CN114636882A - A transformer bias detection system and method based on digital twin - Google Patents
A transformer bias detection system and method based on digital twin Download PDFInfo
- Publication number
- CN114636882A CN114636882A CN202210297916.2A CN202210297916A CN114636882A CN 114636882 A CN114636882 A CN 114636882A CN 202210297916 A CN202210297916 A CN 202210297916A CN 114636882 A CN114636882 A CN 114636882A
- Authority
- CN
- China
- Prior art keywords
- transformer
- sensor
- information
- current
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000004927 fusion Effects 0.000 claims abstract description 52
- 230000007935 neutral effect Effects 0.000 claims abstract description 52
- 238000005516 engineering process Methods 0.000 claims abstract description 18
- 238000004088 simulation Methods 0.000 claims abstract description 12
- 230000008676 import Effects 0.000 claims abstract description 9
- 230000008859 change Effects 0.000 claims description 51
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 11
- 230000005389 magnetism Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000007499 fusion processing Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 3
- 230000008094 contradictory effect Effects 0.000 claims description 3
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000009877 rendering Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003137 locomotive effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005358 geomagnetic field Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/251—Fusion techniques of input or preprocessed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/02—Computing arrangements based on specific mathematical models using fuzzy logic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Automation & Control Theory (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biomedical Technology (AREA)
- Fuzzy Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
本发明公开了一种基于数字孪生的变压器偏磁检测系统及方法,该方法采用数字孪生技术在工作站内建立仿真变压器模型,采集变压器数据信息,并远程导入仿真变压器内形成数字孪生变压器,使数字孪生变压器和变压器信息一致,通过多传感器数据融合技术将数据信息融合在一起共同判断变压器的偏磁信息,在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,将特性曲线、变压器信息数据和偏磁信息叠加在数字孪生变压器上,使用户无需前往现场,通过工作站查看变压器的偏磁信息及偏磁引起的其他特征变化,通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响,及变压器偏磁对变压器带来的影响。
The invention discloses a transformer bias detection system and method based on digital twin. The method adopts the digital twin technology to establish a simulation transformer model in a workstation, collects transformer data information, and remotely imports it into the simulation transformer to form a digital twin transformer. The twin transformer and the transformer information are consistent, and the data information is fused together through the multi-sensor data fusion technology to jointly judge the bias information of the transformer, and establish the characteristic curve of the neutral point current and the magnetic field strength of the transformer core in the workstation. The data and bias information are superimposed on the digital twin transformer, so that users do not need to go to the site to view the bias information of the transformer and other characteristic changes caused by the bias through the workstation, and view the neutral point current through the information superimposed on the digital twin transformer. The influence of the transformer bias, and the influence of the transformer bias on the transformer.
Description
技术领域technical field
本发明属于变压器检测领域,具体涉及一种基于数字孪生的变压器偏磁检测系统及方法。The invention belongs to the field of transformer detection, and in particular relates to a transformer bias detection system and method based on digital twins.
背景技术Background technique
变压器直流偏磁现象主要是由高压直流输电单极大地回路运行侵入交流系统中的直流电流、太阳磁暴引起的地磁感应电流和由逆变器、控制器等电力电子器件带来的流入电网中的直流分量等导致变压器绕组中流入了直流电流。尤其是当高压电网采用单极大地回路方式运行的时候,由于各个接地点之间存在一定的电位差,这个电位差会使变压器一侧的中性线向变压器注入一定的直流电流。而且随着城市轨道交通的发展,机车运行时泄露到大地中的杂散电流侵入沿线变压器中性点将会使变压器铁心工作磁化曲线发生偏移,引发变压器直流偏磁效应。与高压直流输电单极大地运行和太阳磁暴引起的地磁场变化相比,轨道交通杂散电流引起的地磁场变化具有明显的周期性且更为常见。The DC bias of the transformer is mainly caused by the DC current intruding into the AC system by the operation of the high-voltage DC transmission unipolar circuit, the geomagnetically induced current caused by the solar magnetic storm, and the inflow into the power grid caused by the inverter, controller and other power electronic devices. A DC component, etc., causes a DC current to flow into the transformer windings. Especially when the high-voltage power grid operates in a single-pole ground loop mode, due to a certain potential difference between each grounding point, this potential difference will cause the neutral line on one side of the transformer to inject a certain DC current into the transformer. Moreover, with the development of urban rail transit, the stray current leaking into the ground when the locomotive is running intrudes into the neutral point of the transformer along the line, which will offset the working magnetization curve of the transformer core and cause the DC bias effect of the transformer. Compared with the geomagnetic field changes caused by HVDC unipolar operation and solar magnetic storms, the geomagnetic field changes caused by rail transit stray currents have obvious periodicity and are more common.
直流流入变压器后将在铁心中产生直流磁通,导致变压器铁心半周饱和、励磁电流严重畸变、消耗大量无功功率、振动噪声增加等一系列问题。由直流偏磁造成的振动噪声问题逐渐引起人们的重视,变压器的振动噪声严重影响了人们的正常生活及身心健康。机械振动性能也是评估变压器工作状态的技术指标之一,长期异常振动下的变压器会导致其结构松动、机械强度下降,严重时还会造成结构件磨损和绝缘强度降低,埋下安全隐患。其次变压器直流偏磁将导致变压器的温度升高,如果变压器长时间在温度很高的情况下运行,会缩短内部绝缘纸板的寿命,使绝缘纸板变脆,容易发生破裂,失去应有的绝缘作用,造成击穿等事故,绕组绝缘严重老化,并加速绝缘油的劣化,影响使用寿命。After the DC flows into the transformer, a DC magnetic flux will be generated in the iron core, resulting in a series of problems such as half-cycle saturation of the transformer core, serious distortion of the excitation current, consumption of a large amount of reactive power, and increased vibration and noise. The problem of vibration and noise caused by DC bias has gradually attracted people's attention. The vibration and noise of transformers seriously affect people's normal life and physical and mental health. Mechanical vibration performance is also one of the technical indicators for evaluating the working state of a transformer. A transformer under abnormal vibration for a long time will cause its structure to loosen and its mechanical strength to decrease. In severe cases, it will also cause structural wear and insulation strength. Secondly, the DC bias of the transformer will cause the temperature of the transformer to rise. If the transformer runs at a high temperature for a long time, it will shorten the life of the internal insulating cardboard, make the insulating cardboard brittle, prone to rupture, and lose its proper insulating effect. , causing accidents such as breakdown, serious aging of winding insulation, and accelerated deterioration of insulating oil, affecting service life.
现有技术中为了保证变压器稳定运行,一般对变压器采用定期停工检修的方式,主要通过人工手持红外热成像仪检测变压器的温度变化情况和现场查看变压器的振动情况等。其次就是通过各种传感器来监测变压器偏磁情况,并通过有线或无线传输方式传输至监控中心进行监测。然而通过人工现场检查变压器运行情况会增加工作人员的劳动强度,费用高且检修期长。且存在一定的危险。而现有的传感器检测方式较为单一,容易产生误判,一旦传感器出现问题就不能够进行检测,且通过传感器检测的方式是将采集到的数据信息进行数字式的展示,用户不能够更直观的查看变压器偏磁的情况。In the prior art, in order to ensure the stable operation of the transformer, the transformer is generally shut down for maintenance on a regular basis, and the temperature change of the transformer and the vibration of the transformer are checked on-site mainly through a manual hand-held infrared thermal imager. The second is to monitor the bias of the transformer through various sensors, and transmit it to the monitoring center for monitoring through wired or wireless transmission. However, manual on-site inspection of the transformer operation will increase the labor intensity of the staff, and the cost will be high and the maintenance period will be long. And there is a certain danger. The existing sensor detection method is relatively simple, which is prone to misjudgment. Once the sensor has a problem, it cannot be detected, and the method of sensor detection is to digitally display the collected data information, and users cannot more intuitively. Check the transformer bias.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于数字孪生的变压器偏磁检测系统及方法,可以利用数字孪生技术根据变压器参数在3D MAX软件中建立仿真变压器模型,在变压器上安装磁场感应器、电流传感器、温度传感器、振动传感器、噪声检测仪来分别监测变压器的铁心磁场变化信息、中性点电流信息及原边电流信息、副边电流信息、温度变化信息、振动信息、产生的噪声信息,通过多传感器数据融合技术将这些数据信息融合在一起共同判断变压器的偏磁信息,将检测到的数据信息传输至监控中心,在监控中心将这些数据信息自动导入仿真变压器模型中形成数字孪生变压器,数字孪生变压器的铁心磁场变化信息、中性点电流信息、原边电流信息、副边电流信息、温度变化信息、振动信息、产生的噪声信息与变压器的信息一致,且能叠加在数字孪生变压器上显示,用户无需频繁前往现场即可通过电脑端查看变压器的偏磁信息及偏磁引起的其他特征变化,且通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响,以及变压器偏磁对变压器带来的影响。The purpose of the present invention is to provide a transformer bias detection system and method based on digital twin, which can use digital twin technology to establish a simulated transformer model in 3D MAX software according to transformer parameters, install magnetic field sensor, current sensor, temperature sensor on the transformer Sensors, vibration sensors, and noise detectors are used to monitor the transformer's core magnetic field change information, neutral point current information, primary current information, secondary current information, temperature change information, vibration information, and generated noise information. Through multi-sensor data The fusion technology fuses these data information together to judge the bias information of the transformer, transmits the detected data information to the monitoring center, and automatically imports the data information into the simulation transformer model in the monitoring center to form a digital twin transformer. The core magnetic field change information, neutral point current information, primary side current information, secondary side current information, temperature change information, vibration information, and generated noise information are consistent with the transformer information, and can be superimposed on the digital twin transformer for display without the need for users to If you go to the site frequently, you can check the bias information of the transformer and other characteristic changes caused by the bias through the computer, and check the influence of the neutral point current on the bias of the transformer and the bias of the transformer through the information superimposed on the digital twin transformer. impact on the transformer.
为实现上述目的,本发明采取的技术方案为:一种基于数字孪生的变压器偏磁检测方法,该方法步骤如下:In order to achieve the above purpose, the technical scheme adopted in the present invention is: a method for detecting bias magnetism of transformers based on digital twin, the method steps are as follows:
步骤一,通过传感器检测出变压器的铁心磁场变化信息、中性点电流信息、原边电压信息、原边电流信息、副边电流信息、温度变化信息、振动信息和产生的噪声信息;In
步骤二,将检测到的数据信息传输至工控机,对采集到的数据信息进行信号放大、滤波、AD转换和数据预处理,再将预处理后的数据信息远程传输至工作站;
步骤三,工作站通过数字孪生技术根据变压器参数建立仿真变压器模型,再将预处理后的数据信息导入仿真变压器模型中形成数字孪生变压器;
步骤四,通过多传感器数据融合技术将铁心磁场变化信息、原边电流信息、副边电流信息、温度变化信息、振动信息和产生的噪声信息融合在一起共同判断变压器的偏磁信息,并叠加在数字孪生变压器上通过工作站显示出来;Step 4: Through multi-sensor data fusion technology, the core magnetic field change information, primary current information, secondary current information, temperature change information, vibration information and generated noise information are fused together to judge the bias information of the transformer, and superimposed on the transformer bias information. The digital twin transformer is displayed on the workstation;
步骤五,在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响。Step 5: Establish the characteristic curve between the neutral point current and the magnetic field strength of the transformer core in the workstation, and superimpose the characteristic curve between the neutral point current and the core magnetic field strength on the digital twin transformer. information to view the effect of neutral point current on transformer bias.
进一步的,步骤四中,通过多传感器数据融合技术来判断变压器的偏磁信息方案为:变压器偏磁会导致变压器铁心磁场强度发生变化、振动和噪声加剧、其温度也会升高,由于变压器偏磁会导致励磁电流变化,励磁电流变化又会引起变压器原边电流和副边电流发生变化,因此可以通过融合变压器偏磁产生的铁心磁场变化信息、原边电流信息、副边电流信息、温度变化信息、振动信息、噪声信息等参量信息来判断变压器偏磁情况,通过建立梯度数据融合模型对变压器偏磁情况进行检测,先设置数据融合中心,其中,传感器包括电压传感器、电流传感器、磁场感应器、温度传感器、振动传感器和噪声检测仪,电流传感器包括第一电流传感器和第二电流传感器,其中第一电流传感器用于检测变压器原边电流信息和副边电流信息,第二电流传感器用于检测变压器中性点电流信息,在第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪与数据融合中心之间设置一个中间站,在中间站中对第一电流传感器、磁场感应器、温度传感器、振动传感器和噪声检测仪采集到的数据信息关联起来,再进行数据级融合,实现局部融合,并在数据融合中心对局部融合后的数据信息进行特征提取,根据特征提取结果对数据属性进行判决,然后将判决后的数据信息关联起来进行决策级融合,进而实现全局融合,并将融合后的结果输出来判断变压器的偏磁情况。Further, in
进一步的,步骤五中,第二电流传感器检测中性点的电流后,通过与磁场感应器采集到的数据信息进行对比,从而判断杂散电流对变压器偏磁的影响。Further, in step 5, after the second current sensor detects the current at the neutral point, it is compared with the data information collected by the magnetic field sensor to determine the influence of the stray current on the bias magnetization of the transformer.
进一步的,在判断中性点电流对变压器偏磁的影响过程中,通过磁场感应器来检测铁心磁场变化信息,将第二电流传感器和磁场感应器检测到的中性点电流信息和铁心磁场变化信息一同传输至工作站,在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,当中性点上窜入杂散电流时,即可通过叠加在数字孪生变压器上的信息来查看中性点杂散电流对变压器偏磁的影响。Further, in the process of judging the influence of the neutral point current on the bias magnetization of the transformer, the magnetic field change information of the iron core is detected by the magnetic field sensor, and the neutral point current information detected by the second current sensor and the magnetic field sensor and the magnetic field change of the iron core are detected. The information is transmitted to the workstation together, and the characteristic curve between the neutral point current and the magnetic field strength of the transformer core is established in the workstation, and the characteristic curve between the neutral point current and the core magnetic field strength is superimposed on the digital twin transformer, and the neutral point moves upward. When entering the stray current, the information superimposed on the digital twin transformer can be used to check the influence of the neutral point stray current on the transformer bias.
进一步的,步骤三构建数字孪生变压器时,先将变压器的具体参数导入BIM软件Revit中生成.RVT文件,并将.RVT文件导入3D max软件中进行编辑,在3D max软件里面按元素类型将BIM模型相同部件合并为一个物体,删除多余点线面,将合并后的模型赋予材质纹理与特征参数,在3D max软件中将编辑后的模型导出,加载进引擎,针对变压器材质属性进行二次材质效果调整,进而渲染出与变压器具有相同参数的虚拟变压器,建立虚拟工控机,再将电压传感器、电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪采集到的数据信息通过实体工控机汇聚后传输至虚拟工控机中,建立虚拟工控机与虚拟变压器之间的数据接口,根据采集到的数据信息在虚拟变压器中进行数据解析和场景渲染,最后生成数字孪生变压器,使得数字孪生变压器接收到的数据信息就与变压器的真实特征数据一致。Further, when building a digital twin transformer in
进一步的,第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪采集的数据信息在数据级融合过程中,通过采用模糊逻辑控制法对采集到的数据信息进行局部融合,以X1、X2、X3、X4、X5分别作为第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪的模糊集合,其中X1包括第一电流传感器各个时刻采集到的原边电流信息和副边电流信息,其中第k时刻采集到的原边电流信息和副边电流信息表示为x1(k);X2包括磁场感应器各个时刻采集到的铁心磁场变化信息,其中第k时刻采集到的铁心磁场变化信息表示为x2(k);X3包括温度传感器各个时刻采集到的温度变化信息,其中第k时刻采集到的温度变化信息表示为x3(k);X4包括振动传感器各个时刻采集到的振动信息,其中第k时刻采集到的振动信息表示为x4(k);X5包括噪声检测仪各个时刻采集到产生的噪声信息,其中第k时刻采集到产生的噪声信息表示为x5(k);通过贴近度来评价X1、X2、X3、X4、X5之间识别到偏磁情况的相似度,第k时刻,各个传感器之间的数据矩阵为:Further, in the process of data-level fusion of the data information collected by the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector, the collected data information is locally fused by using the fuzzy logic control method, and X 1 , X 2 , X 3 , X 4 , and X 5 are respectively used as fuzzy sets of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector, wherein X 1 includes the data collected by the first current sensor at each moment. The primary side current information and the secondary side current information, wherein the primary side current information and the secondary side current information collected at the kth moment are expressed as x 1 (k); X 2 includes the core magnetic field change information collected by the magnetic field sensor at each moment, Among them, the magnetic field change information of the iron core collected at the kth time is expressed as x 2 (k); X 3 includes the temperature change information collected by the temperature sensor at each time, and the temperature change information collected at the kth time is expressed as x 3 (k) X 4 includes the vibration information collected at each moment of the vibration sensor, wherein the vibration information collected at the kth moment is represented as x 4 (k); X 5 includes the noise information collected by the noise detector at every moment, and wherein the kth moment The collected noise information is expressed as x 5 (k); the similarity between X 1 , X 2 , X 3 , X 4 , and X 5 is evaluated by the degree of closeness to identify the bias situation. At the kth moment, each sensor The data matrix between is:
矩阵A中的元素即为各个传感器之间的贴近度表达式,即:αmn(k)表示第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪中任意两个传感器之间的贴近度表达式,xm(k)、xn(k)分别表示第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪在k时刻采集到的数据信息,当m=1、n=2时,x1(k)表示第一电流传感器在k时刻采集到的数据信息,x2(k)表示磁场感应器在k时刻采集到的数据信息,当αmn(k)小于预设值M时,则认为xm(k)和xn(k)不相似,那么就可以得出αmn(k)=0,即有: The elements in matrix A are the expressions of proximity between each sensor, namely: α mn (k) represents the closeness expression between any two sensors in the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector, and x m (k) and x n (k) represent respectively Data information collected by the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector at time k. When m=1, n=2, x 1 (k) represents the first current sensor at time k. The collected data information, x 2 (k) represents the data information collected by the magnetic field sensor at time k, when α mn (k) is less than the preset value M, it is considered that x m (k) and x n (k) are not similar, then it can be concluded that α mn (k) = 0, that is:
第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪采样值的一致性测度计算公式为:式中αij(k)为k时刻传感器在数据矩阵中的第i行,第j列数据信息,αij(k)为x1(k)、x2(k)、x3(k)、x4(k)或x5(k)。The calculation formula for the consistency measurement of the sampling values of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector is: where α ij (k) is the data information of the ith row and jth column of the sensor in the data matrix at time k, and α ij (k) is x 1 (k), x 2 (k), x 3 (k), x 4 (k) or x 5 (k).
数据融合的计算公式表示为:式中x1(k)表示为k时刻第一电流传感器采集到的数据信息,x2(k)表示为k时刻磁场感应器采集到的数据信息,x3(k)表示为k时刻温度传感器采集到的数据信息,x4(k)表示为k时刻振动传感器采集到的数据信息,x5(k)表示为k时刻噪声检测仪采集到的数据信息,ωi(k)表示数据矩阵中的第i行权重,根据信息分享原理,最优融合估计的信息量之和可分解为若干个测量数据的信息量之和,即一个信息可被若干个子系统所分享,有将第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪的模糊贴近度做归一化处理,得到各自的权重式中,c1(k),c2(k),c3(k),c4(k),c5(k)表示一组非负数。The calculation formula of data fusion is expressed as: where x 1 (k) is the data information collected by the first current sensor at time k, x 2 (k) is the data information collected by the magnetic field sensor at time k, and x 3 (k) is the temperature sensor at time k The collected data information, x 4 (k) represents the data information collected by the vibration sensor at time k, x 5 (k) represents the data information collected by the noise detector at time k, ω i (k) represents the data in the matrix The weight of the i-th row of , according to the principle of information sharing, the sum of the information volume estimated by the optimal fusion can be decomposed into the sum of the information volume of several measurement data, that is, one information can be shared by several subsystems, there are Normalize the fuzzy closeness of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector to obtain their respective weights In the formula, c 1 (k), c 2 (k), c 3 (k), c 4 (k), and c 5 (k) represent a set of non-negative numbers.
进一步的,在数据融合中心进行决策级融合过程中,将变压器偏磁情况分为正常F1、轻度F2、重度F3、严重F4四个等级,设Θ为一个识别框架,Ω(Θ)表示Θ中所有子集的集合,则变压器偏磁级别表示为:Further, in the decision-level fusion process of the data fusion center, the transformer bias conditions are divided into four levels: normal F 1 , mild F 2 , severe F 3 , and severe F 4 . Let Θ be an identification frame, and Ω( Θ) represents the set of all subsets in Θ, then the transformer bias level is expressed as:
Ω(Θ)={φ,{F1},{F2},{F3},{F4},{F1,F2},{F2,F3},...},φ为空集,假设Q={F1,F2}∈Θ,就表示Q要么是正常F1,要么是轻度F2,即Ω(Θ)是其中的任意一种状态;Ω(Θ) = {φ,{F1 } ,{F2 } ,{F3},{ F4 } ,{F1,F2 } , { F2, F3 },...},φ is an empty set, assuming Q={F 1 , F 2 }∈Θ, it means that Q is either normal F 1 or mild F 2 , that is, Ω(Θ) is any one of these states;
确定了识别框架Θ后,定义一个集函数G,将Ω(Θ)映射到区间[0,1]上的一个数,表示为:式中G(Q)称为基本概率赋值函数,表示状态识别模型对一个特定状态的置信度,用信度函数Bel来表示识别框架Θ上的映射Bel:Q→[0,1],满足:再用似真函数Pl表示下一个映射Pl:Ω(Θ)→[0,1],且满足:式中Qc表示Q的补集,Pl(Q)表示命题Q的似真度,其中Pl(Q)=0表示证据拒绝Q,Pl(Q)=1表示证据支持Q;After determining the recognition frame Θ, define a set function G that maps Ω(Θ) to a number on the interval [0,1], expressed as: In the formula, G(Q) is called the basic probability assignment function, which represents the confidence of the state recognition model for a specific state, and the confidence function Bel is used to represent the mapping Bel on the recognition framework Θ: Q→[0, 1], which satisfies: Then use the plausibility function Pl to represent the next mapping Pl:Ω(Θ)→[0,1], and satisfy: where Q c represents the complement of Q, Pl(Q) represents the plausibility of proposition Q, where Pl(Q)=0 means that the evidence rejects Q, and Pl(Q)=1 means that the evidence supports Q;
设Gi表示定义在识别框架Θ上的第i组证据的基本概率赋值函数,其中i=1,2......n,对任意两组证据进行组合后的基本概率赋值函数表示为:K表示归一化后的系数,表示为:G1(Qi)为第1组证据Qi的基本概率赋值函数,G2((Ω(Θ))j)为第2组证据(Ω(Θ))j的基本概率赋值函数,G(Q)反映了两个证据之间的冲突程度,当K≠0时,用正交和的形式表示两组证据间的组合;当K=0,表示不存在正交和,两个证据之间属于矛盾关系;Let G i represent the basic probability assignment function of the ith group of evidences defined on the recognition framework Θ, where i=1, 2...n, the basic probability assignment function after combining any two groups of evidences is expressed as : K represents the normalized coefficient, which is expressed as: G 1 (Q i ) is the basic probability assignment function of the first group of evidence Qi , G 2 ((Ω(Θ)) j ) is the basic probability assignment function of the second group of evidence (Ω(Θ)) j , G( Q) reflects the degree of conflict between the two evidences. When K≠0, the combination between the two sets of evidences is expressed in the form of an orthogonal sum; when K=0, it means that there is no orthogonal sum, and the a contradictory relationship;
其后构建第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪的基本概率赋值函数,第一电流传感器、磁场感应器、温度传感器、振动传感器和噪声检测仪的识别结果作为五个证据E1、E2、E3、E4、E5,同时将正常F1、轻度F2、重度F3、严重F4四个等级作为识别域,由Θ={F1,F2,F3,F4}构成E1、E2、E3、E4、E5共同的识别框架,在识别框架Θ上构建各个证据的基本概率赋值函数,根据公式即可计算出E1、E2、E3、E4、E5融合后的基本概率赋值函数,根据融合后的基本概率赋值函数来判断变压器偏磁情况处于哪一种状态,例如在识别框架Θ上构建E1的基本概率赋值函数,如表1所示,其中对样本1进行分析,样本1的基本概率赋值函数最大值在F1,表明变压器偏磁情况处于正常状态。After that, the basic probability assignment functions of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector are constructed, and the identification results of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor and noise detector are used as five Evidence E 1 , E 2 , E 3 , E 4 , E 5 , and four levels of normal F 1 , mild F 2 , severe F 3 , and severe F 4 are used as the identification domain, and Θ={F 1 ,F 2 , F 3 , F 4 } constitute the common identification frame of E 1 , E 2 , E 3 , E 4 , and E 5 , and construct the basic probability assignment function of each evidence on the identification frame Θ. According to the formula The basic probability assignment function after the fusion of E 1 , E 2 , E 3 , E 4 , and E 5 can be calculated. According to the basic probability assignment function after fusion, it can be judged which state the transformer bias is in. For example, in the identification framework The basic probability assignment function of E 1 is constructed on Θ, as shown in Table 1.
表1 E1的基本概率赋值函数Table 1 Basic probability assignment function of E1
一种基于数字孪生的变压器偏磁检测系统,包括变压器、电压传感器、电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪、工控机、5G模块和工作站,在变压器外表面上安装有电压传感器和电流传感器,电压传感器、电流传感器分别接入变压器的母线,工控机安装在变压器外表面,5G模块安装在工控机上,在变压器铁心旁安装磁场感应器,温度传感器、振动传感器、噪声检测仪安装在变压器内侧,磁场感应器,温度传感器、振动传感器、噪声检测仪、电流传感器和电压传感器分别连接工控机,工控机通过5G模块连接工作站。A digital twin-based transformer bias detection system includes a transformer, a voltage sensor, a current sensor, a magnetic field sensor, a temperature sensor, a vibration sensor, a noise detector, an industrial computer, a 5G module and a workstation. The voltage sensor and current sensor, the voltage sensor and current sensor are respectively connected to the bus of the transformer, the industrial computer is installed on the outer surface of the transformer, the 5G module is installed on the industrial computer, the magnetic field sensor, temperature sensor, vibration sensor, noise detection are installed next to the transformer core The instrument is installed inside the transformer, and the magnetic field sensor, temperature sensor, vibration sensor, noise detector, current sensor and voltage sensor are respectively connected to the industrial computer, and the industrial computer is connected to the workstation through the 5G module.
进一步的,电流传感器包括第一电流传感器和第二电流传感器,第一电流传感器为六个,分别用于检测变压器原边电流和变压器副边电流,第二电流传感器为一个,用于检测变压器中性点的电流,电压传感器为三个,用于检测变压器母线的原边电压。Further, the current sensor includes a first current sensor and a second current sensor, there are six first current sensors, which are respectively used to detect the primary current of the transformer and the secondary current of the transformer, and one second current sensor is used to detect the current in the transformer. There are three voltage sensors, which are used to detect the primary voltage of the transformer bus.
与现有技术相比,本发明具有如下有益效果:1.本发明利用数字孪生技术来反映变压器在偏磁条件下的运行情况,采用5G技术将变压器中铁心磁场变化信息、中性点电流信息、原边电流信息、副边电流信息、温度变化信息、振动信息、产生的噪声信息传输至数字孪生变压器中,使得数字孪生变压器的信息与变压器的信息一致,且能叠加在数字孪生变压器上显示,用户无需频繁前往现场即可通过电脑端查看变压器的偏磁信息及偏磁引起的其他特征变化,且通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响,以及变压器偏磁对变压器带来的影响。通过对变压器仿真数据的分析,提高故障监测的效率。2.通过多传感器数据融合技术将这些数据信息融合在一起共同判断变压器的偏磁信息,系统不再单独依赖某一个传感器采集到的数据信息来判断变压器偏磁情况,即使其中一个传感器出现故障也不影响检测,有效的提高识别准确率。3.通过在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响。可以将杂散电流对变压器偏磁的关系对应起来,尤其是对轨道交通旁边的变压器来说,能够为工作人员提供有效的检修参考。Compared with the prior art, the present invention has the following beneficial effects: 1. The present invention uses the digital twin technology to reflect the operation of the transformer under the magnetic bias condition, and uses the 5G technology to convert the information on the magnetic field change of the iron core and the neutral point current information in the transformer. , primary side current information, secondary side current information, temperature change information, vibration information, and generated noise information are transmitted to the digital twin transformer, so that the information of the digital twin transformer is consistent with that of the transformer, and can be superimposed on the digital twin transformer for display. , users can check the bias information of the transformer and other characteristic changes caused by the bias through the computer without frequent trips to the site, and check the influence of the neutral point current on the bias of the transformer through the information superimposed on the digital twin transformer, and The effect of transformer bias on the transformer. Through the analysis of transformer simulation data, the efficiency of fault monitoring is improved. 2. Through multi-sensor data fusion technology, these data information are fused together to judge the bias information of the transformer. The system no longer relies on the data information collected by a certain sensor to judge the bias of the transformer, even if one of the sensors fails. It does not affect the detection and effectively improves the recognition accuracy. 3. By establishing the characteristic curve of the neutral point current and the magnetic field strength of the transformer core in the workstation, and superimposing the characteristic curve between the neutral point current and the core magnetic field strength on the digital twin transformer, and by superimposing the characteristic curve on the digital twin transformer. information to view the effect of neutral point current on transformer bias. The relationship between the stray current and the transformer bias can be matched, especially for the transformer next to the rail transit, which can provide an effective maintenance reference for the staff.
附图说明Description of drawings
图1为本发明各部件连接框图;Fig. 1 is the connection block diagram of each component of the present invention;
图2为本发明结构示意图;Fig. 2 is the structural representation of the present invention;
图3为本发明数字孪生变压器建模的流程图;Fig. 3 is the flow chart of digital twin transformer modeling of the present invention;
图4为本发明多传感器数据融合的流程图。FIG. 4 is a flow chart of the multi-sensor data fusion of the present invention.
图中:1.电压传感器、2.电流传感器、3.磁场感应器、4.温度传感器、5.振动传感器、6.噪声检测仪、7.工控机、8.5G模块。In the picture: 1. Voltage sensor, 2. Current sensor, 3. Magnetic field sensor, 4. Temperature sensor, 5. Vibration sensor, 6. Noise detector, 7. Industrial computer, 8.5G module.
具体实施方式Detailed ways
参照图1至图4,一种基于数字孪生的变压器偏磁检测方法,该方法步骤如下:1 to 4 , a method for detecting bias magnetism of a transformer based on a digital twin, the method steps are as follows:
步骤一,通过传感器检测出变压器的铁心磁场变化信息、中性点电流信息、原边电压信息、原边电流信息、副边电流信息、温度变化信息、振动信息和产生的噪声信息;In
步骤二,再将检测到的数据信息传输至工控机7,对采集到的这些数据信息进行信号放大、滤波、AD转换和数据预处理,再将预处理后的数据信息远程传输至工作站;
步骤三,工作站通过数字孪生技术根据变压器参数建立仿真变压器模型,再将预处理后的数据信息导入仿真变压器模型中形成数字孪生变压器,
步骤四,通过多传感器数据融合技术将铁心磁场变化信息、原边电流信息、副边电流信息、温度变化信息、振动信息和产生的噪声信息融合在一起共同判断变压器的偏磁信息,并叠加在数字孪生变压器上通过工作站显示出来;因此在判断变压器偏磁时,不再单独依赖某一个传感器采集到的数据信息来判断变压器偏磁情况,有效的提高识别准确率;Step 4: Through multi-sensor data fusion technology, the core magnetic field change information, primary current information, secondary current information, temperature change information, vibration information and generated noise information are fused together to judge the bias information of the transformer, and superimposed on the transformer bias information. The digital twin transformer is displayed on the workstation; therefore, when judging the bias of the transformer, it no longer relies on the data information collected by a certain sensor to judge the bias of the transformer, which effectively improves the recognition accuracy;
步骤五,在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响。Step 5: Establish the characteristic curve between the neutral point current and the magnetic field strength of the transformer core in the workstation, and superimpose the characteristic curve between the neutral point current and the core magnetic field strength on the digital twin transformer. information to view the effect of neutral point current on transformer bias.
如图4所示,其中,步骤四中,通过多传感器数据融合技术来判断变压器的偏磁信息方案为:变压器偏磁会导致变压器铁心磁场强度发生变化、振动和噪声加剧、其温度也会升高,由于变压器偏磁会导致励磁电流变化,励磁电流变化又会引起变压器原边电流和副边电流发生变化,因此可以通过融合变压器偏磁产生的铁心磁场变化信息、原边电流信息、副边电流信息、温度变化信息、振动信息、噪声信息等参量信息来判断变压器偏磁情况,通过建立梯度数据融合模型对变压器偏磁情况进行检测,先设置数据融合中心,其中,传感器包括电压传感器1、电流传感器2、磁场感应器3、温度传感器4、振动传感器5和噪声检测仪6,电流传感器2包括第一电流传感器和第二电流传感器,其中第一电流传感器用于检测变压器原边电流信息和副边电流信息,第二电流传感器用于检测变压器中性点电流信息,在第一电流传感器、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6与数据融合中心之间设置一个中间站,在中间站中对第一电流传感器、磁场感应器3、温度传感器4、振动传感器5和噪声检测仪6采集到的数据信息关联起来,再进行数据级融合,实现局部融合,并在数据融合中心对局部融合后的数据信息进行特征提取,根据特征提取结果对数据属性进行判决,然后将判决后的数据信息关联起来进行决策级融合,进而实现全局融合,并将融合后的结果输出来判断变压器的偏磁情况。As shown in Figure 4, among them, in
其中,步骤五中,第二电流传感器检测中性点的电流后,通过与磁场感应器3采集到的数据信息进行对比,从而判断杂散电流对变压器偏磁的影响。Wherein, in step 5, after the second current sensor detects the current at the neutral point, it is compared with the data information collected by the
其中,在判断中性点电流对变压器偏磁的影响过程中,通过磁场感应器3来检测铁心磁场变化信息,将第二电流传感器和磁场感应器检测到的中性点电流信息和铁心磁场变化信息一同传输至工作站,在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,当中性点上窜入杂散电流时,即可通过叠加在数字孪生变压器上的信息来查看中性点杂散电流对变压器偏磁的影响,主要查看轨道交通沿线变压器在有机车通过时铁心磁场强度变化,进而得出机车运行时产生的杂散电流对变压器偏磁的影响。Among them, in the process of judging the influence of the neutral point current on the bias magnetization of the transformer, the
如图3所示,其中,步骤三构建数字孪生变压器时,先将变压器的具体参数导入BIM软件Revit中生成.RVT文件,并将.RVT文件导入3D max软件中进行编辑,在3D max软件里面按元素类型将BIM模型相同部件合并为一个物体,删除多余点线面,将合并后的模型赋予材质纹理与特征参数,在3D max软件中将编辑后的模型导出,加载进引擎,针对变压器材质属性进行二次材质效果调整,进而渲染出与变压器具有相同参数的虚拟变压器,建立虚拟工控机,再将电压传感器1、电流传感器2、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6采集到的数据信息通过实体工控机7汇聚后传输至虚拟工控机中,建立虚拟工控机与虚拟变压器之间的数据接口,根据采集到的数据信息在虚拟变压器中进行数据解析和场景渲染,最后生成数字孪生变压器,使得数字孪生变压器接收到的数据信息就与变压器的真实特征数据一致。而用于检测母线的电压传感器1和电流传感器2采集到的数据信息也会传输到数字孪生变压器中,同时使得数字孪生变压器和变压器输入的运行电压电流一致,从而保证数字孪生变压器和变压器各方面数据的一致性。As shown in Figure 3, when building a digital twin transformer in
其中,第一电流传感器、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6采集的数据信息在数据级融合过程中,通过采用模糊逻辑控制法对采集到的数据信息进行局部融合,以X1、X2、X3、X4、X5分别作为第一电流传感器、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6的模糊集合,其中X1包括第一电流传感器各个时刻采集到的原边电流信息和副边电流信息,其中第k时刻采集到的原边电流信息和副边电流信息表示为x1(k);X2包括磁场感应器3各个时刻采集到的铁心磁场变化信息,其中第k时刻采集到的铁心磁场变化信息表示为x2(k);X3包括温度传感器4各个时刻采集到的温度变化信息,其中第k时刻采集到的温度变化信息表示为x3(k);X4包括振动传感器5各个时刻采集到的振动信息,其中第k时刻采集到的振动信息表示为x4(k);X5包括噪声检测仪6各个时刻采集到产生的噪声信息,其中第k时刻采集到产生的噪声信息表示为x5(k);通过贴近度来评价X1、X2、X3、X4、X5之间识别到偏磁情况的相似度,第k时刻,各个传感器之间的数据矩阵为:Among them, the data information collected by the first current sensor, the
矩阵A中的元素即为各个传感器之间的贴近度表达式,即:αmn(k)表示第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪中任意两个传感器之间的贴近度表达式,xm(k)、xn(k)分别表示第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪在k时刻采集到的数据信息,当m=1、n=2时,x1(k)表示第一电流传感器在k时刻采集到的数据信息,x2(k)表示磁场感应器在k时刻采集到的数据信息,当αmn(k)小于预设值M时,则认为xm(k)和xn(k)不相似,那么就可以得出αmn(k)=0,即有: The elements in matrix A are the expressions of proximity between each sensor, namely: α mn (k) represents the closeness expression between any two sensors in the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector, and x m (k) and x n (k) represent respectively Data information collected by the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector at time k. When m=1, n=2, x 1 (k) represents the first current sensor at time k. The collected data information, x 2 (k) represents the data information collected by the magnetic field sensor at time k, when α mn (k) is less than the preset value M, it is considered that x m (k) and x n (k) are not similar, then it can be concluded that α mn (k) = 0, that is:
第一电流传感器、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6采样值的一致性测度计算公式为:式中αij(k)为k时刻传感器在数据矩阵中的第i行,第j列数据信息,αij(k)为x1(k)、x2(k)、x3(k)、x4(k)或x5(k)。The calculation formula for the consistency measurement of the sampling values of the first current sensor, the
数据融合的计算公式表示为:式中x1(k)表示为k时刻第一电流传感器采集到的数据信息,x2(k)表示为k时刻磁场感应器采集到的数据信息,x3(k)表示为k时刻温度传感器采集到的数据信息,x4(k)表示为k时刻振动传感器采集到的数据信息,x5(k)表示为k时刻噪声检测仪采集到的数据信息,ωi(k)表示数据矩阵中的第i行权重,根据信息分享原理,最优融合估计的信息量之和可分解为若干个测量数据的信息量之和,即一个信息可被若干个子系统所分享,有将第一电流传感器、磁场感应器、温度传感器、振动传感器、噪声检测仪的模糊贴近度做归一化处理,得到各自的权重式中,c1(k),c2(k),c3(k),c4(k),c5(k)表示一组非负数。The calculation formula of data fusion is expressed as: where x 1 (k) is the data information collected by the first current sensor at time k, x 2 (k) is the data information collected by the magnetic field sensor at time k, and x 3 (k) is the temperature sensor at time k The collected data information, x 4 (k) represents the data information collected by the vibration sensor at time k, x 5 (k) represents the data information collected by the noise detector at time k, ω i (k) represents the data in the matrix The weight of the i-th row of , according to the principle of information sharing, the sum of the information volume estimated by the optimal fusion can be decomposed into the sum of the information volume of several measurement data, that is, one information can be shared by several subsystems, there are Normalize the fuzzy closeness of the first current sensor, magnetic field sensor, temperature sensor, vibration sensor, and noise detector to obtain their respective weights In the formula, c 1 (k), c 2 (k), c 3 (k), c 4 (k), and c 5 (k) represent a set of non-negative numbers.
其中,在数据融合中心进行决策级融合过程中,将变压器偏磁情况分为正常F1、轻度F2、重度F3、严重F4四个等级,设Θ为一个识别框架,Ω(Θ)表示Θ中所有子集的集合,则变压器偏磁级别表示为:Among them, in the decision-level fusion process of the data fusion center, the transformer bias conditions are divided into four levels: normal F 1 , mild F 2 , severe F 3 , and severe F 4 , and set Θ as an identification framework, Ω(Θ ) represents the set of all subsets in Θ, then the transformer bias level is expressed as:
Ω(Θ)={φ,{F1},{F2},{F3},{F4},{F1,F2},{F2,F3},...},φ为空集,假设Q={F1,F2}∈Θ,就表示Q要么是正常F1,要么是轻度F2,即Ω(Θ)是其中的任意一种状态;Ω(Θ) = {φ,{F1 } ,{F2 } ,{F3},{ F4 } ,{F1,F2 } , { F2, F3 },...},φ is an empty set, assuming Q={F 1 , F 2 }∈Θ, it means that Q is either normal F 1 or mild F 2 , that is, Ω(Θ) is any one of these states;
确定了识别框架Θ后,定义一个集函数G,将Ω(Θ)映射到区间[0,1]上的一个数,表示为:式中G(Q)称为基本概率赋值函数,表示状态识别模型对一个特定状态的置信度,用信度函数Bel来表示识别框架Θ上的映射Bel:Q→[0,1],满足:再用似真函数Pl表示下一个映射Pl:Ω(Θ)→[0,1],且满足:式中Qc表示Q的补集,Pl(Q)表示命题Q的似真度,其中Pl(Q)=0表示证据拒绝Q,Pl(Q)=1表示证据支持Q;After determining the recognition frame Θ, define a set function G that maps Ω(Θ) to a number on the interval [0,1], expressed as: In the formula, G(Q) is called the basic probability assignment function, which represents the confidence of the state recognition model for a specific state, and the confidence function Bel is used to represent the mapping Bel on the recognition framework Θ: Q→[0, 1], which satisfies: Then use the plausibility function Pl to represent the next mapping Pl:Ω(Θ)→[0,1], and satisfy: where Q c represents the complement of Q, Pl(Q) represents the plausibility of proposition Q, where Pl(Q)=0 means that the evidence rejects Q, and Pl(Q)=1 means that the evidence supports Q;
设Gi表示定义在识别框架Θ上的第i组证据的基本概率赋值函数,其中i=1,2......n,对任意两组证据进行组合后的基本概率赋值函数表示为:K表示归一化后的系数,表示为:G1(Qi)为第1组证据Qi的基本概率赋值函数,G2((Ω(Θ))j)为第2组证据(Ω(Θ))j的基本概率赋值函数,G(Q)反映了两个证据之间的冲突程度,当K≠0时,用正交和的形式表示两组证据间的组合;当K=0,表示不存在正交和,两个证据之间属于矛盾关系;Let G i represent the basic probability assignment function of the ith group of evidences defined on the recognition framework Θ, where i=1, 2...n, the basic probability assignment function after combining any two groups of evidences is expressed as : K represents the normalized coefficient, which is expressed as: G 1 (Q i ) is the basic probability assignment function of the first group of evidence Qi , G 2 ((Ω(Θ)) j ) is the basic probability assignment function of the second group of evidence (Ω(Θ)) j , G( Q) reflects the degree of conflict between the two evidences. When K≠0, the combination between the two sets of evidences is expressed in the form of an orthogonal sum; when K=0, it means that there is no orthogonal sum, and the a contradictory relationship;
其后构建第一电流传感器、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6的基本概率赋值函数,第一电流传感器、磁场感应器3、温度传感器4、振动传感器5和噪声检测仪6的识别结果作为五个证据E1、E2、E3、E4、E5,同时将正常F1、轻度F2、重度F3、严重F4四个等级作为识别域,由Θ={F1,F2,F3,F4}构成E1、E2、E3、E4、E5共同的识别框架,在识别框架Θ上构建各个证据的基本概率赋值函数,根据公式即可计算出E1、E2、E3、E4、E5融合后的基本概率赋值函数,根据融合后的基本概率赋值函数来判断变压器偏磁情况处于哪一种状态,例如在识别框架Θ上构建E1的基本概率赋值函数,如表1所示,其中对样本1进行分析,样本1的基本概率赋值函数最大值在F1,表明变压器偏磁情况处于正常状态。Then construct the basic probability assignment function of the first current sensor,
表1 E1的基本概率赋值函数Table 1 Basic probability assignment function of E1
参照图1和图2,一种基于数字孪生的变压器偏磁检测系统,包括变压器、电压传感器1、电流传感器2、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6、工控机7、5G模块8和工作站,在变压器母线的进线上安装电压传感器1,在变压器外表面上安装有电压传感器1和电流传感器2,电压传感器1、电流传感器2分别接入变压器的母线,工控机7安装在变压器外表面,5G模块8安装在工控机7上,在变压器铁心旁安装磁场感应器3,温度传感器4、振动传感器5、噪声检测仪6安装在变压器内侧,磁场感应器3,温度传感器4、振动传感器5、噪声检测仪6、电流传感器2和电压传感器1分别连接工控机7,工控机7通过5G模块8连接工作站。1 and 2, a digital twin-based transformer bias detection system includes a transformer, a
其中,电流传感器2包括第一电流传感器和第二电流传感器,第一电流传感器为六个,分别用于检测变压器原边电流和变压器副边电流,第二电流传感器为一个,用于检测变压器中性点的电流,电压传感器1为三个,用于检测变压器母线的原边电压。Among them, the
本发明的工作原理与工作过程如下:The working principle and working process of the present invention are as follows:
如图1至图4所示,采用电压传感器1、电流传感器2分别采集接入变压器的母线上的电压、电流,电压传感器1、电流传感器2、磁场感应器3、温度传感器4、振动传感器5、噪声检测仪6将各自检测到的信息传输至工控机7,在工控机7中对采集到的这些数据信息进行信号放大、滤波、AD转换、数据预处理等操作,并通过5G技术控制5G模块8将数据传输至工作站,在工作站中通过数字孪生技术根据变压器参数在3D MAX软件中建立仿真变压器模型,将预处理后的数据信息自动导入仿真变压器模型中形成数字孪生变压器,数字孪生变压器接收到的数据信息与变压器的真实特征数据一致,再通过多传感器数据融合技术将铁心磁场变化信息、原边电流信息、副边电流信息、温度变化信息、振动信息和产生的噪声信息融合在一起共同判断变压器的偏磁信息,并叠加在数字孪生变压器上显示。通过在工作站中建立中性点电流与变压器铁心磁场强度的特性曲线,并将中性点电流与铁心磁场强度之间的特性曲线叠加在数字孪生变压器上,通过叠加在数字孪生变压器上的信息来查看中性点电流对变压器偏磁的影响。As shown in Figures 1 to 4,
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, the The technical solutions described in the foregoing embodiments may be modified, or some technical features thereof may be equivalently replaced. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210297916.2A CN114636882B (en) | 2022-03-24 | 2022-03-24 | A transformer bias magnetic detection system and method based on digital twin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210297916.2A CN114636882B (en) | 2022-03-24 | 2022-03-24 | A transformer bias magnetic detection system and method based on digital twin |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114636882A true CN114636882A (en) | 2022-06-17 |
CN114636882B CN114636882B (en) | 2024-08-16 |
Family
ID=81950659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210297916.2A Active CN114636882B (en) | 2022-03-24 | 2022-03-24 | A transformer bias magnetic detection system and method based on digital twin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114636882B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117388780A (en) * | 2023-12-11 | 2024-01-12 | 国网江西省电力有限公司电力科学研究院 | A multivariate model-based wide-area DC bias magnetic testing method and device for transformers |
CN117709286A (en) * | 2024-02-05 | 2024-03-15 | 北京交通大学 | Digital twinning-based railway signal relay circuit simulation system and simulation method |
CN118611252A (en) * | 2024-05-22 | 2024-09-06 | 苏州顶地电气成套有限公司 | A high and low voltage distribution cabinet operating environment monitoring and early warning system based on the Internet of Things |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520240A (en) * | 2012-01-05 | 2012-06-27 | 山东电力研究院 | Magnetic bias current monitoring and early-warning system for large-scale transformer |
CN105676085A (en) * | 2016-01-31 | 2016-06-15 | 国家电网公司 | Extra-high voltage GIS partial discharge detection method based on multi-sensor information fusion |
CN107807288A (en) * | 2017-09-13 | 2018-03-16 | 安徽正广电电力技术有限公司 | Transformer DC magnetic bias on-line monitoring system |
CN108027911A (en) * | 2015-07-29 | 2018-05-11 | 伊利诺斯工具制品有限公司 | Promote the system and method that welding is service software |
CN109669087A (en) * | 2019-01-31 | 2019-04-23 | 国网河南省电力公司 | A kind of method for diagnosing fault of power transformer based on Multi-source Information Fusion |
US20190302711A1 (en) * | 2018-03-30 | 2019-10-03 | General Electric Company | System and method for power generation control |
CN112684379A (en) * | 2020-11-25 | 2021-04-20 | 江苏科技大学 | Transformer fault diagnosis system and method based on digital twinning |
US11079748B1 (en) * | 2020-04-29 | 2021-08-03 | Grale Technologies | In-process digital twinning |
CN113408663A (en) * | 2021-07-20 | 2021-09-17 | 中国科学院地理科学与资源研究所 | Fusion model construction method, fusion model using device and electronic equipment |
CN113420401A (en) * | 2021-08-24 | 2021-09-21 | 国网江西省电力有限公司电力科学研究院 | Optimal arrangement method for bias current blocking devices of power system |
CN113485156A (en) * | 2021-06-17 | 2021-10-08 | 国家电网有限公司 | Transformer digital twin cloud platform and implementation method thereof |
CN113673884A (en) * | 2021-08-25 | 2021-11-19 | 国网吉林省电力有限公司长春供电公司 | Method for monitoring transformer area data based on digital twin mapping model |
-
2022
- 2022-03-24 CN CN202210297916.2A patent/CN114636882B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520240A (en) * | 2012-01-05 | 2012-06-27 | 山东电力研究院 | Magnetic bias current monitoring and early-warning system for large-scale transformer |
CN108027911A (en) * | 2015-07-29 | 2018-05-11 | 伊利诺斯工具制品有限公司 | Promote the system and method that welding is service software |
CN105676085A (en) * | 2016-01-31 | 2016-06-15 | 国家电网公司 | Extra-high voltage GIS partial discharge detection method based on multi-sensor information fusion |
CN107807288A (en) * | 2017-09-13 | 2018-03-16 | 安徽正广电电力技术有限公司 | Transformer DC magnetic bias on-line monitoring system |
US20190302711A1 (en) * | 2018-03-30 | 2019-10-03 | General Electric Company | System and method for power generation control |
CN109669087A (en) * | 2019-01-31 | 2019-04-23 | 国网河南省电力公司 | A kind of method for diagnosing fault of power transformer based on Multi-source Information Fusion |
US11079748B1 (en) * | 2020-04-29 | 2021-08-03 | Grale Technologies | In-process digital twinning |
CN112684379A (en) * | 2020-11-25 | 2021-04-20 | 江苏科技大学 | Transformer fault diagnosis system and method based on digital twinning |
CN113485156A (en) * | 2021-06-17 | 2021-10-08 | 国家电网有限公司 | Transformer digital twin cloud platform and implementation method thereof |
CN113408663A (en) * | 2021-07-20 | 2021-09-17 | 中国科学院地理科学与资源研究所 | Fusion model construction method, fusion model using device and electronic equipment |
CN113420401A (en) * | 2021-08-24 | 2021-09-21 | 国网江西省电力有限公司电力科学研究院 | Optimal arrangement method for bias current blocking devices of power system |
CN113673884A (en) * | 2021-08-25 | 2021-11-19 | 国网吉林省电力有限公司长春供电公司 | Method for monitoring transformer area data based on digital twin mapping model |
Non-Patent Citations (3)
Title |
---|
党艳阳: "温度及直流偏磁对换流变压器铁心磁性能及磁场问题影响的研究", 电工电能新技术, vol. 39, no. 4, 23 April 2020 (2020-04-23), pages 34 - 42 * |
王亚强: "基于数字孪生的压力机润滑系统故障预测方法研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, 15 December 2021 (2021-12-15), pages 022 - 108 * |
王琳琳: "基于信息融合的电力变压器故障诊断", 中国优秀硕士学位论文全文数据库工程科技II辑, 15 March 2017 (2017-03-15), pages 042 - 787 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117388780A (en) * | 2023-12-11 | 2024-01-12 | 国网江西省电力有限公司电力科学研究院 | A multivariate model-based wide-area DC bias magnetic testing method and device for transformers |
CN117388780B (en) * | 2023-12-11 | 2024-05-14 | 国网江西省电力有限公司电力科学研究院 | Multi-element model-based transformer wide-area direct-current magnetic bias testing method and device |
CN117709286A (en) * | 2024-02-05 | 2024-03-15 | 北京交通大学 | Digital twinning-based railway signal relay circuit simulation system and simulation method |
CN117709286B (en) * | 2024-02-05 | 2024-04-09 | 北京交通大学 | Digital twinning-based railway signal relay circuit simulation system and simulation method |
CN118611252A (en) * | 2024-05-22 | 2024-09-06 | 苏州顶地电气成套有限公司 | A high and low voltage distribution cabinet operating environment monitoring and early warning system based on the Internet of Things |
Also Published As
Publication number | Publication date |
---|---|
CN114636882B (en) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114636882A (en) | A transformer bias detection system and method based on digital twin | |
CN109324236A (en) | A Fault Evaluation Method Based on Typical Defects of Cable Joints | |
CN108562821B (en) | Method and system for determining single-phase earth fault line selection of power distribution network based on Softmax | |
CN109813987B (en) | A method for evaluating transformer DC bias state based on BP neural network | |
CN118446682B (en) | A power facility maintenance system based on smart Internet of Things | |
CN108152662A (en) | A kind of cross interconnected box fault diagnosis method and system based on earth current | |
Xian et al. | Identification method of interturn short circuit fault for distribution transformer based on power loss variation | |
Ma et al. | Fault diagnosis method based on multi‐source information fusion for weak interturn short circuit in synchronous condensers | |
CN111579939A (en) | Method for detecting partial discharge phenomenon of high-voltage power cable based on deep learning | |
CN105182163B (en) | The online detecting system of UHVDC Arrester leakage current based on cloud | |
CN116170283A (en) | Processing method based on network communication fault system | |
CN105301325B (en) | With hall sensing theory to the method for UHVDC Arrester leakage current collection | |
CN105301323B (en) | The method that UHVDC Arrester Leakage Current is detected online using cloud | |
CN117828432A (en) | A method for diagnosing and warning daily electricity consumption behavior of large high-voltage users | |
CN117970020A (en) | Intelligent distribution network fault diagnosis and positioning method based on deep learning algorithm | |
CN115902507A (en) | Power distribution network fault indication method based on Hankel matrix singular value decomposition | |
CN112767570B (en) | An inspection method for distribution network fault area for optimal scheduling of inspectors | |
CN114878674A (en) | A Transformer Winding Defect Diagnosis Method Based on the Comprehensive Characteristics of Winding Stress and Magnetic Leakage Parameters Based on Fusion Algorithm | |
CN116047237A (en) | Online detection method and device for series arc faults of three-phase frequency converter circuit | |
CN113776421A (en) | Transformer winding deformation diagnosis method and system | |
Liang et al. | Fault diagnosis of Inter-turn short circuit in rotor winding of Doubly-fed generator based on data fusion of Multi-flux sensors | |
CN109470984B (en) | Fault judgment system and judgment method for power distribution network with electronic sand table | |
Wan et al. | Cable insulation defect diagnosis based on harmonic characteristic label | |
CN112949191B (en) | Dry-type transformer state evaluation method based on cloud model | |
Quan et al. | The application of Bayesian network theory in transformer condition assessment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 330096 No. 88, Minqiang Road, private science and Technology Park, Qingshanhu District, Nanchang City, Jiangxi Province Applicant after: STATE GRID JIANGXI ELECTRIC POWER COMPANY LIMITED Research Institute Applicant after: STATE GRID CORPORATION OF CHINA Applicant after: East China Jiaotong University Address before: 330096 No.88 Minqiang Road, private science and Technology Park, high tech Zone, Nanchang City, Jiangxi Province Applicant before: STATE GRID JIANGXI ELECTRIC POWER COMPANY LIMITED Research Institute Applicant before: STATE GRID CORPORATION OF CHINA Applicant before: East China Jiaotong University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |