CN114618329A - 一种三维超疏水膜蒸馏用膜及其制备方法 - Google Patents

一种三维超疏水膜蒸馏用膜及其制备方法 Download PDF

Info

Publication number
CN114618329A
CN114618329A CN202210352666.8A CN202210352666A CN114618329A CN 114618329 A CN114618329 A CN 114618329A CN 202210352666 A CN202210352666 A CN 202210352666A CN 114618329 A CN114618329 A CN 114618329A
Authority
CN
China
Prior art keywords
membrane
polytetrafluoroethylene
polyvinyl alcohol
hydrophobic
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210352666.8A
Other languages
English (en)
Inventor
赵义侠
王春艳
鞠敬鸽
李雅芳
厉宗洁
康卫民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202210352666.8A priority Critical patent/CN114618329A/zh
Publication of CN114618329A publication Critical patent/CN114618329A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种三维超疏水膜蒸馏用膜及其制备方法,属于膜蒸馏技术领域。所述制备方法是将聚四氟乙烯聚合物和八乙烯基笼型聚倍半硅氧烷纳米粒子为纺丝液,以聚乙烯醇为混合溶剂,通过静电纺丝技术和焙烧工艺制备超疏水纳米纤维膜。八乙烯基笼型聚倍半硅氧烷纳米粒子嵌入聚四氟乙烯纳米纤维增强了纳米纤维膜表面粗糙度和机械坚固性,并赋予其更高的拉伸模量,同时使该膜蒸馏用膜具有独特的三维超疏水性能和较高的孔隙率。本发明所述的制备三维超疏水膜蒸馏用膜的制备方法具有较高的水通量、截留率以及出色的长期稳定性,在海水淡化、盐水和微咸水处理的领域具有广阔的应用前景。

Description

一种三维超疏水膜蒸馏用膜及其制备方法
技术领域
本发明属于膜蒸馏系统应用技术领域,具体涉及一种三维超疏水膜蒸馏用膜的制备方法。
背景技术
膜蒸馏(MD)是由热进料侧和冷渗透侧之间的蒸汽压力梯度驱动的非等温膜过程。在MD过程中,蒸汽分子能够从进料侧溶液中扩散,通过一个多孔的疏水膜,并在渗透侧冷凝。与其他膜分离工艺相比,MD工艺具有独特的优点,如理论上100%截留非挥发性分子、较低的操作温度和压力,以及处理高盐水的能力。由于这些优势,MD有望成为海水淡化、盐水和微咸水处理以及水溶液中有机和重金属去除的替代解决方案。然而,MD的大规模商业化受到低性能的膜和高能耗两个主要缺点的限制。
在MD工艺中,疏水性和高度多孔的膜是分离进料侧和渗透侧所必需的物理屏障。MD膜通常由商用疏水聚合物制成,如聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯(PP)和聚乙烯(PE)。在这些聚合物中,PTFE是制造MD膜最理想的材料。首先,因PTFE中碳主链和C-F2侧键的存在,其疏水性最高,表面能最低,为9~20×10-3N/m。其次,由于其晶体结构,它具有最佳的热稳定性和耐化学性。但是,由于PTFE是非极性聚合物,不能被常见的极性溶剂溶解,因此其加工性能差。商用PTFE膜通常通过膜劈裂和浆料挤压法制备,但在制备过程中使用了大量润滑剂,这导致了相当大的环境污染。除了传统方法开发的膜外,还可以通过静电纺丝制造由直径从几纳米到微米的重叠纳米纤维组成的纳米纤维PTFE膜。
近年来,已经开发了一些用于MD的静电纺丝PTFE纳米纤维膜,如中国科学院李玉平团队[Chunlei Su,Yuping Li,Hongbin Cao,Chun Lu,Yujiao Li,Junjun Chang,FengDuan.Novel PTFE hollow fiber membrane fabricated by emulsion electrospinningand sintering for membrane distillation[J].Journal of Membrane Science,2019,583:200-208]以聚四氟乙烯乳液静电纺丝为基础,采用高温焙烧工艺制备了由纯PTFE纳米纤维组成的新型中空纤维膜,具有82%以上的高孔隙率、自支撑性和超疏水性等优点,综合了静电纺纳米纤维膜和中空纤维膜的优点,渗透通量约为商用PTFE中空纤维膜的4.6~8.8倍,在长期、高盐度实验中均表现出较高且稳定的通量。天津工业大学黄庆林团队[QingLin Huang,Yan Huang,Chang Fa Xiao,Yan Wei You,Chao Xin Zhang.Electrospunultrafine fbrous PTFE-supported ZnO porous membrane with self-cleaningfunction for vacuum membrane distillation[J].Journal of Membrane Science,2017,534:73-82]通过焙烧用于真空膜蒸馏(VMD)的PTFE/PVA/ZnO复合膜,制备了具有光催化性能的纳米纤维PTFE/ZnO膜,所制膜具有优异的柔韧性、较大的比表面积和较高的化学稳定性在10小时的连续VMD操作中,PTFE/ZnO膜表现出高达99.7%的盐截留率和45%的染料去除率。新加坡南洋理工大学王蓉团队[Khayet Mohamed,Wang Rong.Mixed MatrixPolytetrafluoroethylene/Polysulfone Electrospun Nanofibrous Membranes forWater Desalination by Membrane Distillation[J].ACS applied materials&interfaces,2018,10(28):24275-24287]通过静电纺丝法制备了用于DCMD的混合基体PTFE/聚砜(PSF)纳米纤维膜,在30g/L NaCl水溶液和60℃跨膜温度条件下,纤维无润湿,表现出39.5L·m-2·h-1的渗透通量,并具有稳定的低渗透电导率。尽管在用于MD工艺的静电纺丝PTFE膜领域已经取得了一些进展,但PTFE膜的传质效率和盐截留率仍然需要进一步优化。
为了提高静电纺丝PTFE膜的MD性能,本研究首次将八乙烯基笼型聚倍半硅氧烷(Vinyl-POSS)嵌入到PTFE纳米纤维中。POSS是一系列具有中空刚性笼状或半笼状结构的有机-无机杂化纳米颗粒。由于其特殊的有机-无机结构,有别于其他无机纳米粒子(如SiO2),POSS不仅具有有机纳米粒子的特性,而且由于其八个顶点与有机基团(-CH=CH2)相连,故与聚合物基体具有极好的相容性。因此,它可以在分子水平上形成POSS/聚合物杂化材料,并赋予杂化材料理想的性能。
针对上述问题,本发明开发一种三维超疏水光热膜蒸馏用膜,通过将八乙烯基笼型聚倍半硅氧烷纳米粒子嵌入聚四氟乙烯纳米纤维增强了纳米纤维膜表面粗糙度和机械坚固性,并赋予其更高的拉伸模量,同时使该膜蒸馏用膜具有独特的3D超疏水性能和较高的孔隙率。膜能实现较高的水通量、截留率以及出色的长期稳定性,为开发具有优异性能和稳定性的新型聚四氟乙烯膜提供了一种新的途径,在水处理领域具有广阔的应用前景。
发明内容
本发明提供了一种三维超疏水膜蒸馏用膜的制备方法,将聚四氟乙烯聚合物和八乙烯基笼型聚倍半硅氧烷纳米粒子为纺丝液,以聚乙烯醇为混合溶剂,通过静电纺丝技术和焙烧工艺制备超疏水纳米纤维膜,用于水处理。
一种三维超疏水膜蒸馏用膜的制备方法,包括以下步骤:
(1)在85~95℃下,将聚乙烯醇粉末加入去离子水中溶解3~8h,制得浓度范围8~12wt%聚乙烯醇溶液;
(2)将质量分数为60wt%的聚四氟乙烯乳液与步骤(1)中的聚乙烯醇溶液混合,得到聚四氟乙烯/聚乙烯醇溶液,其中聚四氟乙烯与聚乙烯醇的质量比为9∶1~18∶1;
(3)将八乙烯基笼型聚倍半硅氧烷按照一定比例分散在聚四氟乙烯/聚乙烯醇溶液中,制备出最终的纺丝液。
(4)在静电纺丝参数(纺丝电压25~40kV,接收距离16~22cm,纺丝速度0.6-2.0mL/h,纺丝环境温度20~30℃,相对湿度25~40%)进行纺丝,之后在焙烧温度370~400℃,焙烧时间为0.5~3.0h,升温速率为2~8℃/min下进行焙烧处理,最终制得聚四氟乙烯/聚乙烯醇/八乙烯基笼型聚倍半硅氧烷超疏水纳米纤维膜。
优选的,步骤(1)中所述溶解温度为88~92℃,溶解时间为4~6h。
优选的,步骤(1)中所述,聚乙烯醇溶液的浓度范围为9~11wt%。
优选的,步骤(2)中所述聚四氟乙烯的质量分数为60wt%。
优选的,步骤(2)中所述混合溶液中聚乙烯醇与聚四氟乙烯的质量比为13∶1~17∶1。
优选的,步骤(4)中所述静电纺丝技术的纺丝参数为:纺丝电压27~35kV,接收距离17~20cm,纺丝速度0.8~1.5mL/h,纺丝环境温度22~27℃,相对湿度30~40%。
优选的,步骤(4)中所述焙烧工艺的参数为:焙烧温度380~400℃,焙烧时间为0.8~1.5h,升温速率为3~7℃/min。
本发明与现有的技术相比,具有以下优点及突出效果:(1)乙烯基POSS与PTFE纳米纤维的结合促进了PTFE纳米纤维的结晶,并促进了纳米纤维表面粗糙的成型。(2)将乙烯基POSS嵌入PTFE纳米纤维中,增强了所得纳米纤维膜的机械稳定性,并赋予其更高的拉伸模量。由于PTFE/POSS纳米纤维的纳米级粗糙度和纳米纤维结构的微尺度粗糙度的结合,膜具有独特的三维超疏水性能。(3)在PTFE纳米纤维膜中引入乙烯基POSS纳米颗粒提高了膜的孔隙率和疏水性。在水通量、截留率方面表现优异。(4)膜在连续直接接触膜蒸馏(DCMD)运行期间表现出出色的长期稳定性。本发明有望为开发性能优异、稳定性优异的新型聚四氟乙烯膜用于MD应用提供一种新的方法,在海水淡化等水处理领域具有广阔的应用前景。
附图说明
图1三维超疏水膜蒸馏用膜的制备工艺流程图
图2三维超疏水膜蒸馏用膜的电镜图
图3三维超疏水膜蒸馏用膜的膜蒸馏性能图
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
(1)将聚乙烯醇粉末在去离子水中90℃溶解5h,制得10wt%的聚乙烯醇溶液;
(2)将体积分数为60wt%的聚四氟乙烯乳液与制备的体积分数为10wt%的聚乙烯醇溶液混合,得到聚四氟乙烯/聚乙烯醇溶液,聚四氟乙烯与聚乙烯醇的质量比为15∶1,聚四氟乙烯质量浓度为43%;
(3)按照八乙烯基笼型聚倍半硅氧烷与聚四氟乙烯的质量比为0wt%,分散在聚四氟乙烯/聚乙烯醇溶液中,制得静电纺丝液。
(4)将配置好的上述溶液通过转移到注射器中,在静电纺丝参数(纺丝电压28kV,接收距离18cm,纺丝速度1.0mL/h,纺丝环境温度25±5℃,相对湿度35±5%)进行纺丝,之后在焙烧温度390℃,焙烧时间为1h,升温速率为5℃/min下进行焙烧处理,最终制得聚四氟乙烯/聚乙烯醇/八乙烯基笼型聚倍半硅氧烷超疏水纳米纤维膜。膜的厚度控制在100±10μm。
(5)膜蒸馏测试:由玻璃模具、电子天平、电导率仪、蠕动泵与恒温水箱组成的直接接触式膜蒸馏系统测试所制备膜的膜蒸馏性能。渗透液和进料液的温度始终由恒温水箱保持在20℃与60℃。进料液和渗透液均由蠕动泵循环,恒定流量为0.5L/min,模拟海水浓度为3.5wt%NaCl,测试面积2×2cm2。。通过测量膜的水接触角来表征其疏水性,测量渗透溶液的质量差来计算膜通量,根据渗透电导率的变化来计算膜对盐的截留率。采用200h连续DCMD试验,长期运行过程中,根据进料液的NaCl浓度变化考察膜的长期稳定性。渗透通量J通过渗透液的重量变化计算,由以下公式计算得到:
J=ΔM/(ΔT×S)
式中:J为通量(kg/m2h),ΔM渗透液增重(kg),ΔT运行时间(h),S膜有效面积(cm2)
截盐率R通过渗透液的电导率计算,由以下公式计算得到:
R=[(Cf-Cp)/Cf]×100%
式中:R截留率,Cf进料液的浓度(g/L),Cp渗透液的浓度(g/L)。可根据电导率和浓度的线性关系,由电导率计算出溶液浓度。
所制备得到的膜的平均孔径为0.72±0.02μm,孔隙率为46±3%,接触角为122±3°,渗透通量为15±1L/(m2h),截盐率高达99.9%以上。
实施例2
(1)同实施例1。
(2)同实施例1。
(3)按照八乙烯基笼型聚倍半硅氧烷与聚四氟乙烯的质量比为1wt%,分散在聚四氟乙烯/聚乙烯醇溶液中,制得静电纺丝液。
(4)同实施例1。
(5)同实施例1。
所制备得到的三维超疏水膜蒸馏用膜的平均孔径为0.61±0.02μm,孔隙率为63±3%,接触角为142±4°,渗透通量为23±1L/(m2h),截盐率高达99.9%以上。
实施例3
(1)同实施例1。
(2)同实施例1。
(3)按照八乙烯基笼型聚倍半硅氧烷与聚四氟乙烯的质量比为2wt%,分散在聚四氟乙烯/聚乙烯醇溶液中,制得静电纺丝液。
(4)同实施例1。
(5)同实施例1。
所制备得到的三维超疏水膜蒸馏用膜的平均孔径为0.53±0.02μm,孔隙率为78±3%,接触角为151±4°,渗透通量为40±2L/(m2h),截盐率高达99.9%以上。
实施例4
(1)同实施例1。
(2)同实施例1。
(3)按照八乙烯基笼型聚倍半硅氧烷与聚四氟乙烯的质量比为3wt%,分散在聚四氟乙烯/聚乙烯醇溶液中,制得静电纺丝液。
(4)同实施例1。
(5)同实施例1。
所制备得到的三维超疏水膜蒸馏用膜的平均孔径为0.50±0.02μm,孔隙率为70±3%,接触角为148.5±4°,渗透通量为27±1L/(m2h),截盐率高达99.9%以上。

Claims (6)

1.一种三维超疏水膜蒸馏用膜,其特征在于,由表面凹凸状纤维构成,纤维平均直径范围在400~800nm之间,纤维膜的孔隙率不小于63%,平均孔径0.5-1.5μm,接触角≥150°。
2.根据权利要求书1中所述一种三维超疏水膜蒸馏用膜的制备方法,其特征在于,包括以下步骤:
(1)在一定温度下,将聚乙烯醇粉末溶解在去离子水中,制得聚乙烯醇溶液。
(2)将聚四氟乙烯水乳液与步骤(1)中的聚乙烯醇溶液混合,得到聚四氟乙烯/聚乙烯醇溶液。
(3)将八乙烯基笼型聚倍半硅氧烷按照一定比例分散在聚四氟乙烯/聚乙烯醇溶液中,制备出最终的纺丝液。
(4)采用静电纺丝技术和焙烧工艺,最终制得聚四氟乙烯/聚乙烯醇/八乙烯基笼型聚倍半硅氧烷超疏水纳米纤维膜。
3.根据权利要求书2中所述制备方法,其特征在于,步骤(1)中,所述溶解温度为85~95℃,溶解时间为3~8h,聚乙烯醇溶液的质量分数为8~12wt%。
4.根据权利要求书2中所述制备方法,其特征在于,步骤(2)中所述聚四氟乙烯的质量分数为60wt%,最终得到的混合溶液中聚乙烯醇与聚四氟乙烯的质量比为9∶1~18∶1。
5.根据权利要求书2中所述制备方法,其特征在于,步骤(4)中,所述静电纺丝技术的纺丝参数为:纺丝电压25~40kV,接收距离16~22cm,纺丝速度0.6-2.0mL/h,纺丝环境温度20~30℃,相对湿度25~40%。
6.根据权利要求书2中所述制备方法,其特征在于,步骤(4)中,所述焙烧工艺的参数为:焙烧温度370-400℃,焙烧时间为0.5-3.0h,升温速率为2-8℃/min。
CN202210352666.8A 2022-04-02 2022-04-02 一种三维超疏水膜蒸馏用膜及其制备方法 Pending CN114618329A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210352666.8A CN114618329A (zh) 2022-04-02 2022-04-02 一种三维超疏水膜蒸馏用膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210352666.8A CN114618329A (zh) 2022-04-02 2022-04-02 一种三维超疏水膜蒸馏用膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114618329A true CN114618329A (zh) 2022-06-14

Family

ID=81906761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210352666.8A Pending CN114618329A (zh) 2022-04-02 2022-04-02 一种三维超疏水膜蒸馏用膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114618329A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178098A (zh) * 2022-07-05 2022-10-14 深圳高性能医疗器械国家研究院有限公司 疏水性分离过滤膜及其制备方法和应用
CN115253685A (zh) * 2022-07-11 2022-11-01 深圳高性能医疗器械国家研究院有限公司 Janus膜及其制备方法
CN115522320A (zh) * 2022-10-08 2022-12-27 天津工业大学 一种高模量聚四氟乙烯纳米纤维膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGGE JU, KAOUTHAR FEJJARI, 《ENGINEERING HIERARCHICALLY STRUCTURED SUPERHYDROPHOBIC PTFE/POSS NANOFIBROUS MEMBRANES FOR MEMBRANE DISTILLATION》, no. 486, pages 1 - 7 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178098A (zh) * 2022-07-05 2022-10-14 深圳高性能医疗器械国家研究院有限公司 疏水性分离过滤膜及其制备方法和应用
CN115178098B (zh) * 2022-07-05 2024-05-28 深圳高性能医疗器械国家研究院有限公司 疏水性分离过滤膜及其制备方法和应用
CN115253685A (zh) * 2022-07-11 2022-11-01 深圳高性能医疗器械国家研究院有限公司 Janus膜及其制备方法
CN115253685B (zh) * 2022-07-11 2024-05-28 深圳高性能医疗器械国家研究院有限公司 Janus膜及其制备方法
CN115522320A (zh) * 2022-10-08 2022-12-27 天津工业大学 一种高模量聚四氟乙烯纳米纤维膜的制备方法

Similar Documents

Publication Publication Date Title
Tian et al. Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates
CN114618329A (zh) 一种三维超疏水膜蒸馏用膜及其制备方法
Wang et al. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation
Khayet et al. Dual-layered electrospun nanofibrous membranes for membrane distillation
El-Samak et al. Designing flexible and porous fibrous membranes for oil water separation—A review of recent developments
Cheng et al. Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly (vinylalcohol) for efficient pervaporation desalination
Tian et al. Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes
Ahmed et al. A review on electrospinning for membrane fabrication: Challenges and applications
CN105396466B (zh) 一种纤维素纳米纤维-氧化石墨烯杂化的复合超滤膜及其制备方法
Lim et al. Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance
Essalhi et al. Desalination by direct contact membrane distillation using mixed matrix electrospun nanofibrous membranes with carbon-based nanofillers: a strategic improvement
WO2014178454A1 (ko) 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
CN110872741B (zh) 一种同时用于乳液分离和染料吸附的复合纳米纤维膜及其制备方法
Shi et al. Chitosan sub-layer binding and bridging for nanofiber-based composite forward osmosis membrane
Niknejad et al. Desalination by direct contact membrane distillation using a superhydrophobic nanofibrous poly (methyl methacrylate) membrane
EP3471864B1 (en) Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same
Niknejad et al. A high-flux polystyrene-reinforced styrene-acrylonitrile/polyacrylonitrile nanofibrous membrane for desalination using direct contact membrane distillation
Liu et al. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration
Ray et al. Uniform hydrophobic electrospun nanofibrous layer composed of polysulfone and sodium dodecyl sulfate for improved desalination performance
Zhong et al. Recent advances in membrane distillation using electrospun membranes: advantages, challenges, and outlook
Yuan et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO42–
Li et al. Engineering beads-on-string structural electrospun nanofiber Janus membrane with multi-level roughness for membrane distillation
Yang et al. Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants
CN114432914B (zh) 一种用于盐水膜蒸馏处理的纳米纤维Janus膜及其制备方法
TR201612129A2 (tr) SÜLFONLANMIŞ POLİSÜLFON (sPSf) POLİMERİ KULLANILARAK ELDE EDİLEN İLERİ OZMOS MEMBRANI VE BUNUN ÜRETİM YÖNTEMİ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220614

WD01 Invention patent application deemed withdrawn after publication