劳需求而获得的班组预警阈值、通过比较岗中疲劳监测获取的管制员个人疲劳程度与通过预测所述管制员在未来一段时间段内的岗位值勤疲劳需求而得到的管制员个体疲劳预警阈值,可在岗前检测出管制人员是否能够应对将要值勤岗位的工作需要,且即使管制员上岗后,也可以判断岗中人员在未来3-20分钟是否出现疲劳风险,即从多个角度预判了管制员是否可以应对将来的航空安全需求。实现了分别在管制单位组织层面战略阶段、班组层面预战术(岗前)阶段、个体层面战术(在岗值勤)阶段对行业整体、独立管制单位、班组和管制员个体上的疲劳检测、未来岗位疲劳需求预测和疲劳预警,有利于从多方位对不同需求进行疲劳风险管控,保障航空安全。Based on the above content, it can be known that by obtaining the fatigue warning parameters of all control units within the preset time period, the fatigue coefficient of the entire control industry or even each control unit is obtained, and based on the fatigue coefficient, fatigue monitoring and warning are carried out for the entire control industry and the control units in the group with higher fatigue coefficients. In addition, by comparing the fatigue level of the team obtained by the pre-job fatigue test with the team warning threshold obtained by predicting the job fatigue requirements of the job position that the team will be on duty, and by comparing the personal fatigue level of the controller obtained by the fatigue monitoring during the job and the individual fatigue warning threshold of the controller obtained by predicting the job fatigue requirements of the controller in the future, it is possible to detect whether the control personnel can cope with the work requirements of the job position to be on duty before the job, and even after the controller takes office, it is possible to judge whether the personnel on the job will have fatigue risks in the next 3-20 minutes, that is, to predict from multiple angles whether the controller can cope with future aviation safety needs. It realizes fatigue detection, prediction of future job fatigue demand and fatigue warning for the industry as a whole, independent control units, teams and individual controllers at the strategic stage at the organizational level of control units, the pre-tactical (pre-job) stage at the team level, and the tactical (on-duty) stage at the individual level. This is conducive to fatigue risk management for different needs from multiple angles and ensure aviation safety.
图2为本申请实施例提供的一种管制员疲劳预警装置1,该装置1包括:FIG2 is a controller fatigue warning device 1 provided in an embodiment of the present application, the device 1 comprising:
第一数据获取模块11,用于当当前需求符合第一疲劳判定需求时,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N。The first data acquisition module 11 is used to obtain fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 , ..., Air_PN ) of all control units within a first preset time period when the current demand meets the first fatigue determination demand, where N is the number of all control units, wherein the fatigue warning parameters Air_P i of the i-th control unit at least include unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic period Air_num_high i , duty time of controllers Air_time i , duty time of controllers at work Air_work_time i , duty time of controllers at work at night Air_night_time i , duty time of controllers at work during peak traffic period Air_high_time i , and non-duty time of controllers Air_rwork_time i . The duty time of the controller for other operations Air_other_time i , 1≤i≤N.
在本申请中,所述第一疲劳判定需求例如可以为管制单位组织层面战略阶段的疲劳判定需求,这样有利于从管制行业整体把握是否存在安全风险。所述第一预设时间段可以为历史时间段,也可以是未来的时间段,该时间段的长短可以根据具体需求来设置,例如,可以是一个星期,一个月等等。当该第一预设时间段为未来的时间段时,可以根据管制单位的飞行计划以及管制员的工作时间来获取相关的疲劳预警参数,并依据该疲劳参数判断未来时间段内管制行业和/或管制单位的安全风险问题,以便提前进行员工变动等。In the present application, the first fatigue determination requirement may be, for example, a fatigue determination requirement at the strategic stage of the control unit's organizational level, which is helpful in determining whether there are safety risks from the overall perspective of the control industry. The first preset time period may be a historical time period or a future time period, and the length of the time period may be set according to specific needs, for example, it may be a week, a month, and so on. When the first preset time period is a future time period, relevant fatigue warning parameters may be obtained based on the control unit's flight plan and the controller's working hours, and the safety risk issues of the control industry and/or control unit in the future time period may be determined based on the fatigue parameters, so as to make employee changes in advance.
本申请中,管制单位的类型Air_typei可以为预先设定的多个类型,例如可以为区域管制型管制单位、进近管制型管制单位、塔台管制且年吞吐量在50-200万的民用管制单位等等。所述管制单位类型的总数可以根据实际情况进行划分。管制单位的海拔高度Air_heighti可以通过多种途径获取,例如查询地理资料获取等。管制方式Air_managei可以分为程序管制、雷达管制、雷达监视管制及其它四大类型。管制区域Air_areai根据实际情况测量得到。第i个管制单位的值勤管制员总数Air_numi、第i个管制单位夜间在岗值勤的管制员总数Air_num_nighti、第i个管制单位高峰流量期在岗值勤的管制员总数Air_num_highi一方面可以采集管制员的唯一标识以及管制员的实际工作时间点来获取,另一方面可以根据飞行计划安排来获取所述各个参数。同样的方式也可用于获取第i个管制单位的管制员值勤时长Air_timei、第i个管制单位的管制员岗位值勤时长Air_work_timei、第i个管制单位的管制员夜间岗位值勤时长Air_night_timei、第i个管制单位的管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、管制单位其它作业的管制员值勤时长Air_other_timei。此外,在本申请中,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期。所述预设流量阈值Air_FTi时根据管制单位的实际飞行数据或者是飞行计划来设置。In the present application, the type of control unit Air_type i can be a plurality of pre-set types, for example, it can be an area control type control unit, an approach control type control unit, a tower control and a civil control unit with an annual throughput of 500,000 to 2 million, etc. The total number of control unit types can be divided according to actual conditions. The altitude Air_height i of the control unit can be obtained through a variety of channels, such as obtaining by querying geographic data, etc. The control method Air_manage i can be divided into four major types: procedural control, radar control, radar surveillance control and others. The control area Air_area i is measured according to actual conditions. The total number of on-duty controllers Air_num i of the i-th control unit, the total number of controllers on duty at night Air_num_night i of the i-th control unit, and the total number of controllers on duty during peak traffic periods Air_num_high i of the i-th control unit can be obtained by collecting the unique identifier of the controller and the actual working time of the controller, and on the other hand, the various parameters can be obtained according to the flight plan arrangement. The same method can also be used to obtain the controller's duty time Air_time i of the i-th control unit, the controller's post duty time Air_work_time i of the i-th control unit, the controller's night post duty time Air_night_time i of the i-th control unit, the controller's post duty time during peak traffic period Air_high_time i of the i-th control unit, the controller's non-post duty time Air_rwork_time i , and the controller's duty time for other operations of the control unit Air_other_time i . In addition, in the present application, when the aircraft hourly support flight volume of the i-th control unit is ≥ the preset traffic threshold Air_FT i , the i-th control unit is determined to be in the peak traffic period. The preset traffic threshold Air_FT i is set according to the actual flight data or flight plan of the control unit.
第一数据处理模块12,用于基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数 Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,其取值范围为[1.00,4.00],优选为1.80;Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,其取值范围为[0.00,8.00],优选为4.21;在本申请中,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位夜间岗位值勤时长Air_night_timei的函数;Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,取值范围为[0.00,6.00];Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,取值范围为[0.00,7.00];Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数,其取值范围为[0.20,1.00],优选为0.64。The first data processing module 12 is used to obtain the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units based on the fatigue warning parameter Air_P = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein: Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0, otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i , where Air_fm i is the weighted coefficient of other working time of the ith control unit, and its value range is [1.00, 4.00], preferably 1.80; Air_Fi3 is a function of the altitude Air_height i of the ith control unit, and its value range is [0.00, 8.00], preferably 4.21; in the present application, when the hourly aircraft support flights of the ith control unit ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period, and when the ith control unit is in the non-peak flow period, Air_Fi4 = 0; otherwise, Air_Fi4 =Air_num_high i ×Air_high_time i /Air_work_time i , Air_F i5 =Air_num_night i ×Air_night_time i /Air_work_time i , which is a function of the night duty time Air_night_time i of the i-th control unit; Air_F i6 is a function of the control mode Air_manage i of the i-th control unit, and its value range is [0.00,6.00]; Air_F i7 is a function of the control area Air_area i of the i-th control unit, and its value range is [0.00,7.00]; Air_F i8 is the weighted coefficient of the non-duty time of the i-th control unit, and its value range is [0.20,1.00], and is preferably 0.64.
第一疲劳预警模块13,用于根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,和/或基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中的疲劳系数较高组的管制单位进行疲劳预警。具体的,一个实施例中,基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中的疲劳系数较高组的管制单位进行疲劳预警为:将不同类型的管制单位按照疲劳系数大小进行排序,之后对不同类型管制单位中的数值排序靠前的管制单位进行预警提示,其中,管制单位类型数据可以从所述疲劳预警参数Air_P中获取,对应的疲劳相关数据从所述疲劳系数Air_IoF中获取。例如,对于第一类管制单位有4个,分别对应的疲劳系数为200、100、150、300,那么按照大小排序后为300、200、150、100,当需要对前两个进行预警时,此时需要对疲劳系数分别为300和200的两个管制单位进行预警。其中,所述第一类管制单位有4个为便于解释预警方式而进行的举例,并不表示事实上的管制单位数量,事实上的第一类管制单位数据根据实际获取的数量为准。在本申请中,可以设置预警报警基准,当管制单位的疲劳系数大于或者是等于该预警报警基准时,就对该管制单位进行预警,否则不用预警。所述预警报警基准可以根据历史经验来获取,还可以采用其他方式来获取,本申请中所述预警报警基准的获取方式不受具体限制。另一个实施例中,基于所述单位疲劳系数Air_IoF和所述疲劳预警参数Air_P,对不同管制单位类型中的疲劳系数较高组的管制单位进行疲劳预警为:首先,基于所述疲劳预警参数Air_P对所述全部管制单位进行分类,其次,对每类管制单位按照疲劳系数大小进行排序,然后,对排序后的每类管制单位采用聚类方法进行等级划分,分为疲劳系数较低、中、较高组,最后,在每类管制单位中,对聚类后进入数值较高组的管制单位进行预警提示,通过聚类的方式对各个管制单位的疲劳系数进行聚类,能够更好地挖掘出数据之间内在的分布规律。具体的,可以使用常用的K-mean聚类方法进行疲劳系数的聚类,且本申请中使用的聚类方法可以为现有技术中的任一聚类方法。The first fatigue warning module 13 is used to perform fatigue warning on the entire regulated industry based on the overall fatigue coefficient IoF, and/or to perform fatigue warning on regulated units in a group with a higher fatigue coefficient among different regulated unit types based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P. Specifically, in one embodiment, based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P, fatigue warning is performed on regulated units in a group with a higher fatigue coefficient among different regulated unit types as follows: rank different types of regulated units according to the size of their fatigue coefficients, and then issue warning prompts to regulated units with higher numerical rankings among different types of regulated units, wherein the regulated unit type data can be obtained from the fatigue warning parameter Air_P, and the corresponding fatigue-related data is obtained from the fatigue coefficient Air_IoF. For example, there are 4 first-category control units, and the corresponding fatigue coefficients are 200, 100, 150, and 300 respectively. Then, they are sorted by size to 300, 200, 150, and 100. When it is necessary to issue an early warning for the first two, it is necessary to issue an early warning for the two control units with fatigue coefficients of 300 and 200 respectively. Among them, the fact that there are 4 first-category control units is an example for the convenience of explaining the early warning method, and does not represent the actual number of control units. The actual data of the first-category control units shall be based on the actual number obtained. In this application, an early warning alarm benchmark can be set. When the fatigue coefficient of a control unit is greater than or equal to the early warning alarm benchmark, an early warning is issued to the control unit, otherwise no early warning is required. The early warning alarm benchmark can be obtained based on historical experience, or it can be obtained by other methods. The method for obtaining the early warning alarm benchmark described in this application is not subject to specific restrictions. In another embodiment, based on the unit fatigue coefficient Air_IoF and the fatigue warning parameter Air_P, fatigue warning is performed on control units with higher fatigue coefficients in different control unit types as follows: first, all control units are classified based on the fatigue warning parameter Air_P, and then, each type of control unit is sorted according to the size of the fatigue coefficient. Then, each type of control unit after sorting is graded using a clustering method and divided into groups with lower, medium, and higher fatigue coefficients. Finally, in each type of control unit, a warning is given to the control unit that enters a higher value group after clustering. Clustering the fatigue coefficients of each control unit by clustering can better mine the inherent distribution law between data. Specifically, the commonly used K-mean clustering method can be used to cluster the fatigue coefficients, and the clustering method used in this application can be any clustering method in the prior art.
具体的,根据所述整体疲劳系数IoF对管制行业整体进行疲劳预警,一个实施例中,可以将整体疲劳系数IoF和整个行业的历史整体疲劳系数进行比较,当所述整体疲劳系数IoF比历史整体疲劳系数大时进行预警,另一个实施例中,当整体疲劳系数IoF比历史整体疲劳系数增大到一定程度时进行预警,具体的,该一定程度可以结合管制单位的第一预设时间段内的不安全事件来判断是否进行预警。又一个实施例中,当整体疲劳系数IoF≥整体疲劳系数预警阈值Total_ALP时进行预警,其中,所述整体疲劳系数预警阈值Total_ALP基于多个不同历史时间段内获取的全部管制单位的整体疲劳系数、全部管制单位不安全事件数量进行数据驱动迭代来获取。例如,全部的管制单位在第一历史时间段内的整体疲劳系数IoF_1为第一数值,不安全事件数量为0,在第二历史时间段内的整体疲劳系数IoF_2为第二数值,不安全事件数量为0,那么尽管第二数值IoF_2>第一数值IoF_1,但因为在第二历史时间段内的不安全事件为0,因此,该IoF_2不作为整体疲劳系数预警阈值Total_ALP,如果第三历史时间段内的整体疲劳系数IoF_3为第三数值,不安全事件数量为2,那么由于第三数值IoF_3>第二数值IoF_2,且在第三历史时间段内出现了较多的不安全事件,因此,该IoF_3可作为整体疲劳系数预警阈值Total_ALP,以此类推,通过综合各历史时间段内的整体疲劳系数以及不安全事件,可最终获取所述整体疲劳系数预警阈值Total_ALP。且第一历史时间段、第二历史时间段、第三历史时间段的时长可以为一个月、一周等,适当选择统计时长可以快速且有效地获取所述整体疲劳系数预警阈值Total_ALP。Specifically, fatigue warning is performed for the entire regulated industry based on the overall fatigue coefficient IoF. In one embodiment, the overall fatigue coefficient IoF can be compared with the historical overall fatigue coefficient of the entire industry. When the overall fatigue coefficient IoF is larger than the historical overall fatigue coefficient, a warning is performed. In another embodiment, when the overall fatigue coefficient IoF increases to a certain extent compared with the historical overall fatigue coefficient, a warning is performed. Specifically, the certain extent can be combined with the unsafe events within the first preset time period of the regulated unit to determine whether to issue a warning. In another embodiment, a warning is performed when the overall fatigue coefficient IoF ≥ the overall fatigue coefficient warning threshold Total_ALP, wherein the overall fatigue coefficient warning threshold Total_ALP is obtained by data-driven iteration based on the overall fatigue coefficients of all regulated units and the number of unsafe events of all regulated units obtained in multiple different historical time periods. For example, the overall fatigue coefficient IoF_1 of all control units in the first historical time period is a first value, and the number of unsafe events is 0; the overall fatigue coefficient IoF_2 in the second historical time period is a second value, and the number of unsafe events is 0. Although the second value IoF_2 is greater than the first value IoF_1, because the number of unsafe events in the second historical time period is 0, IoF_2 is not used as the overall fatigue coefficient warning threshold Total_ALP. If the overall fatigue coefficient IoF_3 in the third historical time period is a third value, and the number of unsafe events is 2, because the third value IoF_3 is greater than the second value IoF_2, and more unsafe events occurred in the third historical time period, IoF_3 can be used as the overall fatigue coefficient warning threshold Total_ALP. By analogy, the overall fatigue coefficient and unsafe events in each historical time period can be comprehensively considered to finally obtain the overall fatigue coefficient warning threshold Total_ALP. Furthermore, the duration of the first historical time period, the second historical time period, and the third historical time period may be one month, one week, etc., and appropriate selection of the statistical duration may enable the overall fatigue coefficient warning threshold value Total_ALP to be quickly and effectively obtained.
第二数据获取模块21,用于当当前需求符合第二疲劳判定需求时,获取第i个管制单位的班组管制员在岗前第二预设时间段内的测试疲劳值Set_PreIoF=[Set_PreIoF1,Set_PreIoF2,...,Set_PreIoFM],M为该班组管制员的总人数。其中,所述第二预设时间段的长短可以自行设置,例如10分钟、5分钟、3分钟等等,优选的,在本申请中,所述第二预设时间段长度为5分钟,一方面可以在测试过程中确保管制员的检测真实度,另一发面,可以避免因为测试时间过长造成管制员伪疲劳,进而影响测试的真实性。具体的,在本申请中,第k个管制员的测试疲劳值Set_PreIoFk根据第k个管制员的视频测试数据、警觉性测试数据和主观量表数据中的至少一种数据获得,1≤k≤M。一个实施例中,Set_PreIoFk=Ak1×Wk+Ak2×Uk+Ak3×Vk,Ak1、Ak2、Ak3为比重系数,Ak1的取值范围为[0,3],优选为2.4,Ak2的取值范围为[4,8],优选为6,Ak3的取值范围为[2,5],优选为3。其中,警觉性测试数据Vk=(Vo+Ve)/Vt,其中Vo是忽略目标字母的个数,Ve是所选错误字母的个数,Vt是目标字母的总数;警觉性测试数据Uk=t/tT,t是警觉性测试过程中的正确反应时间,tT=500ms,为反应时间阈值。视频测试数据其中FPs表示每秒的帧率,tv表示所述视频的长度,W(l)表示第l帧时被测人员眼球的覆盖率,sign{}表示指示函数,其中sign{ture}=1,sign{false}=0,1≤l≤p,p=FPs×tv,为该段视频的帧数。The second data acquisition module 21 is used to obtain the test fatigue value Set_PreIoF=[Set_PreIoF 1 , Set_PreIoF 2 ,..., Set_PreIoF M ] of the team controller of the i-th control unit in the second preset time period before taking up the post when the current demand meets the second fatigue determination demand, where M is the total number of the team controllers. The length of the second preset time period can be set by itself, such as 10 minutes, 5 minutes, 3 minutes, etc. Preferably, in the present application, the length of the second preset time period is 5 minutes, which can ensure the authenticity of the controller's detection during the test on the one hand, and avoid pseudo fatigue of the controller due to the long test time on the other hand, thereby affecting the authenticity of the test. Specifically, in the present application, the test fatigue value Set_PreIoF k of the k-th controller is obtained based on at least one of the video test data, alertness test data and subjective scale data of the k-th controller, 1≤k≤M. In one embodiment, Set_PreIoF k =A k1 ×W k +A k2 ×U k +A k3 ×V k , where A k1 , A k2 , and A k3 are weight coefficients, the value range of A k1 is [0, 3], preferably 2.4, the value range of A k2 is [4, 8], preferably 6, and the value range of A k3 is [2, 5], preferably 3. Wherein, the alertness test data V k = (Vo+Ve)/Vt, where Vo is the number of ignored target letters, Ve is the number of selected incorrect letters, and Vt is the total number of target letters; the alertness test data U k = t/t T , t is the correct reaction time during the alertness test, and t T = 500 ms, which is the reaction time threshold. Video test data Wherein FPs represents the frame rate per second, tv represents the length of the video, W(l) represents the coverage of the eyeball of the person being tested at the lth frame, and sign{} represents the indicator function, where sign{true}=1,sign{false}=0, 1≤l≤p, p=FPs×tv, which is the number of frames of the video.
第二数据处理模块22,用于计算所述班组管制员的预警值Set_AL=[Set_AL1,Set_AL2,...,Set_ALM],其中Set_ALk=Set_PreIoFk-Set_ALPk,Set_ALPk为第k个管制员关于将要值勤岗位的疲劳预警阈值,班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],根据所述班组将要值勤时间段中指定时间区间内的预警预警阈值参数获取,所述预警预警阈值参数至少包括班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性。The second data processing module 22 is used to calculate the warning value Set_AL=[Set_AL 1 , Set_AL 2 , ..., Set_AL M ] of the team controller, wherein Set_AL k =Set_PreIoF k -Set_ALP k , Set_ALP k is the fatigue warning threshold of the kth controller regarding the post to be on duty, and the team fatigue warning threshold Set_ALP=[Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ] is obtained according to the warning threshold parameters in the specified time interval of the team's upcoming duty time period, and the warning threshold parameters at least include the team's duty time, predicted flight volume, predicted duty duration, predicted weather conditions, predicted special conditions, and predicted attributes of the controller itself.
第二疲劳预警模块23,用于基于所述预警值Set_AL进行预警。具体的,当当Set_ALk≥Set_ALPk,即Set_ALk≥0时,系统对该管制员进行预警,班组可及时安排其他符合管理要求的管制员进行替换。The second fatigue warning module 23 is used to issue a warning based on the warning value Set_AL. Specifically, when Set_AL k ≥ Set_ALP k , that is, Set_AL k ≥ 0, the system issues a warning to the controller, and the team can promptly arrange other controllers that meet the management requirements to replace them.
在本发明的一个实施例中,还公开了一种获取班组疲劳预警阈值Set_ALP的方法,该方法包括:In one embodiment of the present invention, a method for obtaining a team fatigue warning threshold Set_ALP is also disclosed, the method comprising:
S331,获取所述班组将要值勤时间段中指定时间区间内的预警阈值参数,所述预警阈值参数至少包括该班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性。其中所述所述指定时间区间的时长取值范围为[20分钟,300分钟],优选为120分钟,例如该班组是下午4点开始上班,那么我们将所述指定时间区间设置为4点到6点。值勤时间例如可以是早上、晚上等,航班量是预测的航班量,其可以基于管制单位的飞行计划进行预测得到,例如在指定时间区域间内飞行计划航班量为3,但不排除临时降落的航班等,此时,需要基于上述的飞行计划和临时因素预测该班组在该指定时间区间内的航班量。同样,值勤时长也是该班组预测的值勤时长,例如为1小时、2小时等,管制员本身属性例如包括疲劳状态、昼夜节律类型、近期睡眠状况、前序值班情况、性别、年龄、工龄等。S331, obtain the warning threshold parameters within the specified time interval in the duty time period of the team, and the warning threshold parameters at least include the duty time of the team, the predicted number of flights, the predicted duty time, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller itself. The duration of the specified time interval ranges from [20 minutes to 300 minutes], preferably 120 minutes. For example, if the team starts work at 4 pm, then we set the specified time interval to 4 to 6 pm. The duty time can be, for example, morning, evening, etc. The number of flights is the predicted number of flights, which can be predicted based on the flight plan of the control unit. For example, the number of flights in the flight plan within the specified time zone is 3, but temporary landing flights are not excluded. At this time, it is necessary to predict the number of flights of the team in the specified time interval based on the above-mentioned flight plan and temporary factors. Similarly, the duty time is also the duty time predicted by the team, such as 1 hour, 2 hours, etc. The attributes of the controller itself include fatigue status, circadian rhythm type, recent sleep status, previous duty status, gender, age, length of service, etc.
S332,根据所述预警阈值参数获取所述班组的班组基础疲劳值Set_P=[Set_P1,Set_P2,...,Set_PM],其中,Set_Pk表示该班组第k个管制员的基础疲劳值。具体的,在该实施例中,所述第k个管制员的基础疲劳值Set_Pk为该管制员的所述预警阈值参数的函数,例如,分配给班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的第k个管制员本身属性赋于不同的权重值后进行求和来获得所述基础疲劳值Set_Pk。S332, according to the warning threshold parameter, obtain the team basic fatigue value Set_P = [Set_P 1 , Set_P 2 , ..., Set_PM ] of the team, wherein Set_P k represents the basic fatigue value of the kth controller of the team. Specifically, in this embodiment, the basic fatigue value Set_P k of the kth controller is a function of the warning threshold parameter of the controller, for example, the duty time assigned to the team, the predicted number of flights, the predicted duty time, the predicted weather conditions, the predicted special conditions, and the predicted attributes of the kth controller itself are assigned different weight values and then summed to obtain the basic fatigue value Set_P k .
S333,基于Set_P获取所述班组的班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM],其中Set_ALPk=Set_C×Set_Pk,Set_C是班组岗位调节系数,其取值范围为[1.0,5.0],例如管制席和协调席的岗位调节、管制席不同扇区的岗位调节,该调节系数表达了该班组为了应对将要值勤岗位可允许的最大内部岗位调整量。通过使用班组岗位调节系数,可以使得所述预警标准更符合实际情况,进而使得所述预警更准确,此外,还可以满足班组对于将要值勤岗位有整体的把握,便于管制员工作调整部署。进一步,Set_P根据预警虚报率和漏报率进行持续优化。S333, based on Set_P, obtain the team fatigue warning threshold Set_ALP = [Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ] of the team, wherein Set_ALP k = Set_C × Set_P k , Set_C is the team post adjustment coefficient, and its value range is [1.0, 5.0], such as the post adjustment of the control seat and the coordination seat, and the post adjustment of different sectors of the control seat. The adjustment coefficient expresses the maximum internal post adjustment amount that the team can allow in order to cope with the job to be on duty. By using the team post adjustment coefficient, the warning standard can be made more in line with the actual situation, and thus the warning can be made more accurate. In addition, it can also satisfy the team's overall grasp of the job to be on duty, which is convenient for the controller to adjust and deploy the work. Further, Set_P is continuously optimized according to the false alarm rate and missed alarm rate of the warning.
通过在岗前对班组的管制人员进行疲劳测试,可以获取岗前管制员最真实的疲劳程度,且由于所述班组基础疲劳值是根据班组将要值勤岗位的相关计划以及管制员本身属性来获取的,因此,更能客观地反应出班组未来指定时间内的实际需求,通过将两者进行比较,更能准确、有效地使班组获取整个班组管制员的疲劳状况,并据此作出工作调整,管控因为管制员疲劳而产生安全风险。By conducting fatigue tests on the team's controllers before taking up their posts, the most realistic fatigue level of the controllers before taking up their posts can be obtained. Since the team's basic fatigue value is obtained based on the team's plans for the posts they will be on duty and the controller's own attributes, it can more objectively reflect the team's actual needs within a specified time in the future. By comparing the two, the team can more accurately and effectively obtain the fatigue status of the entire team's controllers, and make work adjustments accordingly, thereby controlling safety risks caused by controller fatigue.
第三数据获取模块31,用于当当前需求符合第三疲劳判定需求时,获取一管制员Person的管制员综合疲劳程度数值Person_IoF=Person_C1×F_pose+Person_C2×F_face+Person_C3×F_voice,其中F_pose是当前基于行为姿态的管制员疲劳程度数值,F_face是当前基于面部特征的管制员疲劳程度数值,F_voice是当前基于陆空通话的管制员疲劳程度数值,Person_C1是F_pose的权重系数,Person_C2是F_face的权重系数,Person_C3是F_voice的权重系数。Person_C1的取值范围为[0.00,0.80],优选为0.65,Person_C2的取值范围为[0.00,0.40],优选为0.20,Person_C3的取值范围为[0.00,0.25],优选为0.15,且Person_C1、Person_C2和Person_C3三者不能同时取0.00。The third data acquisition module 31 is used to obtain a comprehensive fatigue level value of a controller Person Person_IoF = Person_C 1 ×F_pose+Person_C 2 ×F_face+Person_C 3 ×F_voice of a controller Person when the current demand meets the third fatigue judgment demand, wherein F_pose is the current fatigue level value of the controller based on behavior posture, F_face is the current fatigue level value of the controller based on facial features, F_voice is the current fatigue level value of the controller based on land-air communication, Person_C 1 is the weight coefficient of F_pose, Person_C 2 is the weight coefficient of F_face, and Person_C 3 is the weight coefficient of F_voice. The value range of Person_C 1 is [0.00, 0.80], preferably 0.65, the value range of Person_C 2 is [0.00, 0.40], preferably 0.20, the value range of Person_C 3 is [0.00, 0.25], preferably 0.15, and Person_C 1 , Person_C 2 and Person_C 3 cannot be 0.00 at the same time.
在本申请中,通过和管制大厅或塔台监视摄像头链接实时采集管制员在岗值勤中行为姿态信息,例如管制员睡岗、脱岗等,通过安置在管制屏幕适当位置的高清摄像头,采集管制员在岗值勤中面部特征信息,管制员陆空对话信息通过实时采集获取。具体的,分析处理采集的管制员行为姿态信息,分析管制员身体和姿态的动态数据获取当前基于行为姿态的管制员疲劳程度数值F_pose;分析处理采集的管制员面部信息,分析管制员打哈气、眨眼、眼睑闭合度等获取当前基于面部特征的管制员疲劳程度数值F_face;分析处理采集的管制员陆空对话信息,识别管制员声音,识别分析管制员语义以及反应时间等获取当前基于陆空通话的管制员疲劳程度数值F_voice。且F_pose、F_face、F_voice均可以采用现有技术中的任一种方法来实现,在此不再赘述。In this application, the behavior and posture information of the controller on duty is collected in real time by linking with the control hall or tower surveillance camera, such as the controller sleeping on duty, leaving the post, etc., and the facial feature information of the controller on duty is collected by placing a high-definition camera at an appropriate position on the control screen, and the controller's land-air conversation information is obtained by real-time collection. Specifically, the collected behavior and posture information of the controller is analyzed and processed, and the dynamic data of the controller's body and posture are analyzed to obtain the current controller fatigue level value F_pose based on the behavior and posture; the collected facial information of the controller is analyzed and processed, and the controller's yawning, blinking, eyelid closure, etc. are analyzed to obtain the current controller fatigue level value F_face based on facial features; the collected land-air conversation information of the controller is analyzed and processed, the controller's voice is recognized, and the controller's semantics and reaction time are recognized and analyzed to obtain the current controller fatigue level value F_voice based on land-air conversation. And F_pose, F_face, and F_voice can all be implemented by any method in the existing technology, which will not be repeated here.
第三数据处理模块32,用于计算所述管制员Person的预警值Person_AL=Person_IoF-Person_ALP,其中,管制员的个体疲劳预警阈值Person_ALP根据岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数获取,所述预警阈值判定参数至少包括与值勤中岗位相关的预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性。The third data processing module 32 is used to calculate the warning value Person_AL of the controller Person = Person_IoF-Person_ALP, wherein the controller's individual fatigue warning threshold Person_ALP is obtained according to the warning threshold judgment parameters set in the future time area during the duty period of the controller Person on duty, and the warning threshold judgment parameters include at least the predicted flight volume related to the duty post, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller Person itself.
第三疲劳预警模块33,用于基于所述预警值Person_AL进行预警。具体的,当Person_IoF≥Person_ALP时,所述系统进行预警。其中,Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_Fb,Person_A1是在岗值勤时间管制员个体所处人体昼夜节律系数,即是关于时间的函数,例如夜班时该系数高,白班时该系数低;Person_A2是岗位系数,用于表明管制员所在岗位对于疲劳程度的需要,例如,当在管制席时该系数小,在协调席时该系数较大,繁忙扇区系数较小,一般扇区系数较大;Person_A3是岗位任务要求系数,用于表明预期的飞行计划交通流态势对管制员疲劳程度的需要,例如当流量大时,对管制员要求高,此时该系数较小,否则该系数较大;Person_Fb是值勤岗位疲劳程度基础需求值,根据飞行计划和历史经验获取。The third fatigue warning module 33 is used to issue a warning based on the warning value Person_AL. Specifically, when Person_IoF≥Person_ALP, the system issues a warning. Among them, Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_F b , Person_A1 is the human circadian rhythm coefficient of the controller during the duty time, that is, it is a function of time. For example, the coefficient is high during the night shift and low during the day shift; Person_A2 is the position coefficient, which is used to indicate the need for fatigue level of the controller's position. For example, when the controller is at the control seat, the coefficient is small, and when the coordination seat is large, the coefficient is large. The busy sector coefficient is small, and the general sector coefficient is large; Person_A3 is the position task requirement coefficient, which is used to indicate the need for controller fatigue level of the expected flight plan traffic flow situation. For example, when the traffic volume is large, the requirements for the controller are high, and the coefficient is small at this time, otherwise the coefficient is large; Person_F b is the basic requirement value of fatigue level of the duty position, which is obtained according to the flight plan and historical experience.
在本发明的一个实施例中,还公开了一种获取管制员的个体疲劳预警阈值Person_ALP的方法,该方法包括:In one embodiment of the present invention, a method for obtaining an individual fatigue warning threshold Person_ALP of a controller is also disclosed. The method comprises:
S431,获取岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数,所述预警阈值判定参数至少包括预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性,所述设定未来时间区域的时长取值范围为[3分钟,20分钟],优选为5分钟。管制员本身属性例如可以包括对管制员疲劳具有影响作用的因素,例如疲劳状态、昼夜节律类型、近期睡眠状况、前序值班情况、性别、年龄、工龄等。S431, obtain the warning threshold determination parameters set in the future time zone in the duty time period of the controller Person on duty, the warning threshold determination parameters at least include the predicted flight volume, predicted weather conditions, predicted special conditions, predicted controller Person's own attributes, and the duration of the set future time zone has a value range of [3 minutes, 20 minutes], preferably 5 minutes. The controller's own attributes may include factors that have an impact on the controller's fatigue, such as fatigue status, circadian rhythm type, recent sleep status, previous duty situation, gender, age, length of service, etc.
S432,根据所述预警阈值判定参数获取所述管制员的值勤岗位疲劳程度基础需求值Person_Fb。具体的,在该实施例中,所述值勤岗位疲劳程度基础需求值Person_Fb为该管制员的所述预警阈值判定参数的函数,例如分别给预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性赋于不同的权重值后进行求和来获得。S432, obtaining the duty post fatigue basic requirement value Person_F b of the controller according to the warning threshold determination parameter. Specifically, in this embodiment, the duty post fatigue basic requirement value Person_F b is a function of the warning threshold determination parameter of the controller, for example, obtained by respectively assigning different weight values to the predicted flight volume, predicted weather conditions, predicted special conditions, and predicted attributes of the controller Person, and then summing them up.
S433,根据所述值勤岗位疲劳程度基础需求值Person_Fb获取所述管制员的个体疲劳预警阈值Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_Fb,Person_A1是在岗值勤时间管制员个体所处人体昼夜节律系数,即是关于时间的函数,例如夜班时该系数高,白班时该系数低;Person_A2是岗位系数,用于表明管制员所在岗位对于疲劳程度的需要,例如,当在管制席时该系数小,在协调席时该系数较大,繁忙扇区系数较小,一般扇区系数较大;Person_A3是岗位任务要求系数,用于表明预期的飞行计划交通流态势对管制员疲劳程度的需要,例如当流量大时,对管制员要求高,此时该系数较小,否则该系数较大。进一步,Person_ALP根据预警虚报率和漏报率进行持续优化。S433, according to the basic requirement value of fatigue degree of the duty post Person_F b, the individual fatigue warning threshold value of the controller Person_ALP = (Person_A1 + Person_A2 × Person_A3) × Person_F b is obtained, where Person_A1 is the human circadian rhythm coefficient of the controller during the duty time, that is, a function of time, for example, the coefficient is high during the night shift and low during the day shift; Person_A2 is the post coefficient, which is used to indicate the need for fatigue degree of the controller's post, for example, when the controller is in the control seat, the coefficient is small, when the coordination seat, the coefficient is large, the busy sector coefficient is small, and the general sector coefficient is large; Person_A3 is the post task requirement coefficient, which is used to indicate the need for fatigue degree of the controller for the expected flight plan traffic flow situation, for example, when the traffic volume is large, the controller is required to be high, and the coefficient is small at this time, otherwise the coefficient is large. Further, Person_ALP is continuously optimized according to the false alarm rate and missed alarm rate of the warning.
通过对在岗人员的实时数据进行采集以及根据值勤岗位未来指定时间内的参数获取的判断阈值,可以真实、准确计算出岗位上管制员的工作状态,对该管制员的实时状态进行监督,判断管制员当前的疲劳状态是否可以满足未来指定时间内的安全疲劳需求,且当判断管制员无法满足安全疲劳需求时及时进行报警并进行人员替换,可以有效避免在岗情况下因为管制员疲劳造成的安全风险。By collecting real-time data of on-duty personnel and obtaining judgment thresholds based on parameters of the duty post within a specified time in the future, the working status of the controller on the post can be truly and accurately calculated, the real-time status of the controller can be monitored, and it can be judged whether the controller's current fatigue status can meet the safety fatigue requirements within a specified time in the future. When it is judged that the controller cannot meet the safety fatigue requirements, an alarm will be issued in time and personnel will be replaced, which can effectively avoid safety risks caused by controller fatigue while on duty.
综合上述内容可知,通过获取全部管制单位预设时间段内的疲劳预警参数,获取整个管制行业甚至各个管制单位的疲劳系数,并在该疲劳系数的基础上,对整个管制行业以及疲劳系数较高组的管制单位进行疲劳监测和预警。另外,通过比较岗前疲劳测试获取的班组疲劳程度与通过预测所述班组将要值勤岗位的岗位疲劳需求而获得的班组预警阈值、通过比较岗中疲劳监测获取的管制员个人疲劳程度与通过预测所述管制员在未来一段时间段内的岗位值勤疲劳需求而得到的管制员个体疲劳预警阈值,可在岗前检测出管制人员是否能够应对将要值勤岗位的工作需要,且即使管制员上岗后,也可以判断岗中人员在未来3-20分钟是否出现疲劳异常,即从多个角度预判了管制员是否可以应对将来的航空安全需求。实现了分别在管制单位组织层面战略阶段、班组层面预战术(岗前)阶段、个体层面战术(在岗值勤)阶段对行业整体、独立管制单位、班组和管制员个体上的疲劳检测、未来岗位疲劳需求预测和疲劳预警,有利于从多方位对不同需求进行疲劳风险管控,保障航空安全。Based on the above content, it can be known that by obtaining the fatigue warning parameters of all control units within the preset time period, the fatigue coefficient of the entire control industry or even each control unit is obtained, and based on the fatigue coefficient, fatigue monitoring and warning are carried out for the entire control industry and the control units in the group with higher fatigue coefficients. In addition, by comparing the fatigue level of the team obtained by the pre-job fatigue test with the team warning threshold obtained by predicting the job fatigue requirements of the job that the team will be on duty, and by comparing the personal fatigue level of the controller obtained by the fatigue monitoring during the job and the individual fatigue warning threshold of the controller obtained by predicting the job fatigue requirements of the controller in the future, it is possible to detect whether the controller can cope with the work requirements of the job to be on duty before the job, and even after the controller takes up the job, it is possible to judge whether the personnel on the job will have abnormal fatigue in the next 3-20 minutes, that is, to predict from multiple angles whether the controller can cope with future aviation safety needs. It realizes fatigue detection, prediction of future job fatigue demand and fatigue warning for the industry as a whole, independent control units, teams and individual controllers at the strategic stage at the organizational level of control units, the pre-tactical (pre-job) stage at the team level, and the tactical (on-duty) stage at the individual level. This is conducive to fatigue risk management for different needs from multiple angles and ensure aviation safety.
在本申请的另一实施例公开了一种管制员疲劳预警方法流程图,如图5所示,如前所述的相关内容同样适用于该实施例,在此不再赘述。该方法包括以下步骤:Another embodiment of the present application discloses a flow chart of a controller fatigue warning method, as shown in FIG5 . The above-mentioned related contents are also applicable to this embodiment and will not be repeated here. The method comprises the following steps:
S100,判断当前需求符合第一疲劳判定需求、第二疲劳判定需求还是第三疲劳判定需求;当所述当前需求符合第一疲劳判定需求时,执行步骤S210,当所述当前需求符合第二疲劳判定需求时,执行步骤S310,否则执行步骤S410。S100, determine whether the current demand meets the first fatigue determination requirement, the second fatigue determination requirement or the third fatigue determination requirement; when the current demand meets the first fatigue determination requirement, execute step S210, when the current demand meets the second fatigue determination requirement, execute step S310, otherwise execute step S410.
S210,获取全部管制单位在第一预设时间段内的疲劳预警参数Air_P=(Air_P1,Air_P2,Air_P3,...,Air_PN),N为所述全部管制单位的数量,其中,第i个管制单位的疲劳预警参数Air_Pi至少包括单位类型Air_typei、海拔高度Air_heighti、管制方式Air_managei、管制区域Air_areai、值勤管制员总数Air_numi、夜间在岗值勤的管制员总数Air_num_nighti、高峰流量期在岗值勤的管制员总数Air_num_highi、管制员值勤时长Air_timei、管制员岗位值勤时长Air_work_timei、管制员夜间岗位值勤时长Air_night_timei、管制员高峰流量期岗位值勤时长Air_high_timei、管制员非岗位值勤时长Air_rwork_timei、其它作业的管制员岗位值勤时长Air_other_timei,1≤i≤N。S210, obtaining fatigue warning parameters Air_P=(Air_P 1 , Air_P 2 , Air_P 3 , ..., Air_PN ) of all control units in a first preset time period, where N is the number of all control units, wherein the fatigue warning parameters Air_P i of the i-th control unit at least include unit type Air_type i , altitude Air_height i , control mode Air_manage i , control area Air_area i , total number of on-duty controllers Air_num i , total number of on-duty controllers at night Air_num_night i , total number of on-duty controllers during peak traffic period Air_num_high i , duty time of controllers Air_time i , duty time of controllers at work Air_work_time i , duty time of controllers at work at night Air_night_time i , duty time of controllers at work during peak traffic period Air_high_time i , and non-duty time of controllers Air_rwork_time i , the duty time of the controller for other operations Air_other_time i , 1≤i≤N.
S220,基于所述疲劳预警参数Air_P获取所述全部管制单位的整体疲劳系数IoF和/或所述全部管制单位的单位疲劳系数Air_IoF=[Air_IoF1,Air_IoF2,Air_IoF3,...,Air_IoFN],其中, 第i个管制单位的单位疲劳系数Air_Fi1=1,为第i个管制单位的管制员岗位值勤时长Air_work_timei的加权系数,当第i个管制单位为民用机场时,Air_Fi2=0,否则,Air_Fi2=Air_fmi×Air_other_timei/Air_work_timei,Air_fmi为第i个管制单位其他作业时间的加权系数,Air_Fi3为关于第i个管制单位海拔高度Air_heighti的函数,当第i个管制单位的航空器小时保障架次量≥预设流量阈值Air_FTi时,则所述第i个管制单位判定为处于高峰流量期,当第i个管制单位为非高峰流量期时,Air_Fi4=0;否则,Air_Fi4=Air_num_highi×Air_high_timei/Air_work_timei,Air_Fi5=Air_num_nighti×Air_night_timei/Air_work_timei,为第i个管制单位夜间岗位值勤时长Air_night_timei的函数;Air_Fi6为关于第i个管制单位管制方式Air_managei的函数,Air_Fi7为关于第i个管制单位管制区域Air_areai的函数,Air_Fi8为第i个管制单位的非岗位值勤时长的加权系数。S220, based on the fatigue warning parameter Air_P, obtaining the overall fatigue coefficient IoF of all control units and/or the unit fatigue coefficient Air_IoF of all control units = [Air_IoF 1 , Air_IoF 2 , Air_IoF 3 , ..., Air_IoF N ], wherein: Unit fatigue coefficient of the i-th control unit Air_Fi1 = 1, which is the weighted coefficient of the air traffic controller's duty time Air_work_time i of the ith control unit. When the ith control unit is a civil airport, Air_Fi2 = 0. Otherwise, Air_Fi2 = Air_fm i × Air_other_time i / Air_work_time i . Air_fm i is the weighted coefficient of other working time of the ith control unit. Air_Fi3 is a function of the altitude Air_height i of the ith control unit. When the hourly aircraft support flight volume of the ith control unit is ≥ the preset flow threshold Air_FT i , the ith control unit is determined to be in the peak flow period. When the ith control unit is in the non-peak flow period, Air_Fi4 = 0. Otherwise, Air_Fi4 = Air_num_high i × Air_high_time i / Air_work_time i , Air_Fi5 = Air_num_night i × Air_night_time i / Air_work_time i , is a function of the night duty time Air_night_time i of the ith control unit; Air_F i6 is a function of the control method Air_manage i of the ith control unit; Air_F i7 is a function of the control area Air_area i of the ith control unit; Air_F i8 is the weighted coefficient of the non-duty time of the ith control unit.
S230,获取全部管制单位的整体疲劳系数预警阈值Total_ALP,并基于所述疲劳预警参数Air_P对所述全部管制单位进行分类,其次,根据所述单位疲劳系数Air_IoF对每类的管制单位按照疲劳系数大小进行排序,然后,对排序后的每类管制单位采用聚类方法进行等级划分,分为疲劳系数较低、中、较高组,其中,所述整体疲劳系数预警阈值Total_ALP基于多个不同历史时间段内获取的全部管制单位的整体疲劳系数、全部管制单位不安全事件数量进行数据驱动迭代来获取。S230, obtaining the overall fatigue coefficient warning threshold value Total_ALP of all control units, and classifying all control units based on the fatigue warning parameter Air_P, and then sorting each type of control units according to the size of the fatigue coefficient according to the unit fatigue coefficient Air_IoF, and then, using a clustering method to grade each type of control units after sorting, and divide them into groups with low, medium and high fatigue coefficients, wherein the overall fatigue coefficient warning threshold value Total_ALP is obtained by data-driven iteration based on the overall fatigue coefficients of all control units obtained in multiple different historical time periods and the number of unsafe events of all control units.
S240,获取所述全部管制单位的疲劳预警值Total_AL=所述整体疲劳系数IoF-整体疲劳系数预警阈值Total_ALP。S240, obtaining fatigue warning values Total_AL of all control units = the overall fatigue coefficient IoF - the overall fatigue coefficient warning threshold Total_ALP.
S250,基于所述全部管制单位的疲劳预警值Total_AL对管制行业整体进行疲劳预警,即当所述全部管制单位的疲劳预警值Total_AL≥0时进行预警,和/或,在每类管制单位中,对聚类后进入数值较高组的管制单位进行预警。S250, based on the fatigue warning value Total_AL of all the control units, a fatigue warning is issued for the control industry as a whole, that is, a warning is issued when the fatigue warning value Total_AL of all the control units is ≥0, and/or, in each type of control unit, a warning is issued for the control units that enter the group with higher values after clustering.
S310,获取第i个管制单位的班组管制员在岗前第二预设时间段内的测试疲劳参数,所述测试疲劳参数至少通过视频测试、警觉性测试和主观量表测试中的一种测试获得;以及,获取所述班组将要值勤时间段中指定时间区间内的预警阈值参数,所述预警阈值参数至少包括班组的值勤时间、预测的航班量、预测的值勤时长、预测的天气状况、预测特情、预测的管制员本身属性。S310, obtaining the test fatigue parameters of the team controller of the i-th control unit within the second preset time period before taking up the post, wherein the test fatigue parameters are obtained through at least one of the video test, the alertness test and the subjective scale test; and obtaining the warning threshold parameters within the specified time interval in the time period when the team will be on duty, wherein the warning threshold parameters at least include the team's duty time, the predicted flight volume, the predicted duty duration, the predicted weather conditions, the predicted special situation, and the predicted attributes of the controller itself.
S320,根据所述测试疲劳参数获取所述班组管制员的测试疲劳值Set_PreIoF=[Set_PreIoF1,Set_PreIoF2,...,Set_PreIoFM],M为该班组管制员的总人数;根据所述预警阈值参数获取所述班组的班组基础疲劳值Set_P=[Set_P1,Set_P2,...,Set_PM],其中Set_Pk表示该班组第k个管制员的基础疲劳值。S320, obtaining the test fatigue value Set_PreIoF=[Set_PreIoF 1 , Set_PreIoF 2 , ..., Set_PreIoF M ] of the team controller according to the test fatigue parameter, where M is the total number of team controllers; obtaining the team basic fatigue value Set_P=[Set_P 1 , Set_P 2 , ..., Set_P M ] of the team according to the warning threshold parameter, where Set_P k represents the basic fatigue value of the kth controller of the team.
S330,基于班组基础疲劳值Set_P获取所述班组的班组疲劳预警阈值Set_ALP=[Set_ALP1,Set_ALP2,...,Set_ALPM]。其中,第k个管制员关于将要值勤岗位的疲劳预警阈值Set_ALPk=Set_C×Set_Pk,Set_C是班组岗位调节系数。S330, based on the team basic fatigue value Set_P, obtain the team fatigue warning threshold Set_ALP = [Set_ALP 1 , Set_ALP 2 , ..., Set_ALP M ] of the team, wherein the fatigue warning threshold Set_ALP k = Set_C×Set_P k of the kth controller regarding the post to be on duty, and Set_C is the team post adjustment coefficient.
S340,根据班组疲劳预警阈值Set_ALP和测试疲劳值Set_PreIoF计算所述班组管制员的预警值Set_AL=[Set_AL1,Set_AL2,...,Set_ALM],其中Set_ALk=Set_PreIoFk-Set_ALPk。S340, calculating the warning value Set_AL = [Set_AL 1 , Set_AL 2 , ..., Set_AL M ] of the team controller according to the team fatigue warning threshold Set_ALP and the test fatigue value Set_PreIoF, wherein Set_AL k = Set_PreIoF k - Set_ALP k .
S350,基于所述预警值Set_AL进行预警,即当Set_ALk≥0时进行预警。S350: issuing an early warning based on the early warning value Set_AL, that is, issuing an early warning when Set_AL k ≥0.
S410,获取一管制员Person的疲劳程度参数F_pose、F_face、F_voice,其中F_pose是当前基于行为姿态的管制员疲劳程度数值,F_face是当前基于面部特征的管制员疲劳程度数值,F_voice是当前基于陆空通话的管制员疲劳程度数值,以及获取获取岗位值勤中的管制员Person的岗位值勤时间段中设定未来时间区域内的预警阈值判定参数,所述预警阈值判定参数至少包括预测的航班量、预测的天气状况、预测特情、预测的管制员Person本身属性。S410, obtaining fatigue level parameters F_pose, F_face, and F_voice of a controller Person, wherein F_pose is the current controller fatigue level value based on behavioral posture, F_face is the current controller fatigue level value based on facial features, and F_voice is the current controller fatigue level value based on air-ground communication, as well as obtaining early warning threshold determination parameters set within a future time zone within the duty period of the controller Person on duty, wherein the early warning threshold determination parameters include at least predicted flight volume, predicted weather conditions, predicted special conditions, and predicted attributes of the controller Person itself.
S420,获取管制员Person的管制员综合疲劳程度数值Person_IoF=Person_C1×F_pose+Person_C2×F_face+Person_C3×F_voice;Person_C1是F_pose的权重系数,Person_C2是F_face的权重系数,Person_C3是F_voice的权重系数;根据所述预警阈值判定参数获取所述管制员的值勤岗位疲劳程度基础需求值Person_Fb。S420, obtaining the controller comprehensive fatigue level value Person_IoF of the controller Person: Person_C1 ×F_pose+ Person_C2 ×F_face+ Person_C3 ×F_voice; Person_C1 is the weight coefficient of F_pose, Person_C2 is the weight coefficient of F_face, and Person_C3 is the weight coefficient of F_voice; obtaining the duty post fatigue level basic requirement value Person_Fb of the controller according to the warning threshold determination parameter.
S430,根据所述值勤岗位疲劳程度基础需求值Person_Fb获取所述管制员的个体疲劳预警阈值Person_ALP=(Person_A1+Person_A2×Person_A3)×Person_Fb,Person_A1是在岗值勤时间管制员个体所处人体昼夜节律系数,即是关于时间的函数,例如夜班时该系数高,白班时该系数低;Person_A2是岗位系数,用于表明管制员所在岗位对于疲劳程度的需要,例如,当在管制席时该系数小,在协调席时该系数较大,繁忙扇区系数较小,一般扇区系数较大;Person_A3是岗位任务要求系数,用于表明预期的飞行计划交通流态势对管制员疲劳程度的需要,例如当流量大时,对管制员要求高,此时该系数较小,否则该系数较大。S430, according to the basic requirement value Person_F b of fatigue degree of the duty post, obtain the individual fatigue warning threshold value Person_ALP of the controller = (Person_A1 + Person_A2 × Person_A3) × Person_F b , where Person_A1 is the human circadian rhythm coefficient of the individual controller during the duty time, that is, it is a function of time, for example, the coefficient is high during the night shift and low during the day shift; Person_A2 is the post coefficient, which is used to indicate the need for fatigue degree of the controller's post, for example, when the controller is in the control seat, the coefficient is small, when the coordination seat, the coefficient is large, the busy sector coefficient is small, and the general sector coefficient is large; Person_A3 is the post task requirement coefficient, which is used to indicate the need for fatigue degree of the controller due to the expected flight plan traffic flow situation, for example, when the traffic flow is large, the requirement for the controller is high, and the coefficient is small at this time, otherwise the coefficient is large.
S440,计算所述管制员Person的预警值Person_AL=Person_IoF-Person_ALP。S440, calculating the warning value Person_AL of the controller Person = Person_IoF - Person_ALP.
S450,基于所述预警值Person_AL进行预警。即当Person_AL≥0时,进行预警。S450: Issue an early warning based on the early warning value Person_AL. That is, when Person_AL≥0, issue an early warning.
一种管制员疲劳预警系统,该系统包括有处理器和用于存储至少一条指令或至少一段程序的非瞬时性存储介质,该至少一条指令或该至少一段程序由该处理器加载并执行以实现上述实施例提供的疲劳预警方法。A controller fatigue warning system includes a processor and a non-transitory storage medium for storing at least one instruction or at least one program. The at least one instruction or the at least one program is loaded and executed by the processor to implement the fatigue warning method provided in the above embodiment.
本申请的实施例还提供了一种非瞬时性计算机可读存储介质,该存储介质可设置于电子设备之中以保存用于实现方法实施例中一种方法相关的至少一条指令或至少一段程序,该至少一条指令或该至少一段程序由该处理器加载并执行以实现上述实施例提供的方法。An embodiment of the present application also provides a non-transitory computer-readable storage medium, which can be set in an electronic device to store at least one instruction or at least one program related to implementing a method in a method embodiment. The at least one instruction or the at least one program is loaded and executed by the processor to implement the method provided in the above embodiment.
本申请的实施例还提供了一种电子设备,包括处理器和前述的非瞬时性计算机可读存储介质。An embodiment of the present application also provides an electronic device, including a processor and the aforementioned non-transitory computer-readable storage medium.
本申请的实施例还提供一种计算机程序产品,其包括程序代码,当所述程序产品在电子设备上运行时,所述程序代码用于使该电子设备执行本说明书上述描述的根据本申请各种示例性实施方式的方法中的步骤。An embodiment of the present application further provides a computer program product, which includes a program code. When the program product is run on an electronic device, the program code is used to enable the electronic device to execute the steps of the method according to various exemplary embodiments of the present application described above in this specification.
虽然已经通过示例对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员还应理解,可以对实施例进行多种修改而不脱离本申请的范围和精神。本申请开的范围由所附权利要求来限定。Although some specific embodiments of the present application have been described in detail by way of example, it will be appreciated by those skilled in the art that the above examples are only for illustration and not for limiting the scope of the present application. It will also be appreciated by those skilled in the art that various modifications may be made to the embodiments without departing from the scope and spirit of the present application. The scope of the present application is defined by the appended claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210351997.XA CN114638538B (en) | 2022-04-02 | 2022-04-02 | A controller fatigue warning method, device, system and warning threshold acquisition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210351997.XA CN114638538B (en) | 2022-04-02 | 2022-04-02 | A controller fatigue warning method, device, system and warning threshold acquisition method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114638538A CN114638538A (en) | 2022-06-17 |
CN114638538B true CN114638538B (en) | 2024-08-06 |
Family
ID=81951128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210351997.XA Active CN114638538B (en) | 2022-04-02 | 2022-04-02 | A controller fatigue warning method, device, system and warning threshold acquisition method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114638538B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105282502A (en) * | 2015-09-30 | 2016-01-27 | 中国民用航空总局第二研究所 | Air-traffic controller fatigue detection method, device and system based on confidence interval |
CN106580349A (en) * | 2016-12-07 | 2017-04-26 | 中国民用航空总局第二研究所 | Controller fatigue detection method and device and controller fatigue responding method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109214693B (en) * | 2018-02-13 | 2021-11-12 | 中国民用航空总局第二研究所 | Method, system, medium and equipment for evaluating fatigue risk of air traffic controller |
CN108446673A (en) * | 2018-04-27 | 2018-08-24 | 南京航空航天大学 | A controller fatigue early warning method based on facial recognition |
CN113327404A (en) * | 2021-05-13 | 2021-08-31 | 安徽中科昊音智能科技有限公司 | Post fatigue state monitoring and warning system for air traffic controller |
CN113243917B (en) * | 2021-05-18 | 2023-05-12 | 中国民用航空总局第二研究所 | Fatigue detection method and device for civil aviation controller, electronic equipment and medium |
-
2022
- 2022-04-02 CN CN202210351997.XA patent/CN114638538B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105282502A (en) * | 2015-09-30 | 2016-01-27 | 中国民用航空总局第二研究所 | Air-traffic controller fatigue detection method, device and system based on confidence interval |
CN106580349A (en) * | 2016-12-07 | 2017-04-26 | 中国民用航空总局第二研究所 | Controller fatigue detection method and device and controller fatigue responding method and device |
Also Published As
Publication number | Publication date |
---|---|
CN114638538A (en) | 2022-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116012208A (en) | Risk area early warning information generation method for smart city and Internet of things system | |
CN103530704B (en) | A kind of air dynamic traffic volume in terminal airspace prognoses system and method thereof | |
CN104572391B (en) | Monitoring alarm tactics configuring method and device, monitoring alarm method and device | |
CN106156913A (en) | Health control method for aircraft department enclosure | |
CN106447107B (en) | Maintenance method based on aircraft structure health monitoring | |
CN117314090A (en) | Emergency response and rescue coordination system driven by artificial intelligence | |
CN109284896B (en) | Human Error Pattern Impact Analysis Method | |
CN114021971A (en) | A comprehensive evaluation system, method and storage medium for expressway operation and maintenance management | |
CN105261152A (en) | Air traffic controller fatigue detection method based on clustering analysis, device and system | |
CN113362604B (en) | Controller workload assessment method based on sector dynamic traffic characteristics | |
CN118691142A (en) | Pilot workload assessment system and method using multi-source data | |
CN109919471A (en) | A kind of wisdom air control appraisal procedure and system | |
CN117094546A (en) | Intelligent emergency rescue command method, system and medium based on big data | |
CN105225193A (en) | A kind of method and system of the sector runnability aggregative index based on multiple regression model | |
WO2020186160A2 (en) | Mitigating operational risk in aircraft | |
CN118839941A (en) | Civil aviation data processing method, system, computer equipment and storage medium | |
CN105282502B (en) | Air traffic controller's fatigue detection method based on confidence interval, device and system | |
CN114638538B (en) | A controller fatigue warning method, device, system and warning threshold acquisition method | |
WO2021111558A1 (en) | Information processing device, control method, and storage medium | |
CN118675115B (en) | Airport air traffic control centralized monitoring method and management system | |
CN118736721B (en) | Management method based on physical examination queuing call system | |
CN110989042A (en) | Intelligent prediction method for highway fog-clustering risk | |
CN119578951A (en) | A photovoltaic construction management system | |
CN108446202A (en) | A kind of judgment method of the safe condition of calculator room equipment | |
Saket et al. | Biorhythmic analysis to prevent aviation accidents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |