CN114637116A - 衍射光波导以及具有其的显示设备 - Google Patents

衍射光波导以及具有其的显示设备 Download PDF

Info

Publication number
CN114637116A
CN114637116A CN202210254157.1A CN202210254157A CN114637116A CN 114637116 A CN114637116 A CN 114637116A CN 202210254157 A CN202210254157 A CN 202210254157A CN 114637116 A CN114637116 A CN 114637116A
Authority
CN
China
Prior art keywords
grating
waveguide
optical waveguide
diffractive optical
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210254157.1A
Other languages
English (en)
Other versions
CN114637116B (zh
Inventor
范真涛
赵兴明
田克汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Uphoton Optoelectronics Technology Co Ltd
Original Assignee
Jiaxing Uphoton Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Uphoton Optoelectronics Technology Co Ltd filed Critical Jiaxing Uphoton Optoelectronics Technology Co Ltd
Priority to CN202210254157.1A priority Critical patent/CN114637116B/zh
Priority to CN202310025411.5A priority patent/CN116068768A/zh
Publication of CN114637116A publication Critical patent/CN114637116A/zh
Application granted granted Critical
Publication of CN114637116B publication Critical patent/CN114637116B/zh
Priority to EP23161875.2A priority patent/EP4261596A3/en
Priority to US18/183,610 priority patent/US11892682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请公开了一种衍射光波导以及具有其的显示设备。该衍射光波导包括形成在波导基板表面上的光栅结构,该光栅结构包括布置在平面内的多条栅线,栅线各自沿平面内第一方向延伸并在垂直于第一方向的第二方向上以预定间隔排列;每一条栅线的至少一个侧壁沿第一方向具有周期性结构;并且光栅结构构造为将相对于所述平面以非零角度入射于其上的光通过预定衍射级次向所述平面外衍射。上述衍射光波导中采用的光栅结构能够用于对不同角度以及/或者不同衍射级次上的衍射效率进行调节,从而为改善衍射光波导的角度均匀性以及/或者耦出效率提供了新的有效而灵活的手段。

Description

衍射光波导以及具有其的显示设备
技术领域
本发明涉及基于衍射的显示技术,特别是衍射光波导以及具有衍射光波导的显示设备。
背景技术
基于衍射的显示技术近年来发展迅速,其可应用在近眼显示装置、头戴式显示装置和平视显示装置等显示装置中。衍射光波导是可以用于衍射显示技术的一种重要光学器件。图1示意性地示出了一种可用于显示的衍射光波导;图2示出了沿图1中所示剖切位置截取的该衍射光波导的截面图,并进一步示出了光在衍射光波导中的传播。如图1和图2所示,在衍射光波导的波导基底a上设置有耦入光栅b和耦出光栅c;耦入光栅b将载有图像信息的入射光IN耦入波导基底a中;耦出光栅b一边对载有图像信息的光进行传播和扩展,一边将所述光从波导基底中耦出,形成耦出光场OUT。眼睛E接收耦出光场OUT的光,从而可以例如观察到入射光IN所载图像。
衍射光波导具有可量产性强、轻薄等优势,然而也并非没有缺点,例如其在显示图像的亮度和均匀性方面尚待提高。
现有衍射光波导装置中,耦入光栅一般采用直齿光栅(又称“矩形光栅”),并选择+1级或-1级衍射级次作为耦入用的衍射级次。然而,直齿光栅是一个对称结构,光通过其耦入光波导后,±1级衍射的能量均匀分配,而实际只用其中一个级次,因此造成耦入光栅的耦合效率低。耦入光栅如果采用闪耀光栅或者斜齿光栅则能把衍射能量往+1级或-1级集中,提高耦合效率,但是闪耀光栅和斜齿光栅的模板加工较为困难,且转印脱模也是很大的挑战,实际产品往往很难达到设计的性能要求。
此外,衍射光波导耦出光场的均匀性包括在整个耦出光场的不同区域之间的均匀性,也包括在视场范围内不同视场角(对应于入射光IN对耦入光栅的入射角)之间的均匀性(又称“角度均匀性”)。人们一直在探索如何提高衍射光波导的均匀性,并对二维耦出光栅的光学单元结构提出改进,例如参见CN111194422A和CN212460098U。然而,在制造时要控制二维光栅的光学单元结构具有精细且准确的形状(特别是棱角形状)和尺寸仍有困难;不仅如此,在设计上也存在很大的限制。
发明内容
本发明的目的是提供一种用于衍射显示的衍射光波导及包括该衍射光波导的显示设备,以至少部分地克服了现有技术中的不足。
根据本发明的一个方面,提供了一种衍射光波导,其包括波导基板和形成在所述波导基板的表面上的光栅结构,其中,所述光栅结构包括布置在一平面内的多条栅线,所述多条栅线各自沿所述平面内的第一方向延伸,并在垂直于所述第一方向的第二方向上以预定间隔排列;每一条栅线在所述第二方向上具有彼此相反的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁中的至少一者沿所述第一方向具有周期性结构;并且所述光栅结构构造为将相对于所述平面以非零角度入射于其上的光通过预定衍射级次向所述平面外衍射。
在一些实施例中,所述光栅结构构造为通过所述预定衍射级次的衍射,将以预定范围内的入射角照射到所述波导基板上的光束耦合到所述波导基板中,以使之通过全反射在所述波导基板内传播。
有利地,仅所述第一侧壁沿所述第一方向具有周期性结构,并且不同栅线的第一侧壁上的所述周期性结构在所述第二方向上是彼此对齐的。
有利地,所述衍射光波导还包括形成在所述波导基板上的耦出光栅,所述耦出光栅构造为将从所述耦入光栅通过全反射传播到其中的光的至少一部分通过衍射从所述波导基板中耦出;并且所述第一侧壁朝向所述耦出光栅。
在一些实施例中,所述光栅结构构造为将在所述波导基板内通过全反射传播到其中的光的至少一部分通过衍射从所述波导基板中耦出。
有利地,仅所述第一侧壁沿所述第一方向具有周期性结构,并且相邻栅线的侧壁上的所述周期性结构沿所述第一方向错开预定距离s,s=P/n,其中,P为所述周期性结构在所述第一方向上的周期,n为2或3,优选地n为2。
有利地,所述衍射光波导还包括附加光栅结构,所述附加光栅结构为一维光栅,并且在所述第一方向上布置在所述光栅结构的至少一侧并与之邻接,用于将传播到其中的光的至少一部分通过衍射从所述波导基板中耦出。
有利地,所述衍射光波导还包括形成在所述波导基板上的耦入光栅,所述耦入光栅构造为将照射到所述波导基板上的光束耦合到所述波导基板中,以使之通过全反射在所述波导基板内传播,并且所述第一侧壁朝向所述耦入光栅。
有利地,所述周期性结构形成突出的多个齿状结构,所述齿状结构具有齿顶和齿根,并且所述齿状结构在所述第一方向上的宽度从所述齿根到所述齿顶逐渐缩小。
有利地,所述齿状结构关于平行于所述第二方向的轴线具有轴对称结构。
有利地,所述齿状结构具有多边形形状、圆弧形状或弧线与直线组合形成的形状,优选地,所述齿状结构具有三角形、梯形或圆弧形形状。
有利地,所述栅线沿所述第二方向分为第一区域和第二区域,所述多个齿状结构位于所述第二区域中;所述栅线在所述第一区域和所述第二区域具有垂直于所述平面的不同高度或者具有不同的折射率。
有利地,所述周期性结构在所述第一方向上的周期在100~500nm之间。
根据本发明的另一个方面,提供了一种显示设备,其包括如上所述的衍射光波导。
有利地,所述显示设备为近眼显示设备,并且包括镜片和用于将镜片保持为靠近眼睛的框架,所述镜片包括所述衍射光波导。
有利地,所述显示设备为增强现实显示设备或虚拟现实显示设备。
根据本发明实施例的衍射光波导中采用了一种新型的光栅结构,该光栅结构能够用于对不同角度以及/或者不同衍射级次上的衍射效率进行调节,从而为改善衍射光波导的角度均匀性以及/或者耦出效率提供了新的有效而灵活的手段。
附图说明
通过阅读参照以下附图所作的对非限制性实施例的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为可用于显示的一种衍射光波导的示意图;
图2为图1所示衍射光波导的示意性截面图;
图3为根据本发明实施例一的衍射光波导的示意图;
图4、图5和图6分别示出根据本发明实施例的光栅的不同示例;
图7为光栅结构10的栅线11沿第二方向y截取的横截面示意图;
图8为数据例1中栅线侧壁不具有周期性结构的直齿光栅与栅线侧壁具有不同形状的周期性结构的光栅的+1级衍射效率随入射角变化的曲线图,其中栅线具有一致的高度;
图9为数据例2中栅线侧壁具有不同高度的圆弧形齿状周期性结构的光栅的+1级衍射效率随入射角变化的曲线图;
图10为数据例3中栅线侧壁不具有周期性结构的直齿光栅与栅线侧壁具有不同形状的周期性结构的光栅的+1级衍射效率随入射角变化的曲线图,其中周期性结构与栅线的其它部分具有不同的高度;
图11为数据例4中耦出光栅的耦出能量随入射角变化的曲线图;
图12为数据例4中的衍射光波导的耦出能量随入射角变化的曲线图,其中该衍射光波导以数据例3中的各光栅为耦入光栅,并配置有具有如图11所示耦出能量随入射角变化的曲线的耦出光栅;
图13为数据例5中栅线侧壁具有有着不同周期的圆弧形齿状周期性结构的光栅的+1级衍射效率随入射角变化的曲线图;
图14为根据本发明实施例二的衍射光波导的示意图;
图15为数据例6中仿真得到的衍射光波导的0°视场的耦出光场能量分布图;
图16为根据本发明实施例三的衍射光波导的示意图;
图17、图18和图19分别示出根据本发明其它实施例的光栅的不同示例,其中光栅的栅线的两个侧壁均形成有周期性结构。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。为了便于描述,附图中仅示出了与发明相关的部分。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
根据本发明实施例的衍射光波导中采用了一种新型的光栅结构,该光栅结构形成在波导基板的表面上,包括布置在一平面内的多条栅线,这些栅线沿平面内的第一方向延伸并在垂直于第一方向的第二方向上以预定间隔排列,每一条栅线在第二方向上具有彼此相反的第一侧壁和第二侧壁,其中至少一个侧壁沿第一方向具有周期性结构。
本发明的发明人发现,当该光栅结构被用于将相对于光栅结构所在平面以非零角度入射于其上的光通过预定衍射级次向平面外进行衍射时,这些形成于侧壁上的周期性结构能够用于对不同入射角度以及/或者不同衍射级次上的衍射效率进行调节,从而为改善衍射光波导的均匀性(特别是角度均匀性)以及/或者光耦合效率提供了新的有效而灵活的手段。
下面介绍根据本发明实施例一的衍射光波导,其中上述新型的光栅结构被用于耦入光栅。
图3示出了根据本发明实施例一的衍射光波导的一个示例。如图3所示,根据本发明实施例一的衍射光波导100包括波导基板100a和形成在波导基板100a的表面上的耦入光栅110。耦入光栅110包括光栅结构10,该光栅结构10构造为通过预定衍射级次的衍射,将照射于其上的光束耦合到波导基板100a中,以使之通过全反射在波导基板100a内传播。
图3中右侧图形为光栅结构10的放大图,如该图形所示,光栅结构10包括布置在平面x-y内的多条栅线11,多条栅线11各自沿平面x-y内的第一方向x延伸并在垂直于第一方向x的第二方向y上以预定间隔d1排列,并且每一条栅线11在第二方向y上具有彼此相反的第一侧壁11a和第二侧壁11b。根据本实施例,光栅结构10中,第一侧壁11a沿第一方向x具有周期为d2的周期性结构12,并且不同栅线11的第一侧壁11a上的周期性结构12在第二方向y上是彼此对齐的。这样的光栅结构10能够起到一维光栅的作用。
如图3所示,衍射光波导100还可以包括形成在波导基板100a上的耦出光栅120,该耦出光栅120构造为将从耦入光栅110通过全反射传播到其中的光的至少一部分通过衍射从波导基板100a中耦出。优选地,形成有周期性结构12的第一侧壁11a朝向耦出光栅120。
在一些实现方式中,周期性结构12可以形成突出的多个齿状结构,每个齿状结构具有齿顶12a和齿根12b,并且齿状结构在第一方向x上的宽度从齿根12b到齿顶12a逐渐缩小。有利地,周期性结构12/齿状结构关于平行于第二方向y的轴线(未示出)具有轴对称结构,从而有利于为耦入光栅110提供相应的对称的衍射性能。
在图3所示示例中,周期性结构12形成对称三角形形状的齿状结构。然而,图3所示仅为示例的目的,而非限制性的。图4至图6示出了其中齿状结构具有不对称三角形、圆弧形和梯形形状的光栅结构示例。应该理解,根据具体应用中的需要,齿状结构可以具有多边形形状、圆弧形状、或弧线与直线组合形成的形状。如下文中将结合数据例介绍的,可以通过调整周期性结构12的形状来调节光栅结构10的衍射效率。
在另一些实现方式中,尽管没有示出,但是周期性结构12可以是没有形成明显突起的齿状结构的起伏结构。
图7为光栅结构10的栅线11沿第二方向y截取的横截面示意图,其中图形(a)、(b)、(c)、(d)和(e)分别示出不同示例。如图7所示,栅线11沿第二方向y可以分为第一区域H1和第二区域H2。这里,第一区域H1主要对应于栅线11的沿第一方向x连续延伸的部分,可以称为栅线主体;第二区域H2为齿状结构(周期性结构12)所在的区域,其可以包括齿状结构的大部分或整体,还可以包括栅线主体的一部分。
优选地,第一区域H1具有矩形横截面。这种情况下,光栅结构10中多条栅线11的第一区域H1(栅线主体)可以等效为一维的直齿光栅(又称“矩形光栅”);周期性结构12相当于在该直齿光栅的基础上增加的额外结构。这种额外的结构可以用于使原本对称结构的直齿光栅在第一侧壁11a和第二侧壁11b这两侧不再对称,并使光栅结构10整体在第二方向y上的两侧呈不对称结构。例如,在根据本发明实施例一的衍射光波导100中,仅在栅线11的第一侧壁11a上形成周期性结构。以直齿光栅作为光栅结构10的主体,可以有效地降低光栅的制造加工难度,有利于提高良品率和实现量产。
根据本发明实施例,可以对周期性结构12的高度进行调整,以调节光栅结构10的衍射效率。在图7中图形(a)所示示例中,第一区域H1和第二区域H2具有相同的高度。这样的结构对于光栅的加工制造是非常有利的,因为光栅结构10的顶部平坦,对应的模板加工和转印脱模都比较容易。图7中图形(b)至(e)中示出了第一区域H1的高度h1不同于第二区域H2的高度h2的不同情形,其中图形(b)和(c)中,第二区域H2本身的高度是一致的,不存在倾斜;图形(d)和(e)中,第二区域H2可以具有渐变的高度。如下文中将介绍的,通过将第一区域H1和第二区域H2设置为具有不同的高度h1和h2,可以有效地将衍射能量往+1级或-1级衍射级次集中,大大提高耦合效率。此外,相比于闪耀光栅和斜齿光栅,上述介绍的光栅结构由于顶部不存在倾斜或者由于可以设计为仅存在倾斜度较小的、局部的倾斜部分,所以模板加工和转印脱模都相对比较容易,有利于制造加工。
作为替代或补充,栅线11在第一区域H1和第二区域H2可以具有不同的折射率。与高度差异类似,折射率差异也会影响光在第一区域H1和第二区域H2时发生的相位差,可以用于调节光栅结构10的衍射效率。
下面,结合仿真的数据例,仅以示例而非限制性的方式,介绍上述光栅结构中栅线侧壁上的周期性结构对不同入射角度以及/或者不同衍射级次上的衍射效率的影响。以下数据例中采用的光的波长为532nm。
(数据例1)
数据例1中对栅线侧壁不具有周期性结构的直齿光栅与具有不同形状的周期性结构12的光栅(光栅结构10)的+1级衍射效率做了比较,其中所比较的光栅的栅线都具有相同的高度,光栅的材料折射率为1.8,光栅周期(即栅线11在第二方向上的排布间隔)d1=450nm,周期性结构12的周期d2=450nm,其他参数见表1:
[表1]
h1 w1 h2 w2 w3 w4
直齿光栅 300nm 315nm —— —— —— ——
对称三角形 300nm 225nm 300nm 90nm 450nm ——
不对称三角形 300nm 225nm 300nm 90nm 225nm ——
圆弧形 300nm 225nm 300nm 140nm 90nm ——
梯形 300nm 225nm 300nm 90nm 450nm 167nm
其中,w1为栅线11的栅线主体在第二方向y上的宽度,w2为周期性结构12在第二方向y上的宽度,w3为周期性结构12所形成的齿状结构的齿根12b在第一方向x上的宽度,w4为周期性结构12所形成的齿状结构的齿顶12a在第一方向x上的宽度(如果宽度大于0),具体参见图3至图6中的标示。以下数据例中上述参数含义相同。
图8示出了数据例1中各光栅的+1级衍射效率随入射角变化的曲线图。图8以及以下将讨论的图9至图13的曲线图中,入射角为入射光相对于光栅(光栅结构10)所在平面x-y的法线的夹角,并且在相应的数据例和曲线图中仅考察和显示了入射角绕沿第一方向x的轴线变化时的情况。
从图8中可以看到,相对于直齿光栅,光栅结构10的栅线侧壁上的周期性结构12能够改变+1级衍射效率随入射角的分布,而且周期性结构12的形状对衍射效率随入射角的分布有直接和显著的影响。
(数据例2)
数据例2中对栅线侧壁具有相同圆弧形状和不同高度的齿状周期性结构12的光栅(光栅结构10)的+1级衍射效率做了比较,其中光栅的材料折射率为1.8,光栅周期(即栅线11在第二方向上的排布间隔)d1=450nm,周期性结构12的周期d2=450nm,其他参数见表2:
[表2]
Figure BDA0003547875440000081
Figure BDA0003547875440000091
图9示出了数据例2中各光栅的+1级衍射效率随入射角变化的曲线图。从图9中可以看到,周期性结构12的高度能够显著地影响光栅+1级衍射效率随入射角的分布,通过对周期性结构12的高度进行优化,能够大大地提高+1级的整体衍射效率,参见“圆弧形1”和“圆弧形2”的曲线相对于“圆弧形0”的曲线的变化。
(数据例3)
数据例3中对栅线侧壁不具有周期性结构的直齿光栅与栅线侧壁具有不同形状、不同高度的周期性结构的光栅的+1级衍射效率做了比较,其中所比较的光栅中周期性结构的高度与栅线其它部分具有不同的高度,光栅的材料折射率为1.8,光栅周期(即栅线11在第二方向上的排布间隔)d1=450nm,周期性结构12的周期d2=450nm,其他参数见表3:
[表3]
h1 w1 h2 w2 w3 w4
直齿光栅 300nm 315nm —— —— —— ——
对称三角形 300nm 225nm 450nm 90nm 450nm ——
不对称三角形 300nm 225nm 450nm 90nm 225nm ——
圆弧形 300nm 225nm 450nm 140nm 90nm ——
梯形 300nm 225nm 450nm 90nm 450nm 167nm
图10示出了各光栅的+1级衍射效率随入射角变化的曲线图。从图10中可以看到,通过改变/优化周期性结构12的形状和高度,能够整体上提升光栅的+1级衍射效率,并调节衍射效率随入射角的分布。
(数据例4)
以上数据例1-3均单独针对光栅结构10的衍射效率进行了分析比对,数据例4将从根据本发明实施例一的衍射光波导100的整体进行考察。
数据例4中,假设衍射光波导100的耦入光栅110采用数据例3中分析的各个光栅,其结构参数及衍射效率随入射角变化的曲线参见表3和图10;并且耦入光栅110的+1级被用于将入射光耦入波导基板并向耦出光栅120传播的预定衍射级次。
同时,数据例4中假设衍射光波导100的耦出光栅120为二维光栅,该二维光栅的光学单元结构的横截面如图11中左上角所示的改进的平行四边形,其中该改进的平行四边形的两端顶角均为60°,中间四个顶角均为120°,两侧四条长边的长度为248nm,中间四条短边的长度为47nm。具有改进的平行四边形的光学单元结构的耦出光栅120为现有技术中已经提出的光栅结构,其具有减弱耦出光场的中间亮条纹的作用,有利于改善耦出光场的不同区域之间的均匀性。然而,参照图11所示耦出光栅120的耦出能量随入射角变化的曲线图(纵坐标为归一化量值,且假设耦入到耦出光栅中的光能量随入射角均匀分布)可以看到,这种“改进的平行四边形”形状的光学单元结构并不能同时改善耦出光场的角度均匀性,相反,随着入射角变化,耦出能量(耦出效率)发生很大的变化。
图12为具有上述耦入光栅110和耦出光栅120的衍射光波导100的耦出能量随入射角变化的曲线图。衍射光波导100的整体耦出光能量随入射角的变化是受耦入光栅110的+1级衍射效率与耦出光栅120的耦出效率的同时影响的。从图12可以看到,相比较于搭配直齿光栅形式的耦入光栅,耦出光栅120搭配在栅线侧壁具有周期性结构的耦入光栅110后,衍射光波导100的视场角(FOV)范围内的整体耦出效率大幅提升,FOV内的均匀性也显著改善。在图12所示示例中,周期性结构为三角形齿状结构的衍射光波导具有最大的效率,周期性结构为不对称三角形结构的衍射光波导具有最好的FOV内均匀性。
应该理解,上述具有改进的平行四边形的光学单元结构的耦出光栅仅仅是示例性的。根据本发明实施例一,在具体应用中,可以根据所要搭配的耦出光栅120的具体情况,调整调节耦入光栅110中周期性结构12的具体参数,从而调节耦入光栅110的耦入衍射级次(例如+1级或-1级)的衍射效率,使其搭配特定耦出光栅120后,整体的耦出光场的光能量随FOV的分布趋向于均匀。相比较于单纯通过耦出光栅的光学结构设计来改善耦出光场的均匀性,根据本发明实施例一的衍射光波导100通过在耦入光栅110中采用新型的光栅结构10而为改善耦出光场的角度均匀性提供了额外的、有效而灵活的手段。
(数据例5)
数据例5中对栅线侧壁具有不同周期、相同圆弧形形状的齿状周期性结构的光栅的+1级衍射效率做了比较,其中各光栅的材料折射率为1.8,光栅周期(即栅线11在第二方向上的排布间隔)d1=450nm,周期性结构12的周期d2如图13的曲线图中所标注。从图13可以看到,周期性结构的周期d2越小,光栅的+1级衍射效率越高。
根据本发明实施例,光栅结构10中周期性结构12的周期d2优选在600nm以下;同时考虑到可加工性,周期d2优选100nm以上。更优选地,周期性结构的周期d2在100~500nm之间。
接下来,参照图14和图15介绍根据本发明实施例二的衍射光波导,其中新型的光栅结构被用于衍射光波导的耦出光栅。
图14示出了根据本发明实施例二的衍射光波导的一个示例。如图14所示,根据本发明实施例二的衍射光波导200包括波导基板200a和形成在波导基板200a的表面上的耦出光栅220。耦出光栅220包括光栅结构20,该光栅结构20构造为将在波导基板200a内通过全反射传播到其中的光的至少一部分通过衍射从波导基板200a中耦出。
图14中右侧图形为光栅结构20的放大图,如该图形所示,光栅结构20包括布置在平面x-y内的多条栅线21,该多条栅线21各自沿平面x-y内的第一方向x延伸并在垂直于第一方向x的第二方向y上以预定间隔d1排列,并且每一条栅线21在第二方向y上具有彼此相反的第一侧壁21a和第二侧壁21b。根据本实施例,第一侧壁11a沿第一方向x具有周期为d2的周期性结构22,并且相邻栅线22的侧壁上的周期性结构22沿第一方向x错开预定距离s=d2/n,其中,n为2或3。在图14所示的优选示例中,n为2。
如图14所示,衍射光波导200还可以包括形成在波导基板200a上的耦入光栅210,耦入光栅210构造为将照射到其上的光束耦合到波导基板200a中,以使之通过全反射在波导基板200a内传播。优选地,光栅结构20中栅线21的第一侧壁21a朝向耦入光栅210,从而周期性结构22朝向耦入区域,这可以降低耦出光栅220的中心线区域的耦出,使能量往两侧扩展,从而改善均匀性。
在一些实现方式中,周期性结构22可以形成突出的多个齿状结构,每个齿状结构具有齿顶22a和齿根22b,并且齿状结构在第一方向x上的宽度从齿根22b到齿顶22a逐渐缩小。有利地,周期性结构22/齿状结构关于平行于第二方向y的轴线(未示出)具有轴对称结构,从而有利于为耦出光栅220提供相应的对称的衍射性能。
在图14所示示例中,周期性结构22形成梯形形状的齿状结构。然而,周期性结构22形成的齿状结构也可以具有例如三角形、圆弧形和梯形形状等结构;更广泛而言,根据具体应用中的需要,其可以具有多边形形状、圆弧形状、或弧线与直线组合形成的形状。
在另一些实现方式中,尽管没有示出,但是周期性结构22可以是没有形成明显突起的齿状结构的起伏结构。
此外,栅线21沿第二方向y可以分为第一区域H1和第二区域H2(参照图7),其中第二区域H2为齿状结构(周期性结构22)所在的区域,并且在第一区域H1和第二区域H2中具有相同或不同的高度以及/或者折射率。优选地,第一区域H1具有矩形横截面。
(数据例6)
数据例6中对以光栅结构20作为耦出光栅220的衍射光波导200的耦出光场进行了仿真计算,其中光栅的材料折射率为1.8,光栅周期(即栅线21在第二方向y上的排布间隔)d1=450nm,周期性结构22的周期d2=450nm,其他参数见表4:
[表4]
h1 w1 h2 w2 w3 w4
梯形 300nm 225nm 450nm 90nm 450nm 167nm
图15为数据例6中仿真得到的衍射光波导的耦出光场能量分布图。从图15可以看到,光栅结构20能够起到二维光栅的作用,当用作耦出光栅时能够实现二维扩瞳。
图16为根据本发明实施例三的衍射光波导的示意图。如图16所示,根据本发明实施例三的衍射光波导200’具有与根据实施例二的衍射光波导200基本上相同的结构,不同之处主要在于:衍射光波导200’中的耦出光栅220’除了光栅结构20之外,还包括附加光栅结构221、222,附加光栅结构221、222为一维光栅,并且在第一方向x上布置在光栅结构20的两侧并与之邻接,用于将传播到其中的光的至少一部分通过衍射从所述波导基板中耦出。由于一维光栅的衍射效率通常相对于二维光栅的衍射效率更高,因此,附加光栅结构221、222有利于提高整个耦出光栅220’的耦出效率,同时也有利于提升耦出光场中两侧区域的亮度,从而改善均匀性。
有利地,如图16所示,衍射光波导200’的耦入光栅210’也可以采用新型的光栅结构10。这里的光栅结构10可以与根据本发明实施例一的衍射光波导100中采用的光栅结构10相同或类似,在此不再赘述。
以上介绍的根据本发明实施例的衍射光波导中,光栅结构10、20中的周期性结构12、22仅形成在栅线11、21的一个侧壁上。但是,本发明并不限于此。图17、图18和图19分别示出根据本发明其它实施例的衍射光波导中可以采用的光栅结构30的不同示例,其中光栅结构30的栅线31的两个侧壁31a、31b均形成有周期性结构。具体而言,栅线31的第一侧壁31a沿第一方向具有第一周期性结构32,第二侧壁31b沿第一方向具有第二周期性结构33。有利地,第一周期性结构32和第二周期性结构33可以具有不同的结构(例如形状、尺寸、位置等)以使得光栅结构30整体而言在垂直于栅线31的方向(即第二方向y上)呈现不对称性。
根据本发明实施例的衍射光波导可以应用于显示设备中。这样的显示设备例如为近眼显示设备,其包括镜片和用于将镜片保持为靠近眼睛的框架,其中镜片可以包括如上介绍的根据本发明实施例的衍射光波导。优选地,该显示设备可以为增强现实显示设备或虚拟现实显示设备。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

1.一种衍射光波导,包括波导基板和形成在所述波导基板的表面上的光栅结构,其中,
所述光栅结构包括布置在一平面内的多条栅线,所述多条栅线各自沿所述平面内的第一方向延伸,并在垂直于所述第一方向的第二方向上以预定间隔排列;
每一条栅线在所述第二方向上具有彼此相反的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁中的至少一者沿所述第一方向具有周期性结构;并且
所述光栅结构构造为将相对于所述平面以非零角度入射于其上的光通过预定衍射级次向所述平面外衍射。
2.如权利要求1所述的衍射光波导,其中,所述光栅结构构造为耦入光栅,所述耦入光栅通过所述预定衍射级次的衍射,将以预定范围内的入射角照射到所述波导基板上的光束耦合到所述波导基板中,以使之通过全反射在所述波导基板内传播。
3.如权利要求2所述的衍射光波导,其中,仅所述第一侧壁沿所述第一方向具有周期性结构,并且不同栅线的第一侧壁上的所述周期性结构在所述第二方向上是彼此对齐的。
4.如权利要求2或3所述的衍射光波导,还包括形成在所述波导基板上的耦出光栅,所述耦出光栅构造为将从所述耦入光栅通过全反射传播到其中的光的至少一部分通过衍射从所述波导基板中耦出;并且所述第一侧壁朝向所述耦出光栅。
5.如权利要求1所述的衍射光波导,其中,所述光栅结构构造为耦出光栅,所述耦出光栅将在所述波导基板内通过全反射传播到其中的光的至少一部分通过衍射从所述波导基板中耦出。
6.如权利要求5所述的衍射光波导,其中,仅所述第一侧壁沿所述第一方向具有周期性结构,并且相邻栅线的侧壁上的所述周期性结构沿所述第一方向错开预定距离s,s=P/n,其中,P为所述周期性结构在所述第一方向上的周期,n为2或3,优选地n为2。
7.如权利要求6所述的衍射光波导,还包括附加光栅结构,所述附加光栅结构为一维光栅,并且在所述第一方向上布置在所述光栅结构的至少一侧并与之邻接,用于将传播到其中的光的至少一部分通过衍射从所述波导基板中耦出。
8.如权利要求5-7中任一项所述的衍射光波导,还包括形成在所述波导基板上的耦入光栅,所述耦入光栅构造为将照射到所述波导基板上的光束耦合到所述波导基板中,以使之通过全反射在所述波导基板内传播,并且所述第一侧壁朝向所述耦入光栅。
9.如权利要求1-8中任一项所述的衍射光波导,其中,所述周期性结构形成为突出的多个齿状结构,所述齿状结构具有齿顶和齿根,并且所述齿状结构在所述第一方向上的宽度从所述齿根到所述齿顶逐渐缩小。
10.如权利要求9所述的衍射光波导,其中,所述齿状结构关于平行于所述第二方向的轴线具有轴对称结构。
11.如权利要求9所述的衍射光波导,其中,所述齿状结构具有多边形形状、圆弧形状或弧线与直线组合形成的形状,优选地,所述齿状结构具有三角形、梯形或圆弧形形状。
12.如权利要求9-11中任一项所述的衍射光波导,其中,所述栅线沿所述第二方向分为第一区域和第二区域,所述多个齿状结构位于所述第二区域中;所述栅线在所述第一区域和所述第二区域具有垂直于所述平面的不同高度和/或具有不同的折射率。
13.如权利要求1-8中任一项所述的衍射光波导,其中,所述周期性结构在所述第一方向上的周期在100~500nm之间。
14.一种显示设备,包括如权利要求1-13中任一项所述的衍射光波导。
15.如权利要求14所述的显示设备,其中,所述显示设备为近眼显示设备,并且包括镜片和用于将镜片保持为靠近眼睛的框架,所述镜片包括所述衍射光波导。
16.如权利要求14或15所述的显示设备,其中,所述显示设备为增强现实显示设备或虚拟现实显示设备。
CN202210254157.1A 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备 Active CN114637116B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210254157.1A CN114637116B (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备
CN202310025411.5A CN116068768A (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备
EP23161875.2A EP4261596A3 (en) 2022-03-15 2023-03-14 Diffractive optical waveguide and display
US18/183,610 US11892682B2 (en) 2022-03-15 2023-03-14 Diffractive optical waveguide and display device having the same preliminary class

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210254157.1A CN114637116B (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310025411.5A Division CN116068768A (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备

Publications (2)

Publication Number Publication Date
CN114637116A true CN114637116A (zh) 2022-06-17
CN114637116B CN114637116B (zh) 2023-02-10

Family

ID=81947000

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310025411.5A Pending CN116068768A (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备
CN202210254157.1A Active CN114637116B (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310025411.5A Pending CN116068768A (zh) 2022-03-15 2022-03-15 衍射光波导以及具有其的显示设备

Country Status (3)

Country Link
US (1) US11892682B2 (zh)
EP (1) EP4261596A3 (zh)
CN (2) CN116068768A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185029A (zh) * 2022-09-07 2022-10-14 北京驭光科技发展有限公司 光栅结构、衍射光波导以及显示设备
CN115421234A (zh) * 2022-11-04 2022-12-02 北京驭光科技发展有限公司 衍射光波导及其光栅结构以及显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170102543A1 (en) * 2015-10-07 2017-04-13 Tuomas Vallius Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
US10962787B1 (en) * 2019-11-25 2021-03-30 Shanghai North Ocean Photonics Co., Ltd. Waveguide display device
CN113985616A (zh) * 2021-12-27 2022-01-28 南昌虚拟现实研究院股份有限公司 光波导显示器件和增强现实显示设备

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504772A (en) * 1994-09-09 1996-04-02 Deacon Research Laser with electrically-controlled grating reflector
US7102700B1 (en) * 2000-09-02 2006-09-05 Magic Lantern Llc Laser projection system
WO2002084350A1 (en) * 2001-04-11 2002-10-24 Crystal Fibre A/S Dual core photonic crystal fibers (pcf) with special dispersion properties
US7218811B2 (en) * 2002-01-10 2007-05-15 The Furukawa Electric Co., Ltd. Optical module, and multi-core optical collimator and lens housing therefor
EP1756634B1 (en) * 2004-05-08 2013-07-10 The Board Of Trustees Of The Leland Stanford Junior University Photonic-bandgap fiber with hollow core
JP4418345B2 (ja) * 2004-11-01 2010-02-17 富士通株式会社 光ファイバ装置,光モニタ装置および光スイッチ装置
US20100149073A1 (en) * 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
JPWO2010082656A1 (ja) * 2009-01-19 2012-07-05 住友電気工業株式会社 マルチコア光ファイバ
US9341846B2 (en) * 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
TWI446036B (zh) * 2010-05-24 2014-07-21 Univ Nat Central 光學傳輸模組
US20150010265A1 (en) * 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10928659B2 (en) * 2014-02-24 2021-02-23 Rockley Photonics Limited Optoelectronic device
US10591756B2 (en) * 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10007117B2 (en) * 2015-09-10 2018-06-26 Vuzix Corporation Imaging light guide with reflective turning array
CN113759555B (zh) * 2015-10-05 2024-09-20 迪吉伦斯公司 波导显示器
US11598970B2 (en) * 2016-01-06 2023-03-07 Vuzix Corporation Imaging light guide with reflective turning array
CN108885310B (zh) * 2016-01-06 2020-10-23 伊奎蒂公司 具有二向色性反射器的双通道成像光导
JP6895451B2 (ja) * 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
US9885870B2 (en) * 2016-04-25 2018-02-06 Microsoft Technology Licensing, Llc Diffractive optical elements with analog modulations and switching
US9939647B2 (en) * 2016-06-20 2018-04-10 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using optically stitched imaging
CN109891298B (zh) * 2016-08-22 2021-07-27 奇跃公司 多层衍射目镜
CA3044242A1 (en) * 2016-11-18 2018-05-24 Magic Leap, Inc. Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
US10845525B2 (en) * 2016-12-31 2020-11-24 Vuzix Corporation Imaging light guide with grating-expanded light distribution
KR102699560B1 (ko) * 2017-03-21 2024-08-27 매직 립, 인코포레이티드 결합된 시야에 대한 상이한 회절 격자들을 갖는 스택된 도파관들
GB201705160D0 (en) 2017-03-30 2017-05-17 Wave Optics Ltd Waveguide for an augmented reality or virtual reality display
JP7213831B2 (ja) * 2017-06-13 2023-01-27 ビュージックス コーポレーション 拡大された光分配を行う重合格子を備えた画像光ガイド
US11789265B2 (en) * 2017-08-18 2023-10-17 A9.Com, Inc. Waveguide image combiners for augmented reality displays
US11668935B2 (en) * 2017-08-18 2023-06-06 A9.Com, Inc. Waveguide image combiners for augmented reality displays
EP4293414A3 (en) * 2017-12-15 2024-03-13 Magic Leap, Inc. Eyepieces for augmented reality display system
US10761330B2 (en) * 2018-01-23 2020-09-01 Facebook Technologies, Llc Rainbow reduction in waveguide displays
US10895671B1 (en) * 2018-01-23 2021-01-19 Facebook Technologies, Llc Diffraction grating with a variable refractive index using ion implantation
EP3776027A4 (en) * 2018-04-02 2021-12-29 Magic Leap, Inc. Waveguides with integrated optical elements and methods of making the same
EP3588150A1 (en) * 2018-06-29 2020-01-01 Thomson Licensing An optical device comprising multi-layer waveguides
EP3803502A4 (en) * 2018-07-02 2021-08-18 Vuzix Corporation ROTATING WAVEGUIDE NETWORK DESIGNS FOR OPTIMUM EFFICIENCY
TWI745770B (zh) * 2018-11-07 2021-11-11 美商應用材料股份有限公司 使用灰調微影術及傾斜蝕刻的深度調節傾斜光柵
WO2020106824A1 (en) * 2018-11-20 2020-05-28 Magic Leap, Inc. Eyepieces for augmented reality display system
US11125993B2 (en) * 2018-12-10 2021-09-21 Facebook Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11067811B2 (en) * 2019-01-11 2021-07-20 Facebook Technologies, Llc Volume bragg gratings for near-eye waveguide display
CN113678053B (zh) * 2019-01-14 2024-05-28 伊奎蒂公司 大衍射光栅图案的数字写入
EP3924759A4 (en) * 2019-02-15 2022-12-28 Digilens Inc. METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS
US20220283377A1 (en) * 2019-02-15 2022-09-08 Digilens Inc. Wide Angle Waveguide Display
GB201903708D0 (en) 2019-03-19 2019-05-01 Wave Optics Ltd Improved angular uniformity waveguide for augmented or virtual reality
CN114286962A (zh) * 2019-06-20 2022-04-05 奇跃公司 用于增强现实显示系统的目镜
US11137603B2 (en) * 2019-06-20 2021-10-05 Facebook Technologies, Llc Surface-relief grating with patterned refractive index modulation
EP3999884A4 (en) * 2019-07-19 2023-08-30 Magic Leap, Inc. DISPLAY DEVICE HAVING DIFFRACTION GRATINGS WITH REDUCED POLARIZATION SENSITIVITY
US20210055551A1 (en) * 2019-08-23 2021-02-25 Facebook Technologies, Llc Dispersion compensation in volume bragg grating-based waveguide display
US11614573B2 (en) * 2019-09-11 2023-03-28 Magic Leap, Inc. Display device with diffraction grating having reduced polarization sensitivity
EP4031927A1 (en) * 2019-09-19 2022-07-27 InterDigital CE Patent Holdings Optical device for coupling a high field of view of incident light
US11474395B2 (en) * 2019-12-18 2022-10-18 Meta Platforms Technologies, Llc Birefringent polymer based surface relief grating
US11435586B2 (en) * 2020-03-31 2022-09-06 Meta Platforms Technologies LLC Thin waveguide imager
EP4208743A1 (en) * 2020-09-01 2023-07-12 Snap, Inc. Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display
US11360431B2 (en) * 2020-09-17 2022-06-14 Pacific Light & Hologram, Inc. Reconstructing objects with display zero order light suppression
JP2023542323A (ja) * 2020-09-17 2023-10-06 パシフィック ライト アンド ホログラム,インコーポレイテッド 三次元オブジェクトの表示
US20220082739A1 (en) * 2020-09-17 2022-03-17 Facebook Technologies, Llc Techniques for manufacturing variable etch depth gratings using gray-tone lithography
US11709422B2 (en) * 2020-09-17 2023-07-25 Meta Platforms Technologies, Llc Gray-tone lithography for precise control of grating etch depth
US11885967B2 (en) * 2020-11-05 2024-01-30 Meta Platforms Technologies, Llc Phase structure on volume Bragg grating-based waveguide display
US11709358B2 (en) * 2021-02-24 2023-07-25 Meta Platforms Technologies, Llc Staircase in-coupling for waveguide display
US11774758B2 (en) * 2021-02-24 2023-10-03 Meta Platforms Technologies, Llc Waveguide display with multiple monochromatic projectors
US20220291437A1 (en) * 2021-03-10 2022-09-15 Facebook Technologies, Llc Light redirection feature in waveguide display
US20220334302A1 (en) * 2021-04-15 2022-10-20 Meta Platforms Technologies, Llc In situ core-shell nanoparticle preparation
US20220373725A1 (en) * 2021-05-21 2022-11-24 Meta Platforms Technologies, Llc Coating composition and planarization of high refractive index overcoat on gratings
US11573422B2 (en) * 2021-06-07 2023-02-07 Microsoft Technology Licensing, Llc Near-eye display system having multiple pass in-coupling for waveguide display
US20230041380A1 (en) * 2021-08-09 2023-02-09 Meta Platforms Technologies, Llc Nanoparticle treatment for optical coating
CN114859555B (zh) * 2022-04-15 2024-04-23 杭州海康威视数字技术股份有限公司 光栅、用于近眼显示的光波导及近眼显示设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170102543A1 (en) * 2015-10-07 2017-04-13 Tuomas Vallius Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
US10962787B1 (en) * 2019-11-25 2021-03-30 Shanghai North Ocean Photonics Co., Ltd. Waveguide display device
CN113985616A (zh) * 2021-12-27 2022-01-28 南昌虚拟现实研究院股份有限公司 光波导显示器件和增强现实显示设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185029A (zh) * 2022-09-07 2022-10-14 北京驭光科技发展有限公司 光栅结构、衍射光波导以及显示设备
CN115185029B (zh) * 2022-09-07 2023-02-17 北京驭光科技发展有限公司 光栅结构、衍射光波导以及显示设备
CN115421234A (zh) * 2022-11-04 2022-12-02 北京驭光科技发展有限公司 衍射光波导及其光栅结构以及显示设备
CN115421234B (zh) * 2022-11-04 2023-04-07 北京驭光科技发展有限公司 衍射光波导及其光栅结构以及显示设备

Also Published As

Publication number Publication date
EP4261596A2 (en) 2023-10-18
EP4261596A3 (en) 2023-11-15
CN114637116B (zh) 2023-02-10
US20230296845A1 (en) 2023-09-21
CN116068768A (zh) 2023-05-05
US11892682B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
CN114637116B (zh) 衍射光波导以及具有其的显示设备
JP7325427B2 (ja) 射出瞳拡大器
CN115016057B (zh) 衍射光波导以及具有其的显示设备
CN109073884B (zh) 具有改进的强度分布的波导出射光瞳扩展器
WO2023134670A1 (zh) 用于衍射显示的光学波导装置及显示设备
JP7233718B2 (ja) ディスプレイ要素、パーソナルディスプレイ装置、パーソナルディスプレイ上に画像を生成する方法、及び使用
CN113777707B (zh) 光学结构和光学装置
CN114879358A (zh) 用于增强现实系统的耦出光栅
CN114637067A (zh) 衍射光波导及显示设备
CN114994825A (zh) 衍射光波导及其设计方法和形成方法、以及显示设备
CN116381845B (zh) 耦入光栅、衍射光栅波导和近眼显示装置
CN115808732A (zh) 二维衍射光栅、二维衍射光波导和近眼显示设备
CN111492274B (zh) 光学波导以及衍射波导显示器
US11940653B2 (en) Diffractive optical waveguide and display device having the same
CN116299815B (zh) 抑制高级光的二维菱形光栅、光波导及近眼显示设备
CN116299816B (zh) 抑制高级光的叉形超表面光栅、光波导及近眼显示设备
CN219799829U (zh) 一种基于非对称光学结构的光波导及近眼显示模组
CN114325909B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN219799828U (zh) 一种基于非对称光学结构的光波导及近眼显示模组
WO2022259756A1 (ja) 光学系、及び、画像表示装置
US20240045205A1 (en) Waveguide for augmented reality or virtual reality display
WO2022259757A1 (ja) 光学系、及び、画像表示装置
CN219799830U (zh) 一种光波导及近眼显示模组
WO2023105052A1 (en) Waveguide for an augmented reality or virtual reality
CN118265932A (zh) 用于增强现实或虚拟现实显示器的波导

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant