CN114635018A - 一种q345低碳钢增强增塑的方法 - Google Patents

一种q345低碳钢增强增塑的方法 Download PDF

Info

Publication number
CN114635018A
CN114635018A CN202210292538.9A CN202210292538A CN114635018A CN 114635018 A CN114635018 A CN 114635018A CN 202210292538 A CN202210292538 A CN 202210292538A CN 114635018 A CN114635018 A CN 114635018A
Authority
CN
China
Prior art keywords
low
carbon steel
steel plate
rolling
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210292538.9A
Other languages
English (en)
Other versions
CN114635018B (zh
Inventor
王永强
葛章琦
胡朝军
刘文龙
丁西安
李娜
郑成思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202210292538.9A priority Critical patent/CN114635018B/zh
Publication of CN114635018A publication Critical patent/CN114635018A/zh
Application granted granted Critical
Publication of CN114635018B publication Critical patent/CN114635018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供了一种Q345低碳钢增强增塑的方法,先将Q345低碳钢钢板淬火,再进行室温轧制,最后进行退火处理,水冷至室温。通过轧制预处理获得高位错密度的低碳马氏体组织,弥补了轧制变形对基体组织分割破碎方面的不足,为退火再结晶提供了充足的形核位置,采用大压下量轧制从而保留更大的形变储存能,最终在两相区附近温度退火的产品可实现适当的晶粒细化并且呈现出小晶粒围绕大晶粒的组织形貌。本发明方法处理后的钢板屈服强度430~462Mpa;抗拉强度可达到565~766Mpa,断后延伸24~33%,强塑积高达17.9~18.6GPa·%,综合力学性能显著高于现有技术,并且本工艺简便高效,可大规模生产。

Description

一种Q345低碳钢增强增塑的方法
技术领域
本发明属于金属材料加工技术领域,具体涉及一种Q345低碳钢增强增塑的方法。
背景技术
钢铁材料作为一种传统的金属材料,在建筑、机械、交通运输、航天航空等领域中有着广泛且不可替代的作用。根据不同应用场景的不同需求,可以通过冷热加工、合金化、热处理等工艺改变钢铁材料性能。Q345低碳钢是一种常用的钢铁结构材料,广泛应用于大型建筑、公路桥梁、工程机械以及重载货车的车轴等领域,国内交货的Q345低碳钢一般为热轧态或热轧退火态,根据GB/T1591-1994,正火态Q345低碳钢屈服强度为345MPa,抗拉强度为470~630MPa,延伸率为21%,其力学性能相对较低,对于一些工况恶劣的服役环境,需经过一定的强化处理才能满足使用要求。
钢铁材料的强化方法主要有固溶强化、第二相强化、形变强化和细晶强化。其中固溶强化是通过间隙固溶原子或置换固溶原子在晶格中引起晶格畸变,从而增大位错运动的阻力,使位错滑移困难,从而提高强度和硬度。第二相强化是通过沉淀析出硬质第二相粒子,例如碳化物、氮化物或金属间第二相等,阻碍位错运动从而提高强度。形变强化是通过较大塑性变形,钢铁材料内部位错密度显著增加,位错在运动过程中相互交割产生固定的割阶、位错缠结等现象,使位错运动的阻力增大,引起变形抗力增加,从而提高强度。细晶强化是通过晶粒(组织)的细化,增加单位体积的晶界面积,从而使得晶界阻碍位错运动的效果增强,提高强度。细晶强化是目前众多金属强化方法中唯一既能提高强度又可改善塑韧性的强化方法,因此近几十年来得到广泛关注与应用。晶粒(组织)细化的方法主要分为:1)以等通道转角挤压、累积叠轧、高压扭转等为代表的大塑性变形法;2)以控轧控冷为代表的先进形变热处理技术;3)以及诸如惰性气体凝固法、非晶晶化法、表面机械碾压法等其他细化方法。但是众多研究和工程实践证明,当晶粒细化到亚微米级的水平,进一步细化晶粒,材料强度依然提高,但塑性变形能力却迅速下降且失去加工硬化,导致材料的塑韧性降低。因此细晶强化的应用也存在局限性,这需要综合考虑组织结构的调控。
对于Q345低碳钢的强化,四种主要强化方法中的固溶强化、第二相粒子强化显然不适用,因为这两种方法均需要添加溶质原子或合金化,改变原有金属的成分;而形变强化虽然可以明显提高强度,但是强度提高的同时塑韧性会大大降低,往往会导致材料加工硬化能力的丧失。因此,细晶强化是Q345低碳钢性能强化的首选方案。然而,通过已有的大塑性变形加再结晶退火方法加工的Q345低碳钢加工硬化能力随晶粒尺寸降低至微米级时会出现显著的而削弱,严重影响材料的塑性,存在一定的安全隐患,因此细晶强化对于Q345低碳钢来说并不是晶粒越细越好。
Q345低碳钢较低的强度限制了其在某些工业领域的应用,开发出塑性可观的高强度Q345低碳钢具有可观的工业应用前景和价值,因此开发一种高强度高塑性的Q345低碳钢大规模制备方法具备十分实际的研究意义。
发明内容
本发明的目的在于提供一种Q345低碳钢增强增塑的方法,建立了一种新的Q345低碳钢组织适当细化及组织合理调控的方法,解决一般商用Q345低碳钢综合力学性能较差的问题。
本发明具体技术方案如下:
一种Q345低碳钢增强增塑的方法,包括以下步骤:
S1:将Q345低碳钢钢板淬火;
S2:将步骤S1淬火后的Q345低碳钢钢板进行室温轧制;
S3:将步骤S2轧制态Q345低碳钢钢板进行退火处理,然后水冷至室温。
步骤S1中所述的淬火具体为:将Q345低碳钢钢板于900~1000℃保温1~3h后水冷;
步骤S1所述的钢板厚度为9.0~10.0mm;
步骤S1中的Q345低碳钢钢板包括以下质量百分比成分:碳≤0.20%,硫≤0.030%,锰≤1.70%,磷≤0.030%,硅≤0.50%,余量为Fe和不可避免的杂质。
步骤S1淬火后Q345低碳钢钢板的组织为马氏体和少量铁素体。
步骤S2中所述轧制具体为:轧前厚度为9.0~10.0mm,轧后厚度为2.0~3.0mm,压下率为66.7%~80%;
步骤S3所述退火处理具体为:700~720℃保温10~30min。
步骤S3中所述退火处理,采用的退火炉是箱式电阻炉、真空退火炉或气氛保护退火炉中的任意一种,气氛保护退火炉使用的气体可以是氩气、氮气或氮气和氩气的混合气体。
所生产的Q345低碳钢钢板组织为铁素体以及游离的渗碳体,呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸范围为2.6~4.0μm,其中小晶粒平均尺寸为1.4~1.7μm,大晶粒平均尺寸为4.1~6.8μm。
所生产的Q345低碳钢钢板屈服强度达到430~462Mpa,抗拉强度达到565~766Mpa,断后延伸率为24~33%,强塑积17.9~18.6GPa·%。
轧制是区别于等通道转角挤压、高压扭转、表面机械碾压法等既能实现较大塑性变形又可大规模生产大尺寸产品的加工方法,轧制变形结合再结晶退火的晶粒细化机制同样是位错分割机制,通过组织准备在轧件中提前引入较高的位错密度,能够一定程度上克服晶粒(组织)细化效果较差的不足。本发明采用先淬火,获得马氏体和少量铁素体,为后续轧制变形做组织准备;大压下量冷轧马氏体结合两相区附近退火的创新方法,使最终产品的组织既细化又合理。轧制预处理得到的马氏体组织中位错密度较高,并且马氏体束之间位向差大,经大压下量轧制后基体组织被进一步分割、破碎,一方面为退火过程的再结晶提供了较多的形核位置,另一方面积累了大量的形变储存能,为通过再结晶退火获得微米级晶粒提供了驱动力,同时由于产品不同位置变形量大小稍有不同,位错累积的程度不同,因此,再结晶发生的驱动力有差别,这恰恰为产生晶粒尺寸大小有别的组织创造了条件,可以克服超细晶塑性降低的问题,从而得到强度和塑韧性均高的产品。
与现有技术相比,本发明的有益效果在于:
1、可大规模生产大尺寸的高强度高塑韧性Q345低碳钢产品,根据轧制型号及加热炉尺寸,可生产宽度1米、长度上千米的产品;
2、建立了一种新的Q345低碳钢组织适当细化及组织合理调控的方法,通过轧制预处理获得高位错密度的马氏体组织,弥补了轧制变形对基体组织分割破碎方面的不足,为退火再结晶提供了充足的形核位置,采用66.7%~80%的大压下量轧制从而保留更大的形变储存能,最终在两相区附近温度退火的产品,退火组织为铁素体以及游离的渗碳体,退火产品可实现适当的晶粒细化,平均晶粒尺寸范围为2.6~4.0μm,并且晶粒分布大小有别,呈现出小晶粒围绕大晶粒的组织形貌,其中小晶粒平均尺寸为1.4~1.7μm,大晶粒平均尺寸为4.1~6.8μm,并且小晶粒无聚集分布现象,呈现弥散于大晶粒之间分布形态。这种晶粒大小配合的双峰组织在一定程度上改善了材料高强度下的塑性行为,并且在两相区附近退火,促进了碳原子扩散形成渗碳体,消除了溶质原子在屈服阶段对位错运动的钉扎作用,消除了不连续屈服现象,显著改善了产品的加工硬化能力,解决了超细晶钢强度高但塑性差的这一共性问题。
3、通过本发明提出的Q345低碳钢强化方法,使产品屈服强度达到430~462Mpa,抗拉强度达到565~766Mpa,断后延伸率为24~33%,强塑积17.9~18.6GPa·%;
4、通过本发明提出的Q345低碳钢强化方法,使产品抗拉强度较原材料提升49%,屈服强度较原材料提升21%,并且峰值应力处的均匀延伸率较原始态式样仅降低3%,综合力学性能(强塑积)高于已有文献[CN101514389A]报道的最高性能数据14.7GPa·%和[CN102041360A]报道的最高性能数据15.8GPa·%;
5、通过本发明提出的同时强化和提高塑性的Q345低碳钢加工方法生产的产品,不仅综合性能优于已有文献[CN101514389A]、[CN102041360A]和[CN109022733 A]报道的最高性能数据,而且加工工艺比[CN101514389A]中的熔炼及TMCP工艺更加简洁高效,同时也不需要如[CN109022733 A]中所述添加合金元素进行成分调控,因而成本低廉,并且产品尺寸大、便于后续深加工。
6、本发明旨在于通过对商用Q345低碳钢进一步的加工提高其力学性能以满足更严苛的服役条件。现有的技术,无论是TMCP工艺还是微合金化,要么达不到更高强度和塑韧性的良好匹配的要求,要么生产工艺复杂,亦或生产成本较高。本发明的强韧化技术路线是细晶强化和组织调控的匹配,这不同于传统的单一的细晶强化技术,而且不需要添加合金元素,工艺简单高效。单一的细晶强化技术在晶粒小的一定范围时,金属材料不可避免的出现塑性显著降低的现象,Q345钢也是如此。因此Q345钢的强韧化并非晶粒越细越好,而是有必要结合适当的组织调控来实现良好的强塑性配合。本发明通过轧制前的淬火得到部分高位错密度的低碳马氏体组织,然后在进行较大变形量的冷轧制,这样可保证轧制态钢样中具有高的位错密度,为退火过程的再结晶提供大量形核位置。此外,本发明采取在接近两相区的温度退火,此时溶质原子以渗碳体的形式析出,由于尺寸细小、分布弥散,一方面其作为硬质相起到了类似第二相强化的作用,另一方面消除了屈服现象、提升了加工硬化能力,这种细晶铁素体结合游离渗碳体的组织实现了较好的强塑搭配。
附图说明
图1为Q345低碳钢轧制及退火工艺路线图;
图2为Q345低碳钢原始金相组织;
图3为经720℃+30min退火后产品的金相组织;
图4为本发明中原始态和不同退火工艺下Q345低碳钢钢板的应力应变曲线。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。以下实施例和对比例均采用相同的试验方法和仪器,以保证结果的可比性。依据GBT/228-2010标准加工拉伸试样,加工好的试样在DNS50型万能电子拉伸试验机上进行室温拉伸试验,拉伸速度为0.9mm/min。
实施例1
一种Q345低碳钢增强增塑的方法,包括以下步骤:
选用商用Q345低碳钢钢板,具体成分为0.18%的碳,0.020%的硫,0.92%的锰,0.024%的磷,0.18%的硅,余量为Fe和不可避免的杂质;其平均晶粒尺寸约为8.5μm,其组织图如图2所示,其组织为铁素体和珠光体,屈服强度为358MPa,抗拉强度为513MPa,延伸率为33%。钢板切割成尺寸为130mm×40mm×9.5mm(长×宽×厚)的样品,轧制前先将钢样置于加热炉中进行950℃保温1h固溶处理,之后水冷至室温,然后在室温下利用轧机将Q345低碳钢钢板进行压下量76.8%的轧制,轧后钢板厚度为2.2mm,随后将轧制后的钢板进行720℃退火30min处理,水冷至室温,样品中存在游离的渗碳体,其组织呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸为4.0μm,其中小晶粒平均尺寸为1.7μm,大晶粒平均尺寸为6.8μm。钢板样品经拉伸测试,其屈服强度和抗拉强度分别为430MPa和766MPa,较原始态式样分别提升20.1%和49.3%,屈强比为0.56,延伸率为24%,均匀延伸率为13%,强塑积为18.4GPa·%,并且钢板表现出连续屈服行为,加工硬化效应显著。
实施例2
一种Q345低碳钢增强增塑的方法,包括以下步骤:
选用商用Q345低碳钢钢板,与实施例1相同。钢板切割成尺寸为130mm×40mm×9.5mm(长×宽×厚)的钢样,轧制前先将钢样置于加热炉中进行950℃保温1h固溶处理,之后水冷至室温,然后在室温下利用轧机将Q345低碳钢钢板进行压下量76.8%的轧制,轧后钢板厚度为2.2mm,随后将轧制后的钢板进行700℃退火30min处理,水冷至室温,样品中存在游离的渗碳体,其组织呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸为3.0μm,其中小晶粒平均尺寸为1.4μm,大晶粒平均尺寸为6.7μm。钢板样品经拉伸测试,其屈服强度和抗拉强度分别为441MPa和565MPa,较原始态式样分别提升23.2%和10.1%,屈强比为0.78,延伸率为33%,均匀延伸率为16.2%,塑积为18.6GPa·%。
实施例3
一种Q345低碳钢增强增塑的方法,包括以下步骤:
选用商用Q345低碳钢钢板,与实施例1相同。钢板切割成尺寸为130mm×40mm×9.5mm(长×宽×厚)的钢样,轧制前先将钢样置于加热炉中进行950℃保温1h固溶处理,之后水冷至室温,然后在室温下利用轧机将Q345低碳钢钢板进行压下量76.8%的轧制,轧后钢板厚度为2.2mm,随后将轧制后的钢板进行700℃退火10min处理,水冷至室温,样品中存在游离的渗碳体,其组织呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸为2.6μm,其中小晶粒平均尺寸为1.7μm,大晶粒平均尺寸为4.1μm。钢板样品经拉伸测试,其屈服强度和抗拉强度分别为462MPa和597MPa,较原始态式样分别提升29.1%和16.4%,屈强比为0.77,延伸率为30%,均匀延伸率为15.2%,塑积为17.9GPa·%。
对比例1
一种Q345低碳钢增强增塑的方法,包括以下步骤:
选用商用Q345低碳钢钢板,与实施例1相同;钢板切割成尺寸为130mm×40mm×9.5mm(长×宽×厚)的样品,轧制前先将钢样置于加热炉中进行950℃保温1h固溶处理,之后水冷至室温,然后在室温下利用轧机将Q345低碳钢钢板进行压下量76.8%的轧制,轧后钢板厚度为2.2mm,随后将轧制后的钢板进行610℃退火5min处理,水冷至室温,其组织呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸为1.3μm,其中小晶粒平均尺寸为0.4μm,大晶粒平均尺寸为5.2μm。钢板样品经拉伸测试,其屈服强度和抗拉强度分别为695MPa和730MPa,较原始态式样分别提升94.1%和42.3%,屈强比为0.95,延伸率为21%均匀延伸为9.7%,强塑积为15.3GPa·%。
从对比例1和实施例1-3可知,对比例1虽然采用了和实施例相同成分、尺寸及轧制参数的钢样,但退火温度和时间均不在本申请保护范围内,得到的晶粒尺寸非常细小,虽然强度显著提高,但是塑性却明显降低,均匀延伸率只有9.7%,强塑积低于原始态的Q345钢板,未达到增强增塑的效果。
对比例2
一种Q345低碳钢增强增塑的方法,包括以下步骤:
选用商用Q345低碳钢钢板,同实施例1,钢板切割成尺寸为130mm×40mm×9.5mm(长×宽×厚)的样品,轧制前先将钢样置于加热炉中进行950℃保温1h固溶处理,之后水冷至室温,然后在室温下利用轧机将Q345低碳钢钢板进行压下量76.8%的轧制,轧后钢板厚度为2.2mm,随后将轧制后的钢板进行700℃退火70min处理,水冷至室温,样品最终平均晶粒尺寸为3.5mm,其中最小晶粒尺寸为1.7μm,最大晶粒尺寸为7.3μm,组织中未出现游离的渗碳体,而且铁素体也未呈现出小晶粒围绕大晶粒的组织形貌。钢板样品经拉伸测试,其屈服强度和抗拉强度分别为406MPa和524MPa,较原始态式样分别提升13.4%和2.1%,屈强比为0.77,延伸率为26.3%,均匀延伸率为14.3%,强塑积为13.8GPa·%,该样品强度较原始式样提升并不明显,并且强塑积较实施例显著降低。
依据GBT/228-2010标准加工拉伸试样,加工好的试样在DNS50型万能电子拉伸试验机上进行室温拉伸试验,拉伸速度为0.9mm/min进行测试,对比例2中产品晶粒尺寸与实施例1中产品近似但应力应变曲线变现出巨大差异,这种差异主要是由于组织变化引起的,实施例1中材料性能的提升源于其加工硬化能力的改善,特别是消除了屈服现象,这归因于其退火温度接近两相区,溶质原子以游离渗碳体的形式析出,一方面消除了“柯氏气团”,另一方面游离渗碳体的弥散分布起到了类似第二相粒子的强化作用。而对比例2中产品的退火温度在本发明范围内,但退火时间不在本发明范围内。此温度下退火,虽然组织中也存在游离的渗碳体,但是由于退火时间较长,造成铁素体晶粒长大,因此产品的强度低于实施例1。
以上实施例和对比例所用的钢板是同一卷钢切割的样品。
以上所述仅为本发明的部典型实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (8)

1.一种Q345低碳钢增强增塑的方法,其特征在于,所述方法包括以下步骤:
S1:将Q345低碳钢钢板淬火;
S2:将步骤S1淬火后的Q345低碳钢钢板进行室温轧制;
S3:将步骤S2轧制态Q345低碳钢钢板进行退火处理,然后水冷至室温。
2.根据权利要求1所述的方法,其特征在于,步骤S1中所述的淬火具体为:将Q345低碳钢钢板于900~1000℃保温1-3h后水冷。
3.根据权利要求1或2所述的方法,其特征在于,步骤S1淬火后Q345低碳钢钢板的组织为马氏体和少量铁素体。
4.根据权利要求1所述的方法,其特征在于,步骤S2中所述轧制具体为:压下率为66.7~80%。
5.根据权利要求1所述的方法,其特征在于,步骤S3所述退火处理具体为:700~720℃保温10~30min。
6.根据权利要求1所述的方法,其特征在于,步骤S1中的Q345低碳钢钢板包括以下质量百分比成分:碳≤0.20%,硫≤0.030%,锰≤1.70%,磷≤0.030%,硅≤0.50%,余量为Fe和不可避免的杂质。
7.根据权利要求1所述的方法,其特征在于,所述方法生产的Q345低碳钢钢板,组织为铁素体以及游离的渗碳体,呈现出小晶粒围绕大晶粒的组织形貌,平均晶粒尺寸范围为2.6~4.0μm,其中小晶粒平均尺寸为1.4~1.7μm,大晶粒平均尺寸为4.1~6.8μm。
8.根据权利要求1或7所述的方法,其特征在于,所述方法生产的Q345低碳钢钢板屈服强度430~462Mpa;抗拉强度可达到565~766Mpa,断后延伸24~33%,强塑积高达17.9~18.6GPa·%。
CN202210292538.9A 2022-03-23 2022-03-23 一种q345低碳钢增强增塑的方法 Active CN114635018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210292538.9A CN114635018B (zh) 2022-03-23 2022-03-23 一种q345低碳钢增强增塑的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210292538.9A CN114635018B (zh) 2022-03-23 2022-03-23 一种q345低碳钢增强增塑的方法

Publications (2)

Publication Number Publication Date
CN114635018A true CN114635018A (zh) 2022-06-17
CN114635018B CN114635018B (zh) 2024-01-26

Family

ID=81949265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210292538.9A Active CN114635018B (zh) 2022-03-23 2022-03-23 一种q345低碳钢增强增塑的方法

Country Status (1)

Country Link
CN (1) CN114635018B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500155A (zh) * 2001-03-27 2004-05-26 ��ѧ����������ҵ�� 通过对普通低碳钢进行低应变加工和退火获得具有超微细晶粒结构的高强度、高延展性钢板及其制造方法
CN101225459A (zh) * 2007-11-16 2008-07-23 燕山大学 高塑性超细晶微合金低碳钢的制造方法
CN104998949A (zh) * 2015-06-11 2015-10-28 华南理工大学 一种小应变制备纳米/超细晶筒形件的成形方法
CN107119234A (zh) * 2017-05-11 2017-09-01 东北大学 一种因瓦合金带材的细晶强化方法
CN110983194A (zh) * 2019-12-25 2020-04-10 燕山大学 一种超级韧性钢铁材料及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500155A (zh) * 2001-03-27 2004-05-26 ��ѧ����������ҵ�� 通过对普通低碳钢进行低应变加工和退火获得具有超微细晶粒结构的高强度、高延展性钢板及其制造方法
CN101225459A (zh) * 2007-11-16 2008-07-23 燕山大学 高塑性超细晶微合金低碳钢的制造方法
CN104998949A (zh) * 2015-06-11 2015-10-28 华南理工大学 一种小应变制备纳米/超细晶筒形件的成形方法
CN107119234A (zh) * 2017-05-11 2017-09-01 东北大学 一种因瓦合金带材的细晶强化方法
CN110983194A (zh) * 2019-12-25 2020-04-10 燕山大学 一种超级韧性钢铁材料及其制造方法

Also Published As

Publication number Publication date
CN114635018B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN110184525B (zh) 一种高强度q500gje调质态建筑结构用钢板及其制造方法
Ghosh et al. Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra low carbon Cu bearing HSLA forging
CN112063921B (zh) 超高强度高韧性超细组织结构的空冷硬化钢板及其制备工艺
CN103343281A (zh) 一种层片状双相高强高韧钢及其制备方法
EP4317512A1 (en) Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor
CN110306127A (zh) 一种超高强度高韧性合金钢及其制备方法
CN114807524B (zh) 一种基于部分奥氏体化的高强韧中锰钢及其制备方法
CN109136757B (zh) 中碳冷镦钢线材和中碳冷镦钢线材的生产方法
CN115181897B (zh) 1280MPa级别低碳低合金超高强度双相钢及快速热处理制造方法
CN112899577B (zh) 一种Fe-Mn系高强度高阻尼合金的制备方法
CN102080179A (zh) 一种含硼结构钢的制造方法
CN103667921A (zh) 沿厚度方向性能均匀的高强韧性厚钢板及其生产方法
CN110527934B (zh) 一种高强度高阻尼CuAlMn形状记忆合金的制备方法
CN109487063B (zh) 一种Ti-V-N复合微合金化纳米颗粒增强低碳钢的控轧控冷工艺
CN111349870A (zh) 一种q345d钢板及其生产方法
US20240167138A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment
CN100447285C (zh) 焊接工艺性优良的软磁结构钢板及其制造方法
CN114635018B (zh) 一种q345低碳钢增强增塑的方法
CN115181917B (zh) 780MPa级别低碳低合金高成形性双相钢及快速热处理制造方法
CN110607482B (zh) E级系列船板钢及其制备方法
CN115181886A (zh) 980MPa级别低碳低合金双相钢及快速热处理制造方法
CN114015932A (zh) 具有优异扩孔性能的800MPa级冷轧低合金高强钢及其制备方法
CN107779783B (zh) 一种低碳低合金高强塑钢及其制备方法
Chinese Society for Metals (CSM) et al. Metallurgical mechanism and niobium effects on improved mechanical properties in high carbon steels
CN114247758B (zh) 一种工业纯铁增强增塑的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant