CN114637962A - 海洋数值预报产品验证方法、系统、电子设备及存储介质 - Google Patents

海洋数值预报产品验证方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
CN114637962A
CN114637962A CN202210536520.9A CN202210536520A CN114637962A CN 114637962 A CN114637962 A CN 114637962A CN 202210536520 A CN202210536520 A CN 202210536520A CN 114637962 A CN114637962 A CN 114637962A
Authority
CN
China
Prior art keywords
matrix
weight parameter
product
evaluation
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210536520.9A
Other languages
English (en)
Other versions
CN114637962B (zh
Inventor
王永刚
任鹏
魏泽勋
王建
徐晓庆
吕新荣
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Institute of Oceanography MNR
Original Assignee
First Institute of Oceanography MNR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Institute of Oceanography MNR filed Critical First Institute of Oceanography MNR
Priority to CN202210536520.9A priority Critical patent/CN114637962B/zh
Publication of CN114637962A publication Critical patent/CN114637962A/zh
Application granted granted Critical
Publication of CN114637962B publication Critical patent/CN114637962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Development Economics (AREA)
  • Computational Linguistics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Educational Administration (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)

Abstract

本发明提出一种海洋数值预报产品验证方法、系统、电子设备及存储介质,涉及海洋数值预报领域。其中,方法包括:基于产品预报和观测数据计算产品误差矩阵;基于应用评估得分数据计算应用评价矩阵;构造需求权重矩阵并通过智能优化算法求取需求权重矩阵中的权重参数;基于求得的需求权重针对应用场景进行预报产品验证评价。本发明根据多种应用场景设置需求权重对海洋数值预报产品误差进行加权,并且自适应调整不同验证指标的权重系数,从而能够结合特定需求对预报产品给出合理的评价。

Description

海洋数值预报产品验证方法、系统、电子设备及存储介质
技术领域
本发明属于海洋数值预报领域,尤其涉及海洋数值预报产品验证方法、系统、电子设备及存储介质。
背景技术
目前海洋数值预报产品多采用单一标准进行验证评价,在面对多应用场景时缺乏权重合理、指标全面、结构统一的验证方法。但由于不同的应用场景及用户,对形式类别多样的温、盐、流等要素的准确度要求不尽相同,因此综合考虑用户需求,根据航海保障、远洋捕捞、海上工程等多元应用场景下数值预报产品的特征,自适应调整验证要素、指标类型和不同验证指标的权重系数非常重要的。
通过设计权重合理的自适应验证方法,从而实现对不同用户和产品按需生成验证方案、精准输出验证结果,达到验证评估系统“多方面量化考虑,统一化输出标准”的效果,有助于提升我国海洋数值预报产品业务化运行的综合验证和服务评价水平。
发明内容
为解决上述技术问题,本发明提出一种海洋数值预报产品验证方法、系统、电子设备及存储介质的技术方案,以解决上述技术问题。
本发明第一方面公开了一种海洋数值预报产品验证方法,所述方法包括:
步骤S1、根据产品预报和观测数据,计算产品误差矩阵E
步骤S2、基于应用场景的评价得分数据,计算应用评价矩阵G
步骤S3、构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
步骤S4、基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
步骤S5、根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模 型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数,并采用智能优 化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 471722DEST_PATH_IMAGE001
步骤S6、将所述优化的需求权重参数矩阵
Figure 857704DEST_PATH_IMAGE002
与产品误差矩阵E相乘,得到针对应用 场景的预报产品验证评价得分。
根据本发明第一方面的方法,在所述步骤S2中,所述基于应用场景的评价得分数据,计算应用评价矩阵G的具体方法包括:
设定应用评价向量
Figure 371862DEST_PATH_IMAGE003
,对于M个应用场景,其形式如下:
Figure 471798DEST_PATH_IMAGE004
构造包含T组评价向量的应用评价矩阵G,形式如下:
Figure 755012DEST_PATH_IMAGE005
其中,
s m 为第m类应用场景的评估得分。
根据本发明第一方面的方法,在所述步骤S3中,所述需求权重参数矩阵W的结构为MN列矩阵。
根据本发明第一方面的方法,在所述步骤S3中,所述需求权重参数矩阵约束条件包括:
所述需求权重参数矩阵中的每一行的和为1;
需求权重参数矩阵产品误差矩阵E=应用评价矩阵G
根据本发明第一方面的方法,在所述步骤S4中,所述需求权重参数矩阵计算模型的具体公式为:
Figure 311895DEST_PATH_IMAGE006
其中,
Figure 47770DEST_PATH_IMAGE007
为寻找最小评分的参量函数;
Figure 449933DEST_PATH_IMAGE008
Figure 322074DEST_PATH_IMAGE009
表示1范数,
Figure 751656DEST_PATH_IMAGE010
表示2范数。
根据本发明第一方面的方法,在所述步骤S5中,所述根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数的具体方法包括:
设定需求权重参数矩阵
Figure 240406DEST_PATH_IMAGE011
,应用评价矩阵
Figure 711838DEST_PATH_IMAGE012
其中w m 代表了第m个应用下N个产品对应的需求权重参数,
Figure 704065DEST_PATH_IMAGE013
代表第m个应用场景 下的评估得分;
使用来表示第m个应用场景下对应的权重
Figure 602751DEST_PATH_IMAGE014
,使用
Figure 578797DEST_PATH_IMAGE015
来表示第m个应用场景下对 应的权重
Figure 57183DEST_PATH_IMAGE013
,求取
Figure 169496DEST_PATH_IMAGE016
的目标函数采用如下形式:
Figure 973504DEST_PATH_IMAGE017
其中,
μ为罚因子,超参数。
根据本发明第一方面的方法,在所述步骤S5中,所述智能优化算法搜索的具体方法为协同天牛群智能优化算法,具体方法包括:
步骤S51、初始化参变量。参数包括:种群中包含的天牛个体的数量I,天牛每次移动的步长δ,天牛个体两个天牛须之间的距离d,天牛总更新代数K,天牛个体位置向量维度N,个体位置向量的分组数J。变量包括:种群中每个天牛个体的位置w i ,即需求权重参数;种群速度v i ,(iϵ[1,I])。
步骤S52、设定
Figure 237231DEST_PATH_IMAGE018
为第j组最优位置分量([1,J]),并初始化各组的最优位置分 量
Figure 50466DEST_PATH_IMAGE019
当前更新代数k小于设置的总更新代数K时:对于种群所有个体第j组分量[w 1|j w 2|j w i|j… w I|j ] (jϵ[1,J]),采用天牛群算法对该组的最优位置分量
Figure 282864DEST_PATH_IMAGE020
进行更新。
其中对于第i个天牛个体的第j组位置分量w i|j 的适应度评价形式为:
Figure 523353DEST_PATH_IMAGE021
; 其中,
Figure 677253DEST_PATH_IMAGE022
i个天牛个体的第j组位置分量元素更新公式中的迭代因子λ的取值采用指数递增的形式:
Figure 28600DEST_PATH_IMAGE023
其中,λ Max为超参数;
步骤S53、通过步骤S52的迭代计算,得到种群最终搜索到的最优位置,即:
Figure 286144DEST_PATH_IMAGE024
本发明第二方面公开了一种海洋数值预报产品验证系统,所述系统包括:
第一处理模块,被配置为,根据产品预报和观测数据,计算产品误差矩阵E
第二处理模块,被配置为,基于应用场景的评价得分数据,计算应用评价矩阵G
第三处理模块,被配置为,构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
第四处理模块,被配置为,基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
第五处理模块,被配置为,根据所述需求权重参数矩阵约束条件和所述需求权重 参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函 数,并采用智能优化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 963113DEST_PATH_IMAGE025
第六处理模块,被配置为,将所述优化的需求权重参数矩阵
Figure 135468DEST_PATH_IMAGE025
与产品误差矩阵E相 乘,得到针对应用场景的预报产品的验证评价得分。
本发明第三方面公开了一种电子设备。电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时,实现本发明公开第一方面中任一项的一种海洋数值预报产品验证方法中的步骤。
本发明第四方面公开了一种存储介质。存储介质上存储有计算机程序,计算机程序被处理器执行时,实现本发明公开第一方面中任一项的一种海洋数值预报产品验证方法中的步骤。
本发明提出的方案,根据多种应用场景设置需求权重对海洋数值预报产品误差进行加权,从而能够结合特定需求对预报产品给出合理评价,实现了面向应用场景的自适应海洋数值预报产品验证。相比于目前海洋数值预报产品的单一评价方法,本发明能够自适应调整不同验证指标的权重系数,对不同应用场景和产品按需生成评价方案,使评价结果更加具有针对性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的一种海洋数值预报产品验证方法的流程图;
图2a为根据本发明实施例的矩阵之间的运算关系图中需求权重参数矩阵W×产品误差矩阵E的示意图;
图2b为根据本发明实施例的矩阵之间的运算关系图中得到应用评价矩阵G的示意图;
图3a为根据本发明实施例的协同天牛群算法中天牛位置协同操作示意图等式左边的内容;
图3b为根据本发明实施例的协同天牛群算法中天牛位置协同操作示意图等式右边的内容;
图4为根据本发明实施例的适应度评价函数随算法迭代次数的变化曲线;
图5为根据本发明实施例的针对应用场景的预报产品验证评价得分和检验数据验证评价得分的相对误差曲线;
图6为根据本发明实施例的一种海洋数值预报产品验证系统的结构图;
图7为根据本发明实施例的一种电子设备的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明第一方面公开了一种海洋数值预报产品验证方法。图1为根据本发明实施例的一种海洋数值预报产品验证方法的流程图,如图1所示,所述方法包括:
步骤S1、根据产品预报和观测数据,计算产品误差矩阵E
步骤S2、基于应用场景的评价得分数据,计算应用评价矩阵G
步骤S3、构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
步骤S4、基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
步骤S5、根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模 型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数,并采用智能优 化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 290506DEST_PATH_IMAGE026
步骤S6、将所述优化的需求权重参数矩阵
Figure 231917DEST_PATH_IMAGE027
与产品误差矩阵E相乘,得到针对应用 场景的预报产品的验证评价得分。
在步骤S1,根据产品预报和观测数据,计算产品误差矩阵E
具体地,设定产品误差向量e,形式如下:
Figure 79788DEST_PATH_IMAGE028
式中,e 产品n 为海洋数值预报产品中第n个产品的归一化误差值,误差向量e中包含所要验证评价的N个海洋数值预报产品的误差数据。
构造产品误差矩阵E,形式如下:
Figure 473860DEST_PATH_IMAGE029
ENT列的矩阵,其中包含T组产品误差向量。
在步骤S2,基于应用场景的评价得分数据,计算应用评价矩阵G
在一些实施例中,在所述步骤S2中,所述基于应用场景的评价得分数据,计算应用评价矩阵G的具体方法包括:
设定应用评价向量
Figure 432589DEST_PATH_IMAGE030
,对于M个应用场景,其形式如下:
Figure 962927DEST_PATH_IMAGE004
构造包含T组评价向量的应用评价矩阵G,形式如下:
Figure 716119DEST_PATH_IMAGE031
其中,
s m 为第m类应用场景的评估得分,s m 越大则第m类应用场景对于预报产品的评价越好。
在步骤S3,构造需求权重参数矩阵W和需求权重参数矩阵约束条件。
在一些实施例中,在所述步骤S3中,所述需求权重参数矩阵W的结构为MN列矩阵。
所述需求权重参数矩阵约束条件包括:
所述需求权重参数矩阵中的每一行的和为1;
需求权重参数矩阵产品误差矩阵E=应用评价矩阵G
具体地,为使得预报产品误差与应用评价之间的权值相对应,构造的需求权重矩阵WMN列矩阵。为使各预报产品误差对应的权值具有统一性,设定W中的每一行加和为1,即对于任意的m皆有:
Figure 833373DEST_PATH_IMAGE032
特定应用场景m对某项预报产品n需求越大,则W中该预报产品误差对应的需求权重w mn 越大,该产品误差的影响也随之更加凸显;
需求权重矩阵W满足:WE=G。第m类应用场景的评价得分s m 满足计算公式:
Figure 64635DEST_PATH_IMAGE033
矩阵之间的运算关系如图2a-图2b所示,图2a为根据本发明实施例的矩阵之间的运算关系图中需求权重参数矩阵W×产品误差矩阵E的示意图;图2b为根据本发明实施例的矩阵之间的运算关系图中得到应用评价矩阵G的示意图;图2a的图2b的内容分别为等式左右两边的内容。
在步骤S4,基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型。
在一些实施例中,在所述步骤S4中,所述需求权重参数矩阵计算模型的具体公式为:
Figure 980638DEST_PATH_IMAGE034
其中,
Figure 639152DEST_PATH_IMAGE007
为寻找最小评分的参量函数;
Figure 7817DEST_PATH_IMAGE008
Figure 42769DEST_PATH_IMAGE009
表示1范数,
Figure 249497DEST_PATH_IMAGE010
表示2范数。
在步骤S5,根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模 型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数,并采用智能优 化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 78913DEST_PATH_IMAGE035
在一些实施例中,在所述步骤S5中,所述根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数的具体方法包括:
设定需求权重参数矩阵
Figure 934873DEST_PATH_IMAGE036
,应用评价矩阵
Figure 242358DEST_PATH_IMAGE037
其中w m 代表了第m个应用下N个产品对应的需求权重参数,
Figure 336216DEST_PATH_IMAGE013
代表第m个应用场景 下的评估得分;
使用
Figure 602112DEST_PATH_IMAGE016
来表示第m个应用场景下对应的权重
Figure 909816DEST_PATH_IMAGE014
,使用
Figure 817729DEST_PATH_IMAGE015
来表示第m个应用场景下 对应的权重
Figure 297252DEST_PATH_IMAGE013
,求取
Figure 999629DEST_PATH_IMAGE016
的目标函数采用如下形式:
Figure 830181DEST_PATH_IMAGE017
其中,
μ为罚因子,超参数,可将其设置为一个较大的数以实现对变量的约束。求解过程转换为对目标函数的寻优过程,理论上当目标函数f(w)取值为零时达到最优,此时取得的权重值w即为最优解。
在一些实施例中,在所述步骤S5中,所述智能优化算法搜索的具体方法为协同天牛群智能优化算法,具体方法包括:
步骤S51、初始化参变量。参数包括:种群中包含的天牛个体的数量I,天牛每次移动的步长δ,天牛个体两个天牛须之间的距离d,天牛总更新代数K,天牛个体位置向量维度N,个体位置向量的分组数J。变量包括:种群中每个天牛个体的位置w i ,即需求权重参数;种群速度v i ,(iϵ[1,I])。
步骤S52、设定
Figure 10627DEST_PATH_IMAGE018
为第j组最优位置分量([1,J]),并初始化各组的最优位置分 量
Figure 610236DEST_PATH_IMAGE019
当前更新代数k小于设置的总更新代数K时:对于种群所有个体第j组分量[w 1|j w 2|j w i|j… w I|j ] (jϵ[1,J]),采用天牛群算法对该组的最优位置分量
Figure 217934DEST_PATH_IMAGE038
进行更新。
其中对于第i个天牛个体的第j组位置分量w i|j 的适应度评价形式为:
Figure 4625DEST_PATH_IMAGE039
; 其中,
Figure 956138DEST_PATH_IMAGE022
i个天牛个体的第j组位置分量元素更新公式中的迭代因子λ的取值采用指数递增的形式:
Figure 410253DEST_PATH_IMAGE023
其中,λ Max为超参数;
步骤S53、通过步骤S52的迭代计算,得到种群最终搜索到的最优位置,即:
Figure 657695DEST_PATH_IMAGE040
具体的,对于一个天牛种群,设定其包含I个天牛个体,每个个体位置为N维向量; 设定第i个天牛个体位置为
Figure 197261DEST_PATH_IMAGE041
,对每个天牛个体赋 予速度和自身移动增量,第i个天牛个体的速度
Figure 719509DEST_PATH_IMAGE042
,移 动增量
Figure 762551DEST_PATH_IMAGE043
。天牛个体两个天牛须之间的距离 为d,每次移动的步长为δk为天牛种群当前更新代数,K为总更新代数。
之后进行协同操作,将天牛种群中每个天牛个体位置平均分解为J组,每组为S=N/J维,即对于第i (i=1,2,…,I)个个体,
Figure 947938DEST_PATH_IMAGE044
其中,
Figure 443642DEST_PATH_IMAGE045
为第i个天牛个体 的第j组位置分量。
对于每个天牛个体的速度和移动增量,
同样也有
Figure 35160DEST_PATH_IMAGE046
Figure 198288DEST_PATH_IMAGE047
其中,
Figure 584270DEST_PATH_IMAGE048
为第i个天牛个 体的第j组速度分量,
Figure 832849DEST_PATH_IMAGE049
为第i个天牛个体的 第j组移动增量分量;
Figure 696900DEST_PATH_IMAGE050
为第i个个体自身搜索到的第j组历史最优位置分量,
Figure 681911DEST_PATH_IMAGE051
为所有I个个体搜索到的第j组最优位置分量。
天牛位置协同操作如图3a-图3b所示,图3a和图3b分别为等式左右两边的内容。种 群中个体位置N维向量被分为J组分量,每组分量维度为S,通过寻优操作分
Figure 238794DEST_PATH_IMAGE052
,在此基础上,
Figure 974669DEST_PATH_IMAGE053
代表了种群最终搜索到的最优位置。
算法中天牛位置分量按照如下方式进行迭代更新:
天牛个体的位置分量更新由速度分量和自身移动增量分量两部分决定,对于第i个天牛个体,其第j组速度分量元素更新公式如下:
Figure 376832DEST_PATH_IMAGE054
公式中,s=1,2,…,S;c1和c2为常数,r1和r2为[0,1]内的随机数;ω为惯性权重,通常ω取值如下:
Figure 248973DEST_PATH_IMAGE055
移动增量分量元素通过计算得到,公式如下:
Figure 242336DEST_PATH_IMAGE056
其中w Rs;i|jw Ls;i|j满足如下公式:
Figure 465507DEST_PATH_IMAGE057
Figure 671361DEST_PATH_IMAGE058
公式中f为适应度评价函数,δ k d k 与天牛须算法更新方式相同。
i个天牛个体的第j组位置分量元素更新公式如下:
Figure 929167DEST_PATH_IMAGE059
公式中λ按照如下公式进行取值:
Figure 323458DEST_PATH_IMAGE060
综上,本发明提出的方案能够根据多种应用场景设置需求权重对海洋数值预报产品误差进行加权,从而能够结合特定需求对预报产品给出合理评价,实现了面向应用场景的自适应海洋数值预报产品验证。相比于目前海洋数值预报产品的单一评价方法,本发明能够自适应调整不同验证指标的权重系数,对不同应用场景和产品按需生成评价方案,使评价结果更加具有针对性。
在一些实施例中,具体地,面向航海保障、海洋运输、海洋工程、远洋捕捞和海洋生物研究5个应用场景对海洋温度、盐度、海流、海浪、海平面高度等共8个海洋产品进行了验证评价,产品误差矩阵和应用评价矩阵中训练拟合数据取800组。对于各个应用,使用协同天牛群算法求取该应用下对应的需求权重w的步骤如下:
算法初始化:将天牛的搜索范围设定为[0,1],目标函数f(w)作为协同天牛群算法搜索的适应度评价函数;天牛种群中天牛个体数量设置为100,即I=100;搜索迭代次数为100次,即K=100;由于每个应用有8个产品权重参数,所以变量维度为8,即N=8。按照这些参数产生初始天牛种群。
算法搜索过程:将每个种群的位置向量分解成4组分量,使用协同天牛群算法进行 目标函数的寻优,直至达到结束条件,得到
Figure 768346DEST_PATH_IMAGE061
算法搜索结果:将最终搜索得到的全局最优的天牛位置向量作为需求权重矩阵对应行的权值,即对于海洋工程应用的需求权重参数,
Figure 777890DEST_PATH_IMAGE062
适应度评价函数随算法迭代次数的变化曲线如图4所示。
可以看到,随迭代次数增加,协同天牛群优化算法能够快速使适应度函数收敛并接近理论最优值,实现需求权重矩阵的求解。
基于求得的需求权重针对应用场景进行预报产品验证评价。将求得的需求权重矩阵与产品误差矩阵相乘得到针对应用场景的预报产品自适应验证评价得分,公式如下:
Figure 155782DEST_PATH_IMAGE063
使用了50组检验数据对本发明的验证方法进行检验,图4为基于本发明提出的验证方法得到的针对应用场景的预报产品验证评价得分和检验数据验证评价得分的相对误差曲线如图4所示。
可以看到,相对误差值均在0.01以下,所求需求权重矩阵较好地拟合了应用场景与预报产品之间的需求关系,在特定场景下对各类预报产品误差进行了自适应加权,说明了本方法的有效性。
本发明第二方面公开了一种海洋数值预报产品验证系统。图6为根据本发明实施例的一种海洋数值预报产品验证系统的结构图;如图6所示,所述系统100包括:
第一处理模块101,被配置为,根据产品预报和观测数据,计算产品误差矩阵E
第二处理模块102,被配置为,基于应用场景的评价得分数据,计算应用评价矩阵G
第三处理模块103,被配置为,构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
第四处理模块104,被配置为,基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
第五处理模块105,被配置为,根据所述需求权重参数矩阵约束条件和所述需求权 重参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标 函数,并采用智能优化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 959790DEST_PATH_IMAGE064
第六处理模块106,被配置为,将所述优化的需求权重参数矩阵
Figure 423132DEST_PATH_IMAGE064
与产品误差矩阵E相乘,得到针对应用场景的预报产品的验证评价得分。
根据本发明第二方面的系统,所述第一处理模块101具体被配置为,设定产品误差向量e,形式如下:
Figure 236367DEST_PATH_IMAGE028
式中,e 产品n 为海洋数值预报产品中第n个产品的归一化误差值,误差向量e中包含所要验证评价的N个海洋数值预报产品的误差数据。
构造产品误差矩阵E,形式如下:
Figure 203186DEST_PATH_IMAGE065
ENT列的矩阵,其中包含T组产品误差向量。
根据本发明第二方面的系统,所述第二处理模块102具体被配置为,所述基于应用场景的评价得分数据,计算应用评价矩阵G的具体方法包括:
设定应用评价向量
Figure 443675DEST_PATH_IMAGE030
,对于M个应用场景,其形式如下:
Figure 128734DEST_PATH_IMAGE004
构造包含T组评价向量的应用评价矩阵G,形式如下:
Figure 978616DEST_PATH_IMAGE066
其中,
s m 为第m类应用场景的评估得分,s m 越大则第m类应用场景对于预报产品的评价越好。
根据本发明第二方面的系统,所述第三处理模块103具体被配置为,所述需求权重参数矩阵W的结构为MN列矩阵。
所述需求权重参数矩阵约束条件包括:
所述需求权重参数矩阵中的每一行的和为1;
需求权重参数矩阵产品误差矩阵E=应用评价矩阵G
具体地,为使得预报产品误差与应用评价之间的权值相对应,构造的需求权重矩阵WMN列矩阵。为使各预报产品误差对应的权值具有统一性,设定W中的每一行加和为1,即对于任意的m皆有:
Figure 65521DEST_PATH_IMAGE032
特定应用场景m对某项预报产品n需求越大,则W中该预报产品误差对应的需求权重w mn 越大,该产品误差的影响也随之更加凸显;
需求权重矩阵W满足:WE=G。第m类应用场景的评价得分s m 满足计算公式:
Figure 476911DEST_PATH_IMAGE033
矩阵之间的运算关系如图2a-图2b所示。
根据本发明第二方面的系统,所述第四处理模块104具体被配置为,所述需求权重参数矩阵计算模型的具体公式为:
Figure 383687DEST_PATH_IMAGE067
其中,
Figure 538725DEST_PATH_IMAGE007
为寻找最小评分的参量函数;
Figure 480136DEST_PATH_IMAGE008
Figure 62427DEST_PATH_IMAGE009
表示1范数,
Figure 456499DEST_PATH_IMAGE010
表示2范数。
根据本发明第二方面的系统,所述第五处理模块105具体被配置为,所述根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数的具体方法包括:
设定需求权重参数矩阵
Figure 149649DEST_PATH_IMAGE036
,应用评价矩阵
Figure 447031DEST_PATH_IMAGE037
其中w m 代表了第m个应用下N个产品对应的需求权重参数,
Figure 200224DEST_PATH_IMAGE013
代表第m个应用场景 下的评估得分;
使用
Figure 347171DEST_PATH_IMAGE016
来表示第m个应用场景下对应的权重
Figure 844012DEST_PATH_IMAGE014
,使用
Figure 494436DEST_PATH_IMAGE015
来表示第m个应用场景下 对应的权重
Figure 684109DEST_PATH_IMAGE013
,求取
Figure 52773DEST_PATH_IMAGE016
的目标函数采用如下形式:
其中,
Figure 87725DEST_PATH_IMAGE017
μ为罚因子,超参数,可将其设置为一个较大的数以实现对变量的约束。求解过程转换为对目标函数的寻优过程,理论上当目标函数f(w)取值为零时达到最优,此时取得的权重值w即为最优解。
所述智能优化算法搜索的具体方法为协同天牛群智能优化算法,具体方法包括:
初始化参变量。参数包括:种群中包含的天牛个体的数量I,天牛每次移动的步长δ,天牛个体两个天牛须之间的距离d,天牛总更新代数K,天牛个体位置向量维度N,个体位置向量的分组数J。变量包括:种群中每个天牛个体的位置w i ,即需求权重参数;种群速度v i ,(iϵ[1,I])。
设定
Figure 858235DEST_PATH_IMAGE018
为第j组最优位置分量([1,J]),并初始化各组的最优位置分量
Figure 953230DEST_PATH_IMAGE068
当前更新代数k小于设置的总更新代数K时:对于种群所有个体第j组分量[w 1|j w 2|j w i|j… w I|j ] (jϵ[1,J]),采用天牛群算法对该组的最优位置分量
Figure 74770DEST_PATH_IMAGE020
进行更新。
其中对于第i个天牛个体的第j组位置分量w i|j 的适应度评价形式为:
Figure 411948DEST_PATH_IMAGE069
; 其中,
Figure 36964DEST_PATH_IMAGE070
i个天牛个体的第j组位置分量元素更新公式中的迭代因子λ的取值采用指数递增的形式:
Figure 568440DEST_PATH_IMAGE071
其中,λ Max为超参数;
通过迭代计算,得到种群最终搜索到的最优位置,即:
Figure 380538DEST_PATH_IMAGE072
具体的,对于一个天牛种群,设定其包含I个天牛个体,每个个体位置为N维向量; 设定第i个天牛个体位置为
Figure 288451DEST_PATH_IMAGE041
,对每个天牛个 体赋予速度和自身移动增量,第i个天牛个体的速度
Figure 33553DEST_PATH_IMAGE042
, 移动增量
Figure 470351DEST_PATH_IMAGE073
。天牛个体两个天牛须之间的距 离为d,每次移动的步长为δk为天牛种群当前更新代数,K为总更新代数。
之后进行协同操作,将天牛种群中每个天牛个体位置平均分解为J组,每组为S=N/J维,即对于第i (i=1,2,…,I)个个体,
Figure 300904DEST_PATH_IMAGE074
其中
Figure 215770DEST_PATH_IMAGE045
为第i个天牛个体 的第j组位置分量。对于每个天牛个体的速度和移动增量,
同样也有
Figure 80958DEST_PATH_IMAGE075
Figure 184262DEST_PATH_IMAGE076
其中,
Figure 236532DEST_PATH_IMAGE048
为第i个天牛个 体的第j组速度分量,
Figure 955089DEST_PATH_IMAGE049
为第i个天牛个体的 第j组移动增量分量;
Figure 409204DEST_PATH_IMAGE077
为第i个个体自身搜索到的第j组历史最优位置分量,
Figure 187804DEST_PATH_IMAGE078
为所有I个个体搜索到的第j组最优位置分量。
天牛位置协同操作如图3a-图3b所示。种群中个体位置N维向量被分为J组分量,每 组分量维度为S,通过寻优操作分
Figure 992949DEST_PATH_IMAGE079
,在此基础上,
Figure 515198DEST_PATH_IMAGE080
代表了种群最终搜索到的最优位置。
算法中天牛位置分量按照如下方式进行迭代更新:
天牛个体的位置分量更新由速度分量和自身移动增量分量两部分决定,对于第i个天牛个体,其第j组速度分量元素更新公式如下:
Figure 89398DEST_PATH_IMAGE054
公式中,s=1,2,…,S;c1和c2为常数,r1和r2为[0,1]内的随机数;ω为惯性权重,通常ω取值如下:
Figure 38900DEST_PATH_IMAGE081
移动增量分量元素通过计算得到,公式如下:
Figure 298718DEST_PATH_IMAGE082
其中w Rs;i|jw Ls;i|j满足如下公式:
Figure 890236DEST_PATH_IMAGE083
Figure 53364DEST_PATH_IMAGE058
公式中f为适应度评价函数,δ k d k 与天牛须算法更新方式相同。
第i个天牛个体的第j组位置分量元素更新公式如下:
Figure 439346DEST_PATH_IMAGE084
公式中λ按照如下公式进行取值:
Figure DEST_PATH_IMAGE085
本发明第三方面公开了一种电子设备。电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时,实现本发明公开第一方面中任一项的一种海洋数值预报产品验证方法中的步骤。
图7为根据本发明实施例的一种电子设备的结构图,如图7所示,电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本公开的技术方案相关的部分的结构图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本发明第四方面公开了一种存储介质。存储介质上存储有计算机程序,尤其是应用于计算机上的可读存储介质,计算机程序被处理器执行时,实现本发明公开第一方面中任一项的一种海洋数值预报产品验证方法中的步骤中的步骤。
请注意,以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种海洋数值预报产品验证方法,其特征在于,所述方法包括:
步骤S1、根据产品预报和观测数据,计算产品误差矩阵E
步骤S2、基于应用场景的评价得分数据,计算应用评价矩阵G
步骤S3、构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
步骤S4、基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
步骤S5、根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模型,将 所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数,并采用智能优化算 法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 623761DEST_PATH_IMAGE001
步骤S6、将所述优化的需求权重参数矩阵
Figure 222233DEST_PATH_IMAGE002
与产品误差矩阵E相乘,得到针对应用场景 的预报产品验证评价得分。
2.根据权利要求1所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S2中,所述基于应用场景的评价得分数据,计算应用评价矩阵G的具体方法包括:
设定应用评价向量
Figure 239868DEST_PATH_IMAGE003
,对于M个应用场景,其形式如下:
Figure 796751DEST_PATH_IMAGE004
构造包含T组评价向量的应用评价矩阵G,形式如下:
Figure 500002DEST_PATH_IMAGE005
其中,
s m 为第m类应用场景的评估得分。
3.根据权利要求1所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S3中,所述需求权重参数矩阵W的结构为MN列矩阵。
4.根据权利要求3所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S3中,所述需求权重参数矩阵约束条件包括:
所述需求权重参数矩阵中的每一行的和为1;
需求权重参数矩阵产品误差矩阵E=应用评价矩阵G
5.根据权利要求4所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S4中,所述需求权重参数矩阵计算模型的具体公式为:
Figure 167744DEST_PATH_IMAGE006
其中,
Figure 305464DEST_PATH_IMAGE007
为寻找最小评分的参量函数;
Figure 298828DEST_PATH_IMAGE008
Figure 256420DEST_PATH_IMAGE009
表示1范数,
Figure 993432DEST_PATH_IMAGE010
表示2范数。
6.根据权利要求5所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S5中,所述根据所述需求权重参数矩阵约束条件和所述需求权重参数矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数的具体方法包括:
设定需求权重参数矩阵
Figure 985659DEST_PATH_IMAGE011
,应用评价矩阵
Figure 618765DEST_PATH_IMAGE012
其中w m 代表了第m个应用下N个产品对应的需求权重参数,
Figure 848275DEST_PATH_IMAGE013
代表第m个应用场景下的 评估得分;
使用
Figure 857820DEST_PATH_IMAGE014
来表示第m个应用场景下对应的权重
Figure 970132DEST_PATH_IMAGE015
,使用
Figure 39719DEST_PATH_IMAGE016
来表示第m个应用场景下对应的 权重
Figure 971903DEST_PATH_IMAGE013
,求取
Figure 50718DEST_PATH_IMAGE014
的目标函数采用如下形式:
Figure 283116DEST_PATH_IMAGE017
其中,
μ为罚因子,超参数。
7.根据权利要求6所述的一种海洋数值预报产品验证方法,其特征在于,在所述步骤S5中,所述智能优化算法搜索的具体方法为协同天牛群智能优化算法,具体方法包括:
步骤S51、初始化参变量;参数包括:种群中包含的天牛个体的数量I,天牛每次移动的步长δ,天牛个体两个天牛须之间的距离d,天牛总更新代数K,天牛个体位置向量维度N,个体位置向量的分组数J;变量包括:种群中每个天牛个体的位置w i ,即需求权重参数;种群速度v i ,(iϵ[1,I]);
步骤S52、设定
Figure 258025DEST_PATH_IMAGE018
为第j组最优位置分量([1,J]),并初始化各组的最优位置分量
Figure 208664DEST_PATH_IMAGE019
当前更新代数k小于设置的总更新代数K时:对于种群所有个体第j组分量[w 1|j w 2|j w i|j … w I|j ]
Figure 560010DEST_PATH_IMAGE014
(jϵ[1,J]),采用天牛群算法对该组的最优位置分量
Figure 879871DEST_PATH_IMAGE020
进行更新;
其中对于第i个天牛个体的第j组位置分量w i|j 的适应度评价形式为:
Figure 494523DEST_PATH_IMAGE021
;其中,
Figure 401299DEST_PATH_IMAGE022
i个天牛个体的第j组位置分量元素更新公式中的迭代因子λ的取值采用指数递增的形式:
Figure 821916DEST_PATH_IMAGE023
其中,λ Max为超参数;
步骤S53、通过步骤S52的迭代计算,得到种群最终搜索到的最优位置,即:
Figure 763328DEST_PATH_IMAGE024
8.一种用于海洋数值预报产品验证系统,其特征在于,所述系统包括:
第一处理模块,被配置为,根据产品预报和观测数据,计算产品误差矩阵E
第二处理模块,被配置为,基于应用场景的评价得分数据,计算应用评价矩阵G
第三处理模块,被配置为,构造需求权重参数矩阵W和需求权重参数矩阵约束条件;
第四处理模块,被配置为,基于所述产品误差矩阵和所述应用评价矩阵,构建所述需求权重参数矩阵计算模型;
第五处理模块,被配置为,根据所述需求权重参数矩阵约束条件和所述需求权重参数 矩阵计算模型,将所述需求权重参数矩阵中的权重参数作为优化的变量,构造目标函数,并 采用智能优化算法搜索使目标函数取得最优,得到优化的需求权重参数矩阵
Figure 345619DEST_PATH_IMAGE025
第六处理模块,被配置为,将所述优化的需求权重参数矩阵
Figure 739691DEST_PATH_IMAGE025
与产品误差矩阵E相乘, 得到针对应用场景的预报产品的验证评价得分。
9.一种电子设备,其特征在于,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至7中任一项所述的一种海洋数值预报产品验证方法中的步骤。
10.一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的一种海洋数值预报产品验证方法中的步骤。
CN202210536520.9A 2022-05-18 2022-05-18 海洋数值预报产品验证方法、系统、电子设备及存储介质 Active CN114637962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210536520.9A CN114637962B (zh) 2022-05-18 2022-05-18 海洋数值预报产品验证方法、系统、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210536520.9A CN114637962B (zh) 2022-05-18 2022-05-18 海洋数值预报产品验证方法、系统、电子设备及存储介质

Publications (2)

Publication Number Publication Date
CN114637962A true CN114637962A (zh) 2022-06-17
CN114637962B CN114637962B (zh) 2022-08-30

Family

ID=81953187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210536520.9A Active CN114637962B (zh) 2022-05-18 2022-05-18 海洋数值预报产品验证方法、系统、电子设备及存储介质

Country Status (1)

Country Link
CN (1) CN114637962B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030083971A1 (en) * 2001-10-29 2003-05-01 Shigeru Kawamoto Method and system for determining optimal portfolio
WO2012077468A1 (ja) * 2010-12-09 2012-06-14 独立行政法人理化学研究所 ガンマ線を利用する画像化装置、画像信号処理装置およびガンマ線測定データの画像処理方法
CN107656251A (zh) * 2017-11-13 2018-02-02 浙江大学 一种基于改进入侵杂草优化算法的智能雷达海杂波预报系统及方法
CN108038577A (zh) * 2017-12-26 2018-05-15 国家海洋局北海预报中心 一种单站海浪有效波高数值预报结果多要素修正方法
CN111443712A (zh) * 2020-03-30 2020-07-24 杭州电子科技大学 一种基于天牛群搜索算法的三维路径规划方法
CN112070357A (zh) * 2020-08-11 2020-12-11 中国人民解放军海军工程大学 一种基于改进bp神经网络的雷达辐射源威胁评估方法
CN113324627A (zh) * 2021-08-04 2021-08-31 自然资源部第一海洋研究所 一种基于浮标的潮位观测及预报方法
CN113962426A (zh) * 2021-08-27 2022-01-21 交通运输部天津水运工程科学研究所 一种近海水上通航安全智能预报方法和装置
CN113988349A (zh) * 2020-07-27 2022-01-28 海南省气象科学研究所 一种基于时空局部模型的数值模式预报产品客观释用方法
CN114091745A (zh) * 2021-11-15 2022-02-25 国网重庆市电力公司市北供电分公司 基于改进多存储池回声状态网络的行业用电量预测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030083971A1 (en) * 2001-10-29 2003-05-01 Shigeru Kawamoto Method and system for determining optimal portfolio
WO2012077468A1 (ja) * 2010-12-09 2012-06-14 独立行政法人理化学研究所 ガンマ線を利用する画像化装置、画像信号処理装置およびガンマ線測定データの画像処理方法
CN107656251A (zh) * 2017-11-13 2018-02-02 浙江大学 一种基于改进入侵杂草优化算法的智能雷达海杂波预报系统及方法
CN108038577A (zh) * 2017-12-26 2018-05-15 国家海洋局北海预报中心 一种单站海浪有效波高数值预报结果多要素修正方法
CN111443712A (zh) * 2020-03-30 2020-07-24 杭州电子科技大学 一种基于天牛群搜索算法的三维路径规划方法
CN113988349A (zh) * 2020-07-27 2022-01-28 海南省气象科学研究所 一种基于时空局部模型的数值模式预报产品客观释用方法
CN112070357A (zh) * 2020-08-11 2020-12-11 中国人民解放军海军工程大学 一种基于改进bp神经网络的雷达辐射源威胁评估方法
CN113324627A (zh) * 2021-08-04 2021-08-31 自然资源部第一海洋研究所 一种基于浮标的潮位观测及预报方法
CN113962426A (zh) * 2021-08-27 2022-01-21 交通运输部天津水运工程科学研究所 一种近海水上通航安全智能预报方法和装置
CN114091745A (zh) * 2021-11-15 2022-02-25 国网重庆市电力公司市北供电分公司 基于改进多存储池回声状态网络的行业用电量预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SUN JC: "Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas", 《ACTA OCEANOLOGICA SINICA》 *
WANG J: "BSAS:Beetle Swarm Antennae Search Algorithm for Optimiaztion Problem", 《INTERNATIONAL JOURNAL OF ROBOTICS AND CONTROL》 *
徐东星: "改进天牛群搜索算法及其在船舶纵摇运动预测中的应用", 《广东海洋大学学报》 *
高秀敏: "伴随同化方向在中国近海海洋数值模拟中的应用", 《海洋科学进展》 *

Also Published As

Publication number Publication date
CN114637962B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Li et al. Deep reinforcement learning: Framework, applications, and embedded implementations
Akbilgic et al. A novel hybrid RBF neural networks model as a forecaster
Coello et al. Hybridizing a genetic algorithm with an artificial immune system for global optimization
KR102156757B1 (ko) 기계 학습을 이용한 신용 평가를 위한 시스템, 방법, 및 컴퓨터 프로그램
CN112052071B (zh) 强化学习和机器学习相结合的云软件服务资源分配方法
Okkan et al. Towards a hybrid algorithm for the robust calibration of rainfall–runoff models
Zhao et al. A decomposition-based many-objective ant colony optimization algorithm with adaptive solution construction and selection approaches
Liu et al. Multi-task recommendations with reinforcement learning
Li et al. A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration
Sun et al. Zeroth-order supervised policy improvement
Ranjan et al. Inverse problem for time-series valued computer model via scalarization
de Morais et al. Robust path-following control design of heavy vehicles based on multiobjective evolutionary optimization
CN114637962B (zh) 海洋数值预报产品验证方法、系统、电子设备及存储介质
Wild MNH: A derivative-free optimization algorithm using minimal norm Hessians
Homayounfar et al. A novel solution for stochastic dynamic game of water allocation from a reservoir using collocation method
Aliniya et al. Solving constrained optimisation problems using the improved imperialist competitive algorithm and Deb’s technique
CN115829097A (zh) 一种基于vmd和kelm的空调超短期负荷预测方法
Islam et al. Entropy regularization with discounted future state distribution in policy gradient methods
Al-Betar et al. Equilibrium optimizer: a comprehensive survey
CN114528638A (zh) 基于强化学习的船舶运动大多步实时预测混合方法及系统
Santner et al. Some criterion-based experimental designs
Cruz-Vega et al. Improved learning rule for LVQ based on granular computing
Tsukada et al. Cma-es with surrogate model adapting to fitness landscape
CN117690536B (zh) 基于异构并行的材料性能预测方法、装置、设备及介质
KR102519218B1 (ko) 물리적 데이터 공유 없이 수평분할 기반 중앙화 모델을 추정하기 위한 가중치 기반 통합 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant