CN114606151B - Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application - Google Patents
Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application Download PDFInfo
- Publication number
- CN114606151B CN114606151B CN202210456408.4A CN202210456408A CN114606151B CN 114606151 B CN114606151 B CN 114606151B CN 202210456408 A CN202210456408 A CN 202210456408A CN 114606151 B CN114606151 B CN 114606151B
- Authority
- CN
- China
- Prior art keywords
- pichia pastoris
- laca
- pir1p
- recombinant
- beta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000235058 Komagataella pastoris Species 0.000 title claims abstract description 52
- 108010005774 beta-Galactosidase Proteins 0.000 title claims abstract description 24
- 102000005936 beta-Galactosidase Human genes 0.000 title claims abstract description 11
- 238000010276 construction Methods 0.000 title claims description 11
- 101150086432 lacA gene Proteins 0.000 claims abstract description 57
- 101100325906 Bacillus subtilis (strain 168) ganA gene Proteins 0.000 claims abstract description 44
- 101100111413 Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) lacZ gene Proteins 0.000 claims abstract description 44
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 42
- 210000004027 cell Anatomy 0.000 claims abstract description 36
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 30
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 30
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 21
- 240000006439 Aspergillus oryzae Species 0.000 claims abstract description 17
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims abstract description 15
- 210000002421 cell wall Anatomy 0.000 claims abstract description 13
- 239000013612 plasmid Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000006228 supernatant Substances 0.000 claims description 17
- 239000001963 growth medium Substances 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 239000002609 medium Substances 0.000 claims description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 239000012452 mother liquor Substances 0.000 claims description 12
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 10
- 230000001580 bacterial effect Effects 0.000 claims description 10
- 241001052560 Thallis Species 0.000 claims description 9
- 239000008188 pellet Substances 0.000 claims description 9
- 235000021255 galacto-oligosaccharides Nutrition 0.000 claims description 8
- 150000003271 galactooligosaccharides Chemical class 0.000 claims description 8
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 8
- 238000000855 fermentation Methods 0.000 claims description 7
- 230000004151 fermentation Effects 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 238000009630 liquid culture Methods 0.000 claims description 6
- 239000001888 Peptone Substances 0.000 claims description 5
- 108010080698 Peptones Proteins 0.000 claims description 5
- 229960002685 biotin Drugs 0.000 claims description 5
- 235000020958 biotin Nutrition 0.000 claims description 5
- 239000011616 biotin Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 235000019319 peptone Nutrition 0.000 claims description 5
- 239000008223 sterile water Substances 0.000 claims description 5
- 238000005119 centrifugation Methods 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 229910000160 potassium phosphate Inorganic materials 0.000 claims description 4
- 235000011009 potassium phosphates Nutrition 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 239000008101 lactose Substances 0.000 claims description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 1
- 238000012262 fermentative production Methods 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 21
- 108090000790 Enzymes Proteins 0.000 abstract description 21
- 230000000694 effects Effects 0.000 abstract description 16
- 241000894006 Bacteria Species 0.000 abstract description 7
- 108010093096 Immobilized Enzymes Proteins 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 230000004083 survival effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 14
- 238000012258 culturing Methods 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 13
- 238000002156 mixing Methods 0.000 description 10
- 239000000872 buffer Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000012634 fragment Substances 0.000 description 8
- 101710085076 Beta-galactosidase LacA Proteins 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 244000253724 Saccharomyces cerevisiae S288c Species 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241001506991 Komagataella phaffii GS115 Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000010307 cell transformation Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 238000003125 immunofluorescent labeling Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 1
- 101100224748 Caenorhabditis elegans pir-1 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 101150000468 DUSP11 gene Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 102100024023 Histone PARylation factor 1 Human genes 0.000 description 1
- 101001047783 Homo sapiens Histone PARylation factor 1 Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 235000004905 Saccharomyces cerevisiae S288c Nutrition 0.000 description 1
- 239000008051 TBE buffer Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- -1 and meanwhile Proteins 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000003028 enzyme activity measurement method Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2468—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
- C12N9/2471—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/39—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
- C07K14/395—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01023—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses recombinant pichia pastoris with beta-galactosidase displayed on the surface, which is obtained by heterologously expressing a beta-galactosidase gene lacA from aspergillus oryzae BK03 and a cell wall protein pir1p from saccharomyces cerevisiae in original pichia pastoris. The obtained recombinant strain GS115-pir1p-lacA anchors the beta-galactosidase gene lacA on the surface of cells through an anchor protein, the immobilized enzyme can be used as a whole-cell catalyst, and the recombinant surface display strain can always keep higher enzyme activity, can keep longer enzyme activity, and always stably exist along with the survival of bacteria.
Description
Technical Field
Relates to the field of genetic engineering of enzymes, in particular to a construction method and application of a recombinant pichia pastoris strain for displaying beta-galactosidase lacA from aspergillus oryzae on the cell surface.
Background
Microbial surface display technology is one of important biotechnology that has been developed with the development of genetic engineering, and yeast surface display system is a foreign protein expression system that develops rapidly following phage display system and bacterial surface display system. The basic principle of the yeast surface display technology is that protein on the surface of a cell (usually mannoprotein on the outer layer of the cell wall) is taken as an anchor protein, and a gene sequence for encoding an exogenous protein or polypeptide is fused with a gene sequence for encoding a specific anchor protein by a genetic engineering means and then is introduced into the yeast, so that the exogenous protein or polypeptide and the anchor protein are displayed on the surface of a yeast cell in the form of fusion protein, the displayed exogenous protein or polypeptide can keep relatively independent spatial structure and biological activity, and can be expressed, purified and fixed into a whole, thereby omitting the complicated procedures of extraction and purification. The yeast surface display system has unique advantages, mainly expressed in the following aspects:
(1) Cell wall proteins, which are typically anchor proteins, can be covalently linked to the inner glucan backbone of the cell wall, allowing the firm display of the exogenous protein on the surface of the yeast cell;
(2) Yeast, as eukaryotes, possess relatively perfect protein folding and secretion mechanisms and are therefore useful for expressing proteins from eukaryotes that require post-translational modification;
(3) Yeast is a single-cell organism with relatively large particles, and cells displaying the target exogenous proteins can be conveniently screened and separated by flow cytometry.
Yeast cell surface display systems have been widely used in many fields of biological research and industrial production. The pichia pastoris cell surface display system is a eukaryotic expression system which is rapidly developed and widely applied in recent years, and the pichia pastoris cell surface display system is used for displaying various enzymes as a whole-cell catalyst, so that the pichia pastoris cell surface display system has the characteristics and advantages of immobilized enzymes, is simple in preparation method, and is easy to recycle and reuse, and therefore has a wide application prospect. There is no report in the prior art on the construction of recombinant pichia strains displaying on the cell surface the beta-galactosidase lacA derived from aspergillus oryzae.
Disclosure of Invention
The invention aims to: aiming at the defects of the prior art, the invention provides the pichia pastoris surface display strain, improves the repeated utilization times of enzyme, integrates expression, purification and immobilization, and omits complicated extraction and purification steps.
The invention also solves the technical problem of providing a construction method of the recombinant pichia pastoris strain with the surface displaying the beta-galactosidase lacA.
The invention further aims to provide an application of the recombinant pichia pastoris strain with the surface displaying the beta-galactosidase lacA.
The invention aims to display and express a beta-galactosidase gene lacA from aspergillus oryzae Aspergillus oryzae BK03 on the surface of pichia pastoris Pichia pastoris GS cells by adopting a pichia pastoris surface display technology to obtain a recombinant strain capable of synthesizing galactooligosaccharides, and further researching the strain. The cell wall anchoring protein genes Pir1p and beta-galactosidase gene lacA are subjected to overlap firstly by a molecular biological method, then cloned into pPIC9k plasmid (wherein FLAG tag is arranged before lacA gene stop codon, a Linker is added between Pir1p and lacA genes, and meanwhile, signal peptides of Pir1p and lacA are removed), and then the linearization plasmid is transferred into the genome of pichia pastoris by electric transformation. And (3) measuring the enzyme activity and the yield change through research of immobilized cell immobilized enzyme of the recombinant strain, and obtaining the surface display strain of the high-yield galactooligosaccharide.
In order to achieve the aim, the invention discloses recombinant pichia pastoris with the surface displaying beta-galactosidase, which is obtained by heterologously expressing a beta-galactosidase gene lacA from aspergillus oryzae BK03 and a cell wall protein gene pir1p from saccharomyces cerevisiae in original pichia pastoris.
Wherein the original pichia pastoris is Pichia pastoris GS115,115.
The nucleotide sequence of the beta-galactosidase gene lacA from aspergillus oryzae BK03 is shown in SEQ ID NO:1 is shown in the specification; the nucleotide sequence of the cell wall protein gene pir1p from saccharomyces cerevisiae is shown as SEQ ID NO:2, the saccharomyces cerevisiae is derived from saccharomyces cerevisiae Saccharomyces cerevisiae S288c.
Wherein, the nucleotide sequence of the overlap (overlap) of the genes Pir1p and lacA is shown in SEQ ID NO: 3.
The nucleotide sequence of the original plasmid pPIC9k is shown in SEQ ID NO: 4.
The nucleotide sequence of the recombinant plasmid pPIC9k-pir1p-lacA is shown as SEQ ID NO: shown at 5.
The invention further provides a construction method of the recombinant pichia pastoris, which comprises the steps of overlapping (overlapping) cell wall protein pir1p from saccharomyces cerevisiae and beta-galactosidase gene lacA from aspergillus oryzae BK03, cloning the overlapped cell wall protein acr 1p into pPIC9k plasmid to obtain linearization plasmid, and introducing the linearization plasmid into genome of pichia pastoris through electrotransformation.
Specifically, the construction method is as follows:
(1) Constructing a beta-galactosidase lacA expression cassette from aspergillus oryzae by molecular biology;
(2) Constructing a surface display expression original of an anchor protein Pir1p by taking a genome of saccharomyces cerevisiae Saccharomyces cerevisiae S288c as a template;
(3) The genes obtained in the steps (1) and (2) are firstly subjected to overlap, and then inserted into pPIC9k plasmid, wherein a FLAG tag is added in front of a stop codon of the lacA gene, and a Linker is added between pir1p and the lacA gene, so that pPIC9k recombinant plasmid carrying pir1p and the lacA gene is obtained;
(4) The recombinant plasmid is electrically transferred to the genome of Pichia pastoris (Pichia pastoris GS 115) to obtain recombinant expression strain.
After completion of the construction, whether β -galactosidase lacA was anchored on the cell surface was detected by immunofluorescence microscopy; and performing an enzymatic activity assay of the surface-displayed beta-galactosidase.
The invention also provides the induced expression of the recombinant pichia pastorisThe method comprises inoculating the recombinant Pichia pastoris into YPD liquid culture medium, culturing overnight to obtain seed solution, inoculating the seed solution into BMGY culture medium, and culturing until OD 600 To 2-6, the BMGY medium was centrifuged to remove the supernatant, the resulting bacterial pellet was washed with sterile water, and the pellet was transferred to BMMY medium containing methanol for further culture.
Wherein the YPD liquid culture medium comprises 10g/L yeast powder, 20g/L peptone and 20g/L glucose; the BMGY culture medium comprises 10g/L yeast powder, 20g/L peptone, 2ml/L biotin mother liquor, 100 ml/L10% glycerol, 100ml/L potassium phosphate mother liquor and 100ml/L YNB mother liquor.
Wherein the YNB mother liquor consists of 20.1g YNB and 150ml H 2 O, the potassium phosphate mother liquor consists of 0.45. 0.45g K 2 HPO 4 、1.77g KH 2 PO 4 And 150ml H 2 O, the mother liquor of biotin consists of 20mg and 100ml H 2 O composition.
The invention also provides application of the recombinant pichia pastoris in fermentation production of galactooligosaccharides. Specifically, inoculating the recombinant pichia pastoris into a pichia pastoris fermentation medium BMMY for fermentation culture, centrifugally collecting thalli, and then performing cell transformation by taking lactose as a substrate to obtain the galactooligosaccharide.
The beneficial effects are that: compared with the prior art, the invention adopts a yeast surface display technology to display and express the beta-galactosidase gene lacA from aspergillus oryzae Aspergillus oryzae BK03 on the cell surface of pichia pastoris Pichia pastoris GS, so as to obtain a recombinant strain capable of synthesizing galacto-oligosaccharide, the recombinant surface display strain can always keep higher enzyme activity, the enzyme activity can last longer, the enzyme activity always exists stably along with the survival of the strain, the obtained recombinant strain anchors the beta-galactosidase gene lacA on the cell surface through an anchor protein, and the immobilized enzyme can be used as a whole-cell catalyst.
Drawings
FIG. 1 shows PCR amplified fragments of Pir1p and lacA genes;
FIG. 2 shows Pir1p and lacA overlap results;
FIG. 3 shows the cleavage of pPIC9K-Pir1 p-lacA;
FIG. 4 is a PCR validation of colonies of GS115-Pir1p-lacA recombinant strains;
FIG. 5 is an in situ staining experiment diagram of recombinant bacteria, wherein GS115-Pir1p-lacA is on the left and control is on the right;
FIG. 6 is an experimental diagram of immunofluorescence detection of recombinant bacteria, wherein the left is the state of cell luminescence under a fluorescence microscope, and the right is the state of cell under a visible light microscope;
FIG. 7 is a comparison of the enzyme activities of a surface display lacA strain and a heterologous expression lacA strain;
FIG. 8 is a graph showing the results of a standard curve for enzyme activity measurement;
FIG. 9 is a graph showing the production of galactooligosaccharides.
Detailed Description
The present invention will be described in further detail with reference to the following specific examples, which will aid in understanding the present invention, but the scope of the present invention is not limited to the following examples.
Example 1 recombinant bacteria were obtained by heterologously expressing the beta-galactosidase lacA gene derived from the cell wall protein Pir1p of Saccharomyces cerevisiae and from Aspergillus oryzae.
(one) extracting the genome of Saccharomyces cerevisiae strain Saccharomyces cerevisiae S288 c:
using the fungal genome extraction kit (Dr. GenTLE, takara Corp.) TM (from Yeast)High Recovery)
(1) Taking a Saccharomyces cerevisiae Saccharomyces cerevisiae S288c overnight culture solution with an OD of 1.2-1.8 into a 2mL microtube, centrifuging at 12000rpm for 1min, and discarding the supernatant to obtain a precipitate;
(2) Adding 500 mu L of GenTLE Yeast Solution A into the sediment obtained in the step (1), vibrating easily, suspending the sediment fully at 37 ℃, and carrying out warm bath for 1h, wherein the centrifugal tube is gently vibrated for a plurality of times;
(2) Adding 100 μl of GenTLE Yeast Solution B, slightly shaking, mixing, and standing in 70deg.C water bath for 10min;
(3) 200 mu L of GenTLE Yeast Solution C is added, slightly vibrated, mixed uniformly and then placed on ice for 5min;
(4) Centrifuging the microtube at 12000rpm for 5min at 4deg.C;
(5) Transferring the supernatant into a new microtube, adding 400 mu L of isopropanol, and fully and reversely mixing;
(6) Centrifuging the microtube at 12000rpm for 5min at 4deg.C, and discarding supernatant;
(7) Adding 500 μl of precooled 70% ethanol into the precipitate, washing the precipitate upside down, and centrifuging at 12000rpm for 5min at 4deg.C;
(8) Removing supernatant, naturally drying DNA at room temperature, and precipitating until no ethanol smell exists;
(9) 50. Mu.L of TE Buffer/ddH was added 2 O, dissolving genomic DNA.
(II) acquisition of Aspergillus oryzae RNA:
inoculating the strain into a V8 culture medium for activation, culturing for 3 days in a 30 ℃ incubator, transferring the strain into a V8 liquid culture medium, and culturing for 3 days again at 30 ℃ to obtain the thallus for extracting the Aspergillus oryzae RNA. Extraction procedure of Aspergillus oryzae RNA reference RNAiso Plus reagent extraction kit (III) PCR technique was used to amplify the target genes Pir1p and lacA, respectively:
(1) Amplifying Pir1 gene by using Saccharomyces cerevisiae genome extracted in the step (I) as a template and adopting a PCR technology, and amplifying lacA gene by using Aspergillus oryzae RNA extracted in the step (II) as a template and adopting a PCR technology.
The reaction system is shown in the following table:
TABLE 1 PCR reaction System
The primers for amplifying Pir1p gene were as follows:
Pir1p-UP:AAAGAGAGGCTGAAGCTTACGTATATGCTCCAAAGGACCCPir1p-DOWN:CCAGAACCACCACCACCGAATTCACAGTTGAGCAAATCGA
primers for amplifying the lacA gene were as follows:
lacA-UP:
lacA-DOWN:
wherein, the upper primer part comprises a Linker, and the bold italic part is Linker,45bp; the lower primer part comprises a FLAG tag, and before the stop codon, the bold italic part is a FLAG tag of 24bp;
the PCR products (Pir 1p and lacA gene fragments) were electrophoresed using 1.2% (1.2 g/100 mL) agarose gel, and the results are shown in FIG. 1.
(2) Recovery of purified fractions Pir1p and lacA from the gel
The procedure was performed using a takara kit (TaKaRa MiniBEST Agarose Gel DNA Extraction KitVer.4.0).
2.1 preparing agarose gel by using TBE buffer solution, and then carrying out agarose gel electrophoresis on target fragments Pir1 and lacA;
2.2 cutting agarose gel containing target fragments Pir1p and lacA under ultraviolet lamp, and using paper towel to absorb out surface liquid;
2.3 cutting up the gel blocks and weighing the gel blocks. When calculating the volume, the calculation was performed at 1 mg=1 μl;
2.4 adding a dissolving solution Buffer GM into the glue block, wherein the adding amount of the Buffer GM is equal to that of the glue block, uniformly mixing, and dissolving the glue block at the room temperature of 15-25 ℃, and intermittently oscillating and mixing at the moment to fully dissolve the glue block;
2.5 placing the filtration column in the kit on a 2mL collection tube;
2.6 transferring the solution obtained in the step 2.4 to a filter column, centrifuging at 12000rpm for 1min, and discarding the filtrate;
2.7 adding 700. Mu.L Buffer WB into a filter column, centrifuging at 12000rpm for 1min at room temperature, and discarding the filtrate;
2.8 repeating the operation step 2.7;
2.9 the filter column was placed on a 2mL collection tube, centrifuged at 12000rpm for 1min at room temperature, and the filtrate was discarded;
2.10 placing the filter column on a new 1.5mL centrifuge tube, adding 50 mu L of sterilized water at the center of the filter column membrane, and standing for 1min at room temperature;
2.11 washing out Pir1p and lacA fragments by centrifugation at 12000rpm for 1min;
2.12 agarose gel electrophoresis verification is carried out on the purified Pir1p and lacA target fragments, and the concentration is calculated; wherein the nucleotide sequences of Pir1p and lacA genes are respectively shown in SEQ ID NO:2 and SEQ ID NO: 1.
(IV) ligation of Pir1p and lacA Gene overlap.
And (3) amplifying the Pir1p+lacA overlap gene by using the Pir1p and lacA genes extracted in the step (three) as templates and adopting a PCR technology.
The reaction system is shown in the following table:
TABLE 2 PCR reaction System
The primers for amplifying the pir1p+lacA overlap gene were as follows:
Pir1p-UP:
AAAGAGAGGCTGAAGCTTACGTATATGCTCCAAAGGACCC
lacA-DOWN:
TTAATTCGCGGCCGCCCTAGGTTACTTATCATCATCATCCTTGTAATCGT
AAGCACCCTTTCTT。
the step of recovery of Pir1p+lacA overlap refers to step (III) and the result of running is shown in FIG. 2.
(V) extracting plasmid pPIC9K:
plasmid extraction kit using Axygen (AxyPrep TM Plasmid Miniprep Kit) operation.
Wherein, in the operation, the Buffer S1-Buffer S3 and the Buffer W1-Buffer W2 are all reagents in the plasmid kit of the Axygen.
(1) E.coli DH5 a single colony (containing pPIC9K, the nucleotide sequence of which is shown in SEQ ID NO: 3) is selected from a plate culture medium, wherein E.coli DH5 a is purchased from Shanghai Biotechnology (Shanghai) stock, and the preservation method of PET-28a is carried out according to the method in the molecular cloning laboratory Manual (Huang Peitang et al, translation, china, science Press, 2002, third edition); then inoculating into 5mL LB liquid medium containing antibiotics (resistance is 100mg/mL of ampicillin), and culturing at 37 ℃ overnight for 12-16h;
(2) Taking 2mL of overnight culture bacterial liquid, centrifuging at 12000rpm for 1min, and discarding the supernatant;
(3) The bacterial pellet was well suspended with 250. Mu.L of Buffer S1 (RNase A containing) pre-chilled at 4 ℃;
(4) Adding 250 mu L of Buffer S2, slightly turning up and down, mixing for 4-6 times, and fully cracking thalli to form transparent solution;
(5) Adding 350 mu L Buffer S3, and slightly turning over and mixing for 6-8 times until a compact agglomeration block is formed;
(6) Centrifuging at 12000rpm for 10min at room temperature, and collecting supernatant;
(7) Placing a filtration column in the kit on a 2mL collection tube;
(8) Transferring the supernatant obtained in the step (6) into a filter column, centrifuging at 12000rpm for 1min, and discarding the filtrate;
(9) Adding 500 μl of Buffer W1 into a filter column, centrifuging at 12000rpm for 1min, and discarding the filtrate;
(10) 700. Mu.L of Buffer W2 was added to the filter column, centrifuged at 12000rpm for 1min, and the filtrate was discarded;
(11) Repeating the operating step (10);
(12) The filtration column is arranged on a 2mL collecting pipe again, and the filtration column is centrifuged at 12000rpm for 1min to remove residual washing liquid;
(13) Placing the filter column on a new 1.5mL centrifuge tube, adding 30-50 μl of 65 ℃ sterilized water at the center of the filter column membrane, and standing at room temperature for 1min;
(14) Eluting DNA by centrifugation at 12000rpm for 1min;
(15) Agarose gel electrophoresis verification is carried out on the extracted plasmid pPIC9K, and the concentration is calculated.
Sixth, plasmid pPIC9K was digested with restriction enzymes SnaBI and avrII.
TABLE 3 cleavage reaction System
And (3) performing enzyme digestion at 37 ℃ for 30min, performing gel running verification (shown in figure 3), and performing gel recovery after confirming the fragment is correct, wherein the step is as follows.
And (seventh) connecting the target gene Pir1p+lacA overlap and the digested plasmid pPIC9K to obtain a recombinant plasmid pPIC9K+Pir1p+lacA.
TABLE 4 one-step cloning System
After water bath at 37 ℃ for 30min, ice bath is immediately carried out for 5min, and the ice bath is preserved at-20 ℃ for standby.
Eighth, the recombinant plasmid pPIC9K+Pir1p+lacA is transformed into E.coli DH 5. Alpha
(1) Taking a 100 mu LE. Coll DH 5. Alpha. Competent cell (Shanghai Biotechnology (Shanghai) Co., ltd. No. B528413) suspension from a-80 ℃ refrigerator, thawing at room temperature, and immediately placing on ice after thawing;
(2) Adding 10 mu L of the recombinant plasmid pPICD1K+Pir1p+lacA solution obtained in the step seven into E.coli DH5 alpha competent cell suspension, shaking gently, and standing on ice for 30min;
(3) Heat shock in a water bath at 42 ℃ for 90s, and immediately cooling on ice for 5min;
(4) Adding 1mL of LB liquid medium, mixing uniformly, and carrying out shaking culture at 37 ℃ for 1h to recover the thallus to a normal growth state;
(5) Shaking the bacterial liquid uniformly, taking 100 mu L of the bacterial liquid, coating the bacterial liquid on an LB resistance plate, inverting a culture dish, and culturing for 12 hours in a constant temperature incubator at 37 ℃;
wherein the formulation of the LB-resistant plate is as follows: 10g/L of sodium chloride, 10g/L of peptone, 5g/L of yeast powder and 20g/L of agar powder, sterilizing at 121 ℃ for 20min, cooling, and adding 200 mu L of ampicillin (LB culture medium of 200 ml);
(6) Picking single colony from the resistance plate, after preserving bacteria, extracting plasmid pPICD9K+Pir1p+lacA according to a fifth step, and carrying out agarose gel electrophoresis verification and sequencing verification on the extracted plasmid pPICD9K+Pir1p+lacA, wherein the nucleotide sequences of the plasmid pPICD9K+Pir1p+lacA are respectively shown as SEQ ID NO: shown at 5.
Electrically transforming recombinant plasmid pPICD9K+Pir1p+lacA into original Pichia pastoris
(1) Mixing 2-5 μg of pPIC9K+Pir1p+lacA recombinant plasmid with pichia pastoris competence, and pre-cooling on ice for 30min;
(2) Transferring the mixed solution into a 2mm electric rotating cup, and carrying out ice bath for 5min;
(3) Wiping off moisture outside the electric rotating cup, putting the electric rotating cup into an electric rotating instrument, and carrying out electric rotating (voltage 1500V, capacitance 25 mu F and resistance 200 omega);
(4) Adding 1mL of YPD culture medium into the electric rotating cup, uniformly mixing, transferring into a 1.5mL centrifuge tube, and resuscitating for 1h at 30 ℃ and 250 rpm;
(5) Centrifuging at 6000rpm for 5min, discarding 900 supernatant, coating 200 bacterial liquid on MD plate, and culturing at 30deg.C until colony is grown;
wherein, the formula of the MD plate is as follows: 13.4g/LYNB, 20g/L glucose, 20g/L agar powder, etc., and cooling to 60deg.C, adding 0.04% biotin, filtering, and sterilizing.
(6) Colony PCR was used to verify whether it was a GS115-Pir1p-lacA recombinant Saccharomyces cerevisiae strain. The junction of the plasmid and the gene is used as an upper primer, a lower primer is arranged at a position of 1000bp of the gene fragment, the result of the bacterium p is about 1000bp, and the result is correct, as shown in figure 4.
Example 2: recombinant bacteria in situ staining experiments.
Single colonies with correct PCR assay were tested for lacA using beta-galactosidase in situ staining kit
Gene expression and copy status, if there is a color reaction, demonstrate lacA gene expression, if the color is the more within the same time
The deep step initially proves that the copy number is more, and the specific operation is as follows:
(1) Picking the transformant in 5mLYPD liquid medium, culturing overnight at 30 ℃ and 250 rpm;
(2) 2mL of YPD medium is added into 25mL/250mL of BMGY medium, and the mixture is cultured for 20 to 24 hours at the temperature of 30 ℃ and at the speed of 250 rpm;
(3) 2mL of BMGY medium was centrifuged at 6000rpm for 5min, the supernatant was removed, the cells were washed with sterile water, and the pellet was transferred to 50mL/250mL BMMY for 72h at 30℃at 250rpm, wherein 1% methanol was added every 24h for induction culture.
(4) Centrifuging 1mL of thalli at 6000rpm for 5min by using a centrifuge tube, and removing the supernatant;
(5) PBS was used to wash the cells 3 times to prepare a staining solution (1 mL system)
TABLE 5 dyeing working fluid systems
(6) Adding 500 mu L of staining working solution into each of the separation tubes, suspending thalli by a pipetting gun, incubating at 37 ℃,
recording the time for changing the color of each off-tube to blue at any time until the color of blue is no longer changed, observing the color depth, and irradiating
The cell morphology was observed under a microscope as shown in fig. 5.
Conclusion: as shown, to the left is the recombinant surface display strain of Pichia pastoris and the original control, the recombinant surface display strain GS115-Pir1p-lacA started to appear blue just as soon as the staining solution was added, and blue had been very dark and no longer changed for about 10 minutes. As can be seen by an optical microscope, almost all the surfaces of the strains turned blue, indicating a high expression level of the beta-galactosidase gene lacA.
Example 3: cell surface display recombinant Pichia pastoris GS115-Pir1p-lacA strain immunofluorescence detection experiment.
In order to detect whether the lacA gene is displayed on the surface of Pichia pastoris, an immunofluorescence labeling method is adopted, whether the gene is displayed on the surface of the yeast is judged according to the cell morphology under a fluorescence microscope, and meanwhile, a blank control is made by using an original strain Pichia pastoris GS115, and the specific method is as follows:
(1) Culturing cells in BMMY culture medium for 120h respectively, taking 1mL of cultured thalli, centrifuging at 7000rpm for 5min, and collecting thalli;
(2) The supernatant was discarded, the suspension cells were washed 3 times with PBS (pH 7.4), and centrifuged at 7000rpm for 5min;
(3) The cells were suspended in 1mL of PBS (pH 7.4) containing 2% BSA, and blocked for 5min;
(4) 200 mu L of the thallus suspension is taken in a 1.5mL centrifuge tube, and the primary antibody (Flag Tag Mouse Monoclonal Antibody) of the immune reaction is diluted according to the ratio of 1:100;
(5) Wrapping the centrifugal tube containing the mixed solution with tinfoil paper, and placing the centrifugal tube in a shaking table at 37 ℃ and 60rpm to shake for 3 hours so as to enable the thalli to be in a suspension state;
(6) Taking out the mixed solution, and centrifuging at 7000rpm for 5min;
(7) Wash 3 times (gentle) with 1mL PBS (pH 7.4), centrifuge at 7000rpm for 5min;
(8) The cells were washed (gentle) with PBS containing 2% BSA (pH 7.4) and centrifuged at 7000rpm for 5min;
(9) The cells were suspended with 200. Mu.L of PBS (pH 7.4) containing 2% BSA, and 1. Mu.L of secondary antibody (FITC-labeled goat anti-mouse IgG) was added to each tube, and diluted at a volume ratio of 1:500;
(10) The cells were washed 3 times with 1mL of PBS (pH 7.4), centrifuged at 7000rpm for 5min, and finally suspended with 200. Mu.L of PBS (pH 7.4).
The difference between the recombinant Pichia pastoris GS115-Pir1p-lacA cells and the original cells after immunofluorescence labeling treatment is detected and observed by a fluorescence microscope, and the result is shown in FIG. 6.
Conclusion: as shown in the figure, the upper graph uses GS115-pPIC9K as an original control, no light is emitted under a fluorescence microscope, while the Pichia pastoris recombinant strain GS115-Pir1p-lacA in the lower graph emits green fluorescence under the fluorescence microscope, and the cell morphology under the fluorescence microscope is that the whole cell surface emits light, which indicates that the lacA gene is successfully displayed on the Pichia pastoris surface.
Example 4: inducible expression and enzyme activity assay experiments of recombinant Pichia pastoris GS115-Pir1 p-lacA.
1. Inducible expression experiments
(1) Streaking and separating bacterial colony on MD plate to identify correct recombinant Pichia pastoris strain by PCR, culturing at 30 deg.C for 2-3 days;
(2) Respectively picking 3 single colonies, inoculating into a 50mL centrifuge tube filled with 5m L YPD liquid culture medium, and culturing at 30 ℃ at 250rpm overnight to prepare seed liquid;
(3) 2mL of the seed solution was inoculated into a 250mL Erlenmeyer flask containing 25mL of MGY medium at a super clean bench, and cultured at 30℃and 250rpm until OD600 reached 2-6.
(4) Taking 2mL of BMGY culture medium, centrifuging at 6000rpm for 5min, removing supernatant, washing thalli with sterile water, transferring the precipitate to 50mL/250mL BMMY, and culturing at 30 ℃ at 250rpm for 120h, wherein 1mL of induction liquid is taken every 24h to measure enzyme activity, and simultaneously adding 1% methanol to continue induction culture.
2. Enzyme activity assay
o-nitrophenyl-beta-D-galactoside (o-NPG) is colorless and easy to dissolve in water, o-NPG is hydrolyzed to generate o-nitrophenol (ONP) under the catalysis of beta-galactosidase, and the ONP has a maximum absorption peak under the wavelength of 420 nm.
200, 400, 600, 800, 1000, 1200, 1400 and 1600 mu L of ONP solution with the concentration of 0.1M/L are respectively taken and added into a test tube, the volume is fixed to 10mL, and H is used 2 O is blank, colorimetric at 420nm, plotted against the ONP concentration on the abscissa, and the corresponding OD420 on the ordinate, as shown in fig. 8.
In the first step, 1mL of the inducing solution was taken every 24 hours, washed twice with PBS, and the supernatant was discarded. To the pellet, 50. Mu.L of PBS was added to suspend the pellet, 50. Mu.L of the sample was added to a 96-well plate, and 50. Mu.L of the beta-galactosidase detection reagent was added to each well plate, and after mixing, the mixture was capped, allowed to stand in an incubator at 37℃for ten minutes until pale yellow color appeared in the sample, and 150. Mu.L of the reaction termination solution was added to terminate the reaction. The absorbance was then measured at OD420 nm using a microplate reader and the results are shown in FIG. 7.
Wherein 1 enzyme activity unit is defined as the amount of cells required to produce 1. Mu. Mol of ONP per minute using oNPG as a substrate. As shown in the results, with the recombinant strain GS115-lacA isolated as a control, the recombinant strain GS115-lacA reached the highest enzyme activity at 96 hours, the highest enzyme activity was 4429.67U/g, and the isolated strain reached the highest enzyme activity at 96 hours, the enzyme activity was 29.3U/mL at the highest, a small amount of enzyme activity was also found in the supernatant of the surface display strain, and the enzyme activity was gradually increased over time, we hypothesized that not all the enzymes might be displayed on the cell surface, and that many extracellular hydrolases might be secreted into the medium because Pichia pastoris is a common host for protein secretion expression.
Example 5: fermentation experiments of recombinant Pichia pastoris GS115-Pir1 p-lacA.
(1) Single colony is selected and inoculated into a 50mL centrifuge tube filled with 5m LYPD liquid culture medium, and the seed liquid is prepared by culturing at 30 ℃ and 250rpm overnight;
(2) 2mL of the seed solution was inoculated into a 250mL Erlenmeyer flask containing 25mL of MGY medium at a super clean bench, and cultured at 30℃and 250rpm until OD600 reached 2-6.
(3) 8mL of BMGY medium was centrifuged at 6000rpm for 5min, the supernatant was removed, the cells were washed with sterile water, and the pellet was transferred to 200mL/500mL BMMY for 120h at 30℃at 250rpm, wherein the induction culture was continued by adding 1% methanol every 24 h.
(4) After fermentation, cells were collected by centrifugation, and washed three times with PBS buffer (pH 5.5), and about 15000mg of yeast dry weight cells were directly used for cell transformation.
(5) 500g/L lactose was prepared as substrate, shake-flask cultured at 200rpm in a transformation system at pH=5.5 at 60℃and sampled at 500. Mu.L for various periods of time, centrifuged for dilution and HPLC analysis of the component contents.
The results are shown in FIG. 9: the surface display strain has the highest yield at 6h, the highest yield is 239g/L, the highest conversion rate is 47.8%, the free enzyme has the highest yield at 12h, the highest yield is 175g/L, the highest conversion rate is 35%, the yield of the surface display strain is improved by 64g/L, the enzyme activity of the surface display strain is relatively stable within 7-24h, the production time of the highest yield is shortened by the surface display strain, and the surface display method has higher yield.
The invention provides recombinant pichia pastoris with beta-galactosidase displayed on the surface and a construction thought and method thereof, and the method and the way for realizing the technical scheme are numerous, the above description is only a preferred embodiment of the invention, and it should be pointed out that a plurality of improvements and modifications can be made by those skilled in the art without departing from the principle of the invention, and the improvements and modifications are also regarded as the protection scope of the invention. The components not explicitly described in this embodiment can be implemented by using the prior art.
Sequence listing
<110> university of Nanjing Industrial science
<120> recombinant Pichia pastoris with beta-galactosidase displayed on surface, construction method and application
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3042
<212> DNA
<213> nucleotide sequence of lacA (Artificial Sequence)
<400> 1
gaattcggtg gtggtggttc tggtggtggt ggatctggtg gtggaggttc ttctattaag 60
catagattga atggttttac catcttggaa catcctgatc cagctaagag agatttgttg 120
caggatattg ttacttggga tgataagtct ttgtttatta acggtgaaag aatcatgttg 180
ttctctggtg aggttcaccc atttagattg cctgttccat ctttgtggtt ggatattttt 240
cataagatca gagctttggg ttttaactgt gtttcttttt atatcgactg ggctttgttg 300
gaaggtaagc caggtgatta cagagctgaa ggtatttttg ctttggaacc attttttgat 360
gctgctaagg aagctggtat ttacttgatt gctagaccag gttcttacat taatgctgag 420
gtttccggtg gtggttttcc aggttggttg caaagagtta acggaacttt gagatcttct 480
gatgaaccat ttttgaaggc tactgacaat tacattgcta acgctgctgc tgctgttgct 540
aaggctcaga ttactaacgg tggtccagtt attttgtacc aaccagaaaa cgaatactct 600
ggaggttgtt gtggagttaa atatccagat gctgattaca tgcaatacgt tatggatcaa 660
gctagaaagg ctgatattgt tgttccattt atttctaacg acgcttctcc ttctggtcat 720
aacgctcctg gttctggaac ttctgctgtt gatatttacg gtcatgattc ttacccattg 780
ggttttgatt gtgctaatcc atctgtttgg cctgaaggta agttgccaga taattttaga 840
actttgcatt tggagcaatc cccatctact ccatactctt tgttggaatt tcaagctggt 900
gcttttgatc catggggtgg tcctggtttt gaaaagtgtt acgctttggt taaccatgaa 960
ttttctagag ttttctacag aaacgatttg tcttttggtg tttctacttt taacttgtac 1020
atgactttcg gtggtactaa ttggggtaac ttgggtcacc ctggtggtta cacttcttat 1080
gattacggtt ctcctattac tgagactaga aacgttacta gagaaaagta ctctgatatt 1140
aagttgttgg ctaactttgt taaggcttct ccttcctact tgactgctac tccaagaaac 1200
ttgactactg gtgtttacac tgatacttct gatttggctg ttactccatt gattggtgat 1260
tctcctggtt ctttttttgt tgttagacac actgattact cttctcaaga atctacatct 1320
tacaaattga agttgccaac ttctgctggt aatttgacta ttcctcagtt ggagggtact 1380
ttgtctttga acggtagaga ttccaaaatc catgttgttg attacaacgt ttccggtact 1440
aatattattt actctactgc tgaagttttc acttggaaga agtttgatgg taataaagtt 1500
ttggttttgt acggtggtcc taaggagcat catgaattgg ctatcgcttc taagtctaac 1560
gttaccatta ttgaaggttc tgattctgga attgtttcta ctagaaaggg ttcttctgtt 1620
attattggtt gggatgtttc atctactaga agaattgttc aagttggtga tttgagagtt 1680
tttttgttgg atagaaactc tgcttataac tactgggttc cagaattgcc aaccgagggt 1740
acctctcctg gtttttctac ctctaaaacc accgcttctt ctattattgt taaggctggt 1800
tacttgttga gaggagctca tttggatggt gctgatttgc atttgactgc tgattttaac 1860
gctactactc ctattgaagt tattggagct ccaactggtg ctaagaattt gtttgttaat 1920
ggtgagaagg cttctcatac tgttgataag aacggtattt ggtcctctga ggttaagtat 1980
gctgctcctg agattaagtt gccaggtttg aaggatttgg attggaagta cttggatact 2040
ttgccagaaa ttaaatcctc ttacgatgat tctgcttggg tttctgctga tttgccaaag 2100
actaagaata ctcatagacc attggatacc ccaacttctt tgtactcttc tgattacggt 2160
tttcataccg gatacttgat ttacagaggt cattttgttg ctaacggtaa ggaatccgaa 2220
ttttttatta gaactcaggg tggttctgct tttggttctt ccgtttggtt gaacgagact 2280
tacttgggtt cttggaccgg tgctgattat gctatggatg gtaattcaac ttacaagttg 2340
tctcagttgg aatctggtaa gaactatgtt attactgttg ttatcgacaa cttgggattg 2400
gatgaaaact ggacagttgg tgaagagact atgaagaatc caagaggtat tttgtcttac 2460
aagttgtccg gtcaagatgc ttctgctatt acttggaagt tgacaggaaa cttgggtgga 2520
gaggattacc aagataaggt tagaggacca ttgaacgaag gtggtttgta tgctgaaaga 2580
cagggttttc atcaaccaca accaccatct gaatcatggg aatctggatc tccattggaa 2640
ggtttgtcca agccaggtat tggattttac accgctcaat ttgatttgga tttgccaaaa 2700
ggttgggacg ttccattgta ctttaacttt ggtaataaca ctcaggctgc tagagctcaa 2760
ttgtacgtta acggttacca atacggtaaa tttactggta acgttggtcc tcagacatct 2820
tttccagttc cagaaggtat tttgaattat agaggaacta actacgttgc tttgtctttg 2880
tgggctttgg agtctgatgg tgctaagttg ggatcttttg agttgtctta cactactcct 2940
gttttgactg gttatggtaa cgttgagtcc cctgaacaac caaagtatga gcaaagaaag 3000
ggtgcttacg attacaagga tgatgatgat aagtaaccta gg 3042
<210> 2
<211> 978
<212> DNA
<213> nucleotide sequence of Pir1p (Artificial Sequence)
<400> 2
tacgtatatg ctccaaagga cccgtggtcc attttaactc catcagctac ttacaagggt 60
ggtataactg attactcttc tactttcggt attgctgttg aaccaattgc cactactgct 120
tcctccaagg ctaagagagc cgctgctatc tctcaaattg gtgacggtca aatccaagcc 180
actaccaaaa ccactgctgc tgctgtttct caaattggtg acggtcaaat ccaagccact 240
actaaaacca aagctgctgc tgtctctcaa attggtgacg gccaaatcca agccaccacc 300
aagactacct cagctaagac taccgctgca gccgtctccc aaattggtga cggtcaaatt 360
caagccacta ctaaaaccaa agctgctgct gtctctcaaa ttggtgacgg tcaaatccaa 420
gccactacca aaacaactgc tgcagctgtc tctcaaattg gtgacggtca aatccaagcc 480
actactaaaa ccactgctgc agctgtttct caaattggtg acggtcaaat ccaagccacc 540
accaatacta ctgttgctcc agtctcccaa atcactgatg gccaaatcca agccacaact 600
ttaacttctg caaccattat accatctcca gctccagctc caattactaa tggcactgac 660
ccagtaactg ctgaaacatg taaaagcagt ggcactttag aaatgaactt aaagggtggt 720
atcctgactg acggtaaagg tagaattggt tctatcgttg ccaacagaca attccaattc 780
gatggtcctc caccacaagc tggtgctatc tatgctgctg gttggtccat caccccagaa 840
ggtaacttgg ccatcggtga ccaggatact ttttaccaat gtttgtcagg aaacttctac 900
aacttatacg atgagcacat tggaactcaa tgtaatgcag tccacctaca agctatcgat 960
ttgctcaact gtgaattc 978
<210> 3
<211> 4014
<212> DNA
<213> nucleotide sequence of Pir1p-lacA overlap (Artificial Sequence)
<400> 3
tacgtatatg ctccaaagga cccgtggtcc attttaactc catcagctac ttacaagggt 60
ggtataactg attactcttc tactttcggt attgctgttg aaccaattgc cactactgct 120
tcctccaagg ctaagagagc cgctgctatc tctcaaattg gtgacggtca aatccaagcc 180
actaccaaaa ccactgctgc tgctgtttct caaattggtg acggtcaaat ccaagccact 240
actaaaacca aagctgctgc tgtctctcaa attggtgacg gccaaatcca agccaccacc 300
aagactacct cagctaagac taccgctgca gccgtctccc aaattggtga cggtcaaatt 360
caagccacta ctaaaaccaa agctgctgct gtctctcaaa ttggtgacgg tcaaatccaa 420
gccactacca aaacaactgc tgcagctgtc tctcaaattg gtgacggtca aatccaagcc 480
actactaaaa ccactgctgc agctgtttct caaattggtg acggtcaaat ccaagccacc 540
accaatacta ctgttgctcc agtctcccaa atcactgatg gccaaatcca agccacaact 600
ttaacttctg caaccattat accatctcca gctccagctc caattactaa tggcactgac 660
ccagtaactg ctgaaacatg taaaagcagt ggcactttag aaatgaactt aaagggtggt 720
atcctgactg acggtaaagg tagaattggt tctatcgttg ccaacagaca attccaattc 780
gatggtcctc caccacaagc tggtgctatc tatgctgctg gttggtccat caccccagaa 840
ggtaacttgg ccatcggtga ccaggatact ttttaccaat gtttgtcagg aaacttctac 900
aacttatacg atgagcacat tggaactcaa tgtaatgcag tccacctaca agctatcgat 960
ttgctcaact gtgaattcgg tggtggtggt tctggtggtg gtggatctgg tggtggaggt 1020
tcttctatta agcatagatt gaatggtttt accatcttgg aacatcctga tccagctaag 1080
agagatttgt tgcaggatat tgttacttgg gatgataagt ctttgtttat taacggtgaa 1140
agaatcatgt tgttctctgg tgaggttcac ccatttagat tgcctgttcc atctttgtgg 1200
ttggatattt ttcataagat cagagctttg ggttttaact gtgtttcttt ttatatcgac 1260
tgggctttgt tggaaggtaa gccaggtgat tacagagctg aaggtatttt tgctttggaa 1320
ccattttttg atgctgctaa ggaagctggt atttacttga ttgctagacc aggttcttac 1380
attaatgctg aggtttccgg tggtggtttt ccaggttggt tgcaaagagt taacggaact 1440
ttgagatctt ctgatgaacc atttttgaag gctactgaca attacattgc taacgctgct 1500
gctgctgttg ctaaggctca gattactaac ggtggtccag ttattttgta ccaaccagaa 1560
aacgaatact ctggaggttg ttgtggagtt aaatatccag atgctgatta catgcaatac 1620
gttatggatc aagctagaaa ggctgatatt gttgttccat ttatttctaa cgacgcttct 1680
ccttctggtc ataacgctcc tggttctgga acttctgctg ttgatattta cggtcatgat 1740
tcttacccat tgggttttga ttgtgctaat ccatctgttt ggcctgaagg taagttgcca 1800
gataatttta gaactttgca tttggagcaa tccccatcta ctccatactc tttgttggaa 1860
tttcaagctg gtgcttttga tccatggggt ggtcctggtt ttgaaaagtg ttacgctttg 1920
gttaaccatg aattttctag agttttctac agaaacgatt tgtcttttgg tgtttctact 1980
tttaacttgt acatgacttt cggtggtact aattggggta acttgggtca ccctggtggt 2040
tacacttctt atgattacgg ttctcctatt actgagacta gaaacgttac tagagaaaag 2100
tactctgata ttaagttgtt ggctaacttt gttaaggctt ctccttccta cttgactgct 2160
actccaagaa acttgactac tggtgtttac actgatactt ctgatttggc tgttactcca 2220
ttgattggtg attctcctgg ttcttttttt gttgttagac acactgatta ctcttctcaa 2280
gaatctacat cttacaaatt gaagttgcca acttctgctg gtaatttgac tattcctcag 2340
ttggagggta ctttgtcttt gaacggtaga gattccaaaa tccatgttgt tgattacaac 2400
gtttccggta ctaatattat ttactctact gctgaagttt tcacttggaa gaagtttgat 2460
ggtaataaag ttttggtttt gtacggtggt cctaaggagc atcatgaatt ggctatcgct 2520
tctaagtcta acgttaccat tattgaaggt tctgattctg gaattgtttc tactagaaag 2580
ggttcttctg ttattattgg ttgggatgtt tcatctacta gaagaattgt tcaagttggt 2640
gatttgagag tttttttgtt ggatagaaac tctgcttata actactgggt tccagaattg 2700
ccaaccgagg gtacctctcc tggtttttct acctctaaaa ccaccgcttc ttctattatt 2760
gttaaggctg gttacttgtt gagaggagct catttggatg gtgctgattt gcatttgact 2820
gctgatttta acgctactac tcctattgaa gttattggag ctccaactgg tgctaagaat 2880
ttgtttgtta atggtgagaa ggcttctcat actgttgata agaacggtat ttggtcctct 2940
gaggttaagt atgctgctcc tgagattaag ttgccaggtt tgaaggattt ggattggaag 3000
tacttggata ctttgccaga aattaaatcc tcttacgatg attctgcttg ggtttctgct 3060
gatttgccaa agactaagaa tactcataga ccattggata ccccaacttc tttgtactct 3120
tctgattacg gttttcatac cggatacttg atttacagag gtcattttgt tgctaacggt 3180
aaggaatccg aattttttat tagaactcag ggtggttctg cttttggttc ttccgtttgg 3240
ttgaacgaga cttacttggg ttcttggacc ggtgctgatt atgctatgga tggtaattca 3300
acttacaagt tgtctcagtt ggaatctggt aagaactatg ttattactgt tgttatcgac 3360
aacttgggat tggatgaaaa ctggacagtt ggtgaagaga ctatgaagaa tccaagaggt 3420
attttgtctt acaagttgtc cggtcaagat gcttctgcta ttacttggaa gttgacagga 3480
aacttgggtg gagaggatta ccaagataag gttagaggac cattgaacga aggtggtttg 3540
tatgctgaaa gacagggttt tcatcaacca caaccaccat ctgaatcatg ggaatctgga 3600
tctccattgg aaggtttgtc caagccaggt attggatttt acaccgctca atttgatttg 3660
gatttgccaa aaggttggga cgttccattg tactttaact ttggtaataa cactcaggct 3720
gctagagctc aattgtacgt taacggttac caatacggta aatttactgg taacgttggt 3780
cctcagacat cttttccagt tccagaaggt attttgaatt atagaggaac taactacgtt 3840
gctttgtctt tgtgggcttt ggagtctgat ggtgctaagt tgggatcttt tgagttgtct 3900
tacactactc ctgttttgac tggttatggt aacgttgagt cccctgaaca accaaagtat 3960
gagcaaagaa agggtgctta cgattacaag gatgatgatg ataagtaacc tagg 4014
<210> 4
<211> 9276
<212> DNA
<213> nucleotide sequence of pPIC9K (Artificial Sequence)
<400> 4
agatctaaca tccaaagacg aaaggttgaa tgaaaccttt ttgccatccg acatccacag 60
gtccattctc acacataagt gccaaacgca acaggagggg atacactagc agcagaccgt 120
tgcaaacgca ggacctccac tcctcttctc ctcaacaccc acttttgcca tcgaaaaacc 180
agcccagtta ttgggcttga ttggagctcg ctcattccaa ttccttctat taggctacta 240
acaccatgac tttattagcc tgtctatcct ggcccccctg gcgaggttca tgtttgttta 300
tttccgaatg caacaagctc cgcattacac ccgaacatca ctccagatga gggctttctg 360
agtgtggggt caaatagttt catgttcccc aaatggccca aaactgacag tttaaacgct 420
gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa gtttggttcg 480
ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca taccgtttgt 540
cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt agcgcagtct 600
ctctatcgct tctgaacccc ggtgcacctg tgccgaaacg caaatgggga aacacccgct 660
ttttggatga ttatgcattg tctccacatt gtatgcttcc aagattctgg tgggaatact 720
gctgatagcc taacgttcat gatcaaaatt taactgttct aacccctact tgacagcaat 780
atataaacag aaggaagctg ccctgtctta aacctttttt tttatcatca ttattagctt 840
actttcataa ttgcgactgg ttccaattga caagcttttg attttaacga cttttaacga 900
caacttgaga agatcaaaaa acaactaatt attcgaagga tccaaacgat gagatttcct 960
tcaattttta ctgcagtttt attcgcagca tcctccgcat tagctgctcc agtcaacact 1020
acaacagaag atgaaacggc acaaattccg gctgaagctg tcatcggtta ctcagattta 1080
gaaggggatt tcgatgttgc tgttttgcca ttttccaaca gcacaaataa cgggttattg 1140
tttataaata ctactattgc cagcattgct gctaaagaag aaggggtatc tctcgagaaa 1200
agagaggctg aagcttacgt agaattccct agggcggccg cgaattaatt cgccttagac 1260
atgactgttc ctcagttcaa gttgggcact tacgagaaga ccggtcttgc tagattctaa 1320
tcaagaggat gtcagaatgc catttgcctg agagatgcag gcttcatttt tgatactttt 1380
ttatttgtaa cctatatagt ataggatttt ttttgtcatt ttgtttcttc tcgtacgagc 1440
ttgctcctga tcagcctatc tcgcagctga tgaatatctt gtggtagggg tttgggaaaa 1500
tcattcgagt ttgatgtttt tcttggtatt tcccactcct cttcagagta cagaagatta 1560
agtgagaagt tcgtttgtgc aagcttatcg ataagcttta atgcggtagt ttatcacagt 1620
taaattgcta acgcagtcag gcaccgtgta tgaaatctaa caatgcgctc atcgtcatcc 1680
tcggcaccgt caccctggat gctgtaggca taggcttggt tatgccggta ctgccgggcc 1740
tcttgcggga tatcgtccat tccgacagca tcgccagtca ctatggcgtg ctgctagcgc 1800
tatatgcgtt gatgcaattt ctatgcgcac ccgttctcgg agcactgtcc gaccgctttg 1860
gccgccgccc agtcctgctc gcttcgctac ttggagccac tatcgactac gcgatcatgg 1920
cgaccacacc cgtcctgtgg atctatcgaa tctaaatgta agttaaaatc tctaaataat 1980
taaataagtc ccagtttctc catacgaacc ttaacagcat tgcggtgagc atctagacct 2040
tcaacagcag ccagatccat cactgcttgg ccaatatgtt tcagtccctc aggagttacg 2100
tcttgtgaag tgatgaactt ctggaaggtt gcagtgttaa ctccgctgta ttgacgggca 2160
tatccgtacg ttggcaaagt gtggttggta ccggaggagt aatctccaca actctctgga 2220
gagtaggcac caacaaacac agatccagcg tgttgtactt gatcaacata agaagaagca 2280
ttctcgattt gcaggatcaa gtgttcagga gcgtactgat tggacatttc caaagcctgc 2340
tcgtaggttg caaccgatag ggttgtagag tgtgcaatac acttgcgtac aatttcaacc 2400
cttggcaact gcacagcttg gttgtgaaca gcatcttcaa ttctggcaag ctccttgtct 2460
gtcatatcga cagccaacag aatcacctgg gaatcaatac catgttcagc ttgagacaga 2520
aggtctgagg caacgaaatc tggatcagcg tatttatcag caataactag aacttcagaa 2580
ggcccagcag gcatgtcaat actacacagg gctgatgtgt cattttgaac catcatcttg 2640
gcagcagtaa cgaactggtt tcctggacca aatattttgt cacacttagg aacagtttct 2700
gttccgtaag ccatagcagc tactgcctgg gcgcctcctg ctagcacgat acacttagca 2760
ccaaccttgt gggcaacgta gatgacttct ggggtaaggg taccatcctt cttaggtgga 2820
gatgcaaaaa caatttcttt gcaaccagca actttggcag gaacacccag catcagggaa 2880
gtggaaggca gaattgcggt tccaccagga atatagaggc caactttctc aataggtctt 2940
gcaaaacgag agcagactac accagggcaa gtctcaactt gcaacgtctc cgttagttga 3000
gcttcatgga atttcctgac gttatctata gagagatcaa tggctctctt aacgttatct 3060
ggcaattgca taagttcctc tgggaaagga gcttctaaca caggtgtctt caaagcgact 3120
ccatcaaact tggcagttag ttctaaaagg gctttgtcac cattttgacg aacattgtcg 3180
acaattggtt tgactaattc cataatctgt tccgttttct ggataggacg acgaagggca 3240
tcttcaattt cttgtgagga ggccttagaa acgtcaattt tgcacaattc aatacgacct 3300
tcagaaggga cttctttagg tttggattct tctttaggtt gttccttggt gtatcctggc 3360
ttggcatctc ctttccttct agtgaccttt agggacttca tatccaggtt tctctccacc 3420
tcgtccaacg tcacaccgta cttggcacat ctaactaatg caaaataaaa taagtcagca 3480
cattcccagg ctatatcttc cttggattta gcttctgcaa gttcatcagc ttcctcccta 3540
attttagcgt tcaacaaaac ttcgtcgtca aataaccgtt tggtataaga accttctgga 3600
gcattgctct tacgatccca caaggtggct tccatggctc taagaccctt tgattggcca 3660
aaacaggaag tgcgttccaa gtgacagaaa ccaacacctg tttgttcaac cacaaatttc 3720
aagcagtctc catcacaatc caattcgata cccagcaact tttgagttgc tccagatgta 3780
gcacctttat accacaaacc gtgacgacga gattggtaga ctccagtttg tgtccttata 3840
gcctccggaa tagacttttt ggacgagtac accaggccca acgagtaatt agaagagtca 3900
gccaccaaag tagtgaatag accatcgggg cggtcagtag tcaaagacgc caacaaaatt 3960
tcactgacag ggaacttttt gacatcttca gaaagttcgt attcagtagt caattgccga 4020
gcatcaataa tggggattat accagaagca acagtggaag tcacatctac caactttgcg 4080
gtctcagaaa aagcataaac agttctacta ccgccattag tgaaactttt caaatcgccc 4140
agtggagaag aaaaaggcac agcgatacta gcattagcgg gcaaggatgc aactttatca 4200
accagggtcc tatagataac cctagcgcct gggatcatcc tttggacaac tctttctgcc 4260
aaatctaggt ccaaaatcac ttcattgata ccattattgt acaacttgag caagttgtcg 4320
atcagctcct caaattggtc ctctgtaacg gatgactcaa cttgcacatt aacttgaagc 4380
tcagtcgatt gagtgaactt gatcaggttg tgcagctggt cagcagcata gggaaacacg 4440
gcttttccta ccaaactcaa ggaattatca aactctgcaa cacttgcgta tgcaggtagc 4500
aagggaaatg tcatacttga agtcggacag tgagtgtagt cttgagaaat tctgaagccg 4560
tatttttatt atcagtgagt cagtcatcag gagatcctct acgccggacg catcgtggcc 4620
gacctgcagg gggggggggg gcgctgaggt ctgcctcgtg aagaaggtgt tgctgactca 4680
taccaggcct gaatcgcccc atcatccagc cagaaagtga gggagccacg gttgatgaga 4740
gctttgttgt aggtggacca gttggtgatt ttgaactttt gctttgccac ggaacggtct 4800
gcgttgtcgg gaagatgcgt gatctgatcc ttcaactcag caaaagttcg atttattcaa 4860
caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca gtgttacaac caattaacca 4920
attctgatta gaaaaactca tcgagcatca aatgaaactg caatttattc atatcaggat 4980
tatcaatacc atatttttga aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc 5040
agttccatag gatggcaaga tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa 5100
tacaacctat taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag 5160
tgacgactga atccggtgag aatggcaaaa gcttatgcat ttctttccag acttgttcaa 5220
caggccagcc attacgctcg tcatcaaaat cactcgcatc aaccaaaccg ttattcattc 5280
gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag 5340
gaatcgaatg caaccggcgc aggaacactg ccagcgcatc aacaatattt tcacctgaat 5400
caggatattc ttctaatacc tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc 5460
atgcatcatc aggagtacgg ataaaatgct tgatggtcgg aagaggcata aattccgtca 5520
gccagtttag tctgaccatc tcatctgtaa catcattggc aacgctacct ttgccatgtt 5580
tcagaaacaa ctctggcgca tcgggcttcc catacaatcg atagattgtc gcacctgatt 5640
gcccgacatt atcgcgagcc catttatacc catataaatc agcatccatg ttggaattta 5700
atcgcggcct cgagcaagac gtttcccgtt gaatatggct cataacaccc cttgtattac 5760
tgtttatgta agcagacagt tttattgttc atgatgatat atttttatct tgtgcaatgt 5820
aacatcagag attttgagac acaacgtggc tttccccccc ccccctgcag gtcggcatca 5880
ccggcgccac aggtgcggtt gctggcgcct atatcgccga catcaccgat ggggaagatc 5940
gggctcgcca cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg 6000
tggccggggg actgttgggc gccatctcct tgcatgcacc attccttgcg gcggcggtgc 6060
tcaacggcct caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc 6120
gtcgagtatc tatgattgga agtatgggaa tggtgatacc cgcattcttc agtgtcttga 6180
ggtctcctat cagattatgc ccaactaaag caaccggagg aggagatttc atggtaaatt 6240
tctctgactt ttggtcatca gtagactcga actgtgagac tatctcggtt atgacagcag 6300
aaatgtcctt cttggagaca gtaaatgaag tcccaccaat aaagaaatcc ttgttatcag 6360
gaacaaactt cttgtttcga actttttcgg tgccttgaac tataaaatgt agagtggata 6420
tgtcgggtag gaatggagcg ggcaaatgct taccttctgg accttcaaga ggtatgtagg 6480
gtttgtagat actgatgcca acttcagtga caacgttgct atttcgttca aaccattccg 6540
aatccagaga aatcaaagtt gtttgtctac tattgatcca agccagtgcg gtcttgaaac 6600
tgacaatagt gtgctcgtgt tttgaggtca tctttgtatg aataaatcta gtctttgatc 6660
taaataatct tgacgagcca aggcgataaa tacccaaatc taaaactctt ttaaaacgtt 6720
aaaaggacaa gtatgtctgc ctgtattaaa ccccaaatca gctcgtagtc tgatcctcat 6780
caacttgagg ggcactatct tgttttagag aaatttgcgg agatgcgata tcgagaaaaa 6840
ggtacgctga ttttaaacgt gaaatttatc tcaagatctc tgcctcgcgc gtttcggtga 6900
tgacggtgaa aacctctgac acatgcagct cccggagacg gtcacagctt gtctgtaagc 6960
ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg 7020
cgcagccatg acccagtcac gtagcgatag cggagtgtat actggcttaa ctatgcggca 7080
tcagagcaga ttgtactgag agtgcaccat atgcggtgtg aaataccgca cagatgcgta 7140
aggagaaaat accgcatcag gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg 7200
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca 7260
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac 7320
cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac 7380
aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg 7440
tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac 7500
ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc aatgctcacg ctgtaggtat 7560
ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag 7620
cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac 7680
ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt 7740
gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt 7800
atctgcgctc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc 7860
aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga 7920
aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac 7980
gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc 8040
cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct 8100
gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca 8160
tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct 8220
ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca 8280
ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc 8340
atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagtttg 8400
cgcaacgttg ttgccattgc tgcaggcatc gtggtgtcac gctcgtcgtt tggtatggct 8460
tcattcagct ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa 8520
aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta 8580
tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc 8640
ttttctgtga ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg 8700
agttgctctt gcccggcgtc aacacgggat aataccgcgc cacatagcag aactttaaaa 8760
gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg 8820
agatccagtt cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc 8880
accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg 8940
gcgacacgga aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat 9000
cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata 9060
ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac cattattatc 9120
atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtcttca agaattaatt 9180
ctcatgtttg acagcttatc atcgataagc tgactcatgt tggtattgtg aaatagacgc 9240
agatcgggaa cactgaaaaa taacagttat tattcg 9276
<210> 5
<211> 13272
<212> DNA
<213> nucleotide sequence of pPIC9K-Pir1p-lacA (Artificial Sequence)
<400> 5
agatctaaca tccaaagacg aaaggttgaa tgaaaccttt ttgccatccg acatccacag 60
gtccattctc acacataagt gccaaacgca acaggagggg atacactagc agcagaccgt 120
tgcaaacgca ggacctccac tcctcttctc ctcaacaccc acttttgcca tcgaaaaacc 180
agcccagtta ttgggcttga ttggagctcg ctcattccaa ttccttctat taggctacta 240
acaccatgac tttattagcc tgtctatcct ggcccccctg gcgaggttca tgtttgttta 300
tttccgaatg caacaagctc cgcattacac ccgaacatca ctccagatga gggctttctg 360
agtgtggggt caaatagttt catgttcccc aaatggccca aaactgacag tttaaacgct 420
gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa gtttggttcg 480
ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca taccgtttgt 540
cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt agcgcagtct 600
ctctatcgct tctgaacccc ggtgcacctg tgccgaaacg caaatgggga aacacccgct 660
ttttggatga ttatgcattg tctccacatt gtatgcttcc aagattctgg tgggaatact 720
gctgatagcc taacgttcat gatcaaaatt taactgttct aacccctact tgacagcaat 780
atataaacag aaggaagctg ccctgtctta aacctttttt tttatcatca ttattagctt 840
actttcataa ttgcgactgg ttccaattga caagcttttg attttaacga cttttaacga 900
caacttgaga agatcaaaaa acaactaatt attcgaagga tccaaacgat gagatttcct 960
tcaattttta ctgcagtttt attcgcagca tcctccgcat tagctgctcc agtcaacact 1020
acaacagaag atgaaacggc acaaattccg gctgaagctg tcatcggtta ctcagattta 1080
gaaggggatt tcgatgttgc tgttttgcca ttttccaaca gcacaaataa cgggttattg 1140
tttataaata ctactattgc cagcattgct gctaaagaag aaggggtatc tctcgagaaa 1200
agagaggctg aagcttacgt atatgctcca aaggacccgt ggtccatttt aactccatca 1260
gctacttaca agggtggtat aactgattac tcttctactt tcggtattgc tgttgaacca 1320
attgccacta ctgcttcctc caaggctaag agagccgctg ctatctctca aattggtgac 1380
ggtcaaatcc aagccactac caaaaccact gctgctgctg tttctcaaat tggtgacggt 1440
caaatccaag ccactactaa aaccaaagct gctgctgtct ctcaaattgg tgacggccaa 1500
atccaagcca ccaccaagac tacctcagct aagactaccg ctgcagccgt ctcccaaatt 1560
ggtgacggtc aaattcaagc cactactaaa accaaagctg ctgctgtctc tcaaattggt 1620
gacggtcaaa tccaagccac taccaaaaca actgctgcag ctgtctctca aattggtgac 1680
ggtcaaatcc aagccactac taaaaccact gctgcagctg tttctcaaat tggtgacggt 1740
caaatccaag ccaccaccaa tactactgtt gctccagtct cccaaatcac tgatggccaa 1800
atccaagcca caactttaac ttctgcaacc attataccat ctccagctcc agctccaatt 1860
actaatggca ctgacccagt aactgctgaa acatgtaaaa gcagtggcac tttagaaatg 1920
aacttaaagg gtggtatcct gactgacggt aaaggtagaa ttggttctat cgttgccaac 1980
agacaattcc aattcgatgg tcctccacca caagctggtg ctatctatgc tgctggttgg 2040
tccatcaccc cagaaggtaa cttggccatc ggtgaccagg atacttttta ccaatgtttg 2100
tcaggaaact tctacaactt atacgatgag cacattggaa ctcaatgtaa tgcagtccac 2160
ctacaagcta tcgatttgct caactgtgaa ttcggtggtg gtggttctgg tggtggtgga 2220
tctggtggtg gaggttcttc tattaagcat agattgaatg gttttaccat cttggaacat 2280
cctgatccag ctaagagaga tttgttgcag gatattgtta cttgggatga taagtctttg 2340
tttattaacg gtgaaagaat catgttgttc tctggtgagg ttcacccatt tagattgcct 2400
gttccatctt tgtggttgga tatttttcat aagatcagag ctttgggttt taactgtgtt 2460
tctttttata tcgactgggc tttgttggaa ggtaagccag gtgattacag agctgaaggt 2520
atttttgctt tggaaccatt ttttgatgct gctaaggaag ctggtattta cttgattgct 2580
agaccaggtt cttacattaa tgctgaggtt tccggtggtg gttttccagg ttggttgcaa 2640
agagttaacg gaactttgag atcttctgat gaaccatttt tgaaggctac tgacaattac 2700
attgctaacg ctgctgctgc tgttgctaag gctcagatta ctaacggtgg tccagttatt 2760
ttgtaccaac cagaaaacga atactctgga ggttgttgtg gagttaaata tccagatgct 2820
gattacatgc aatacgttat ggatcaagct agaaaggctg atattgttgt tccatttatt 2880
tctaacgacg cttctccttc tggtcataac gctcctggtt ctggaacttc tgctgttgat 2940
atttacggtc atgattctta cccattgggt tttgattgtg ctaatccatc tgtttggcct 3000
gaaggtaagt tgccagataa ttttagaact ttgcatttgg agcaatcccc atctactcca 3060
tactctttgt tggaatttca agctggtgct tttgatccat ggggtggtcc tggttttgaa 3120
aagtgttacg ctttggttaa ccatgaattt tctagagttt tctacagaaa cgatttgtct 3180
tttggtgttt ctacttttaa cttgtacatg actttcggtg gtactaattg gggtaacttg 3240
ggtcaccctg gtggttacac ttcttatgat tacggttctc ctattactga gactagaaac 3300
gttactagag aaaagtactc tgatattaag ttgttggcta actttgttaa ggcttctcct 3360
tcctacttga ctgctactcc aagaaacttg actactggtg tttacactga tacttctgat 3420
ttggctgtta ctccattgat tggtgattct cctggttctt tttttgttgt tagacacact 3480
gattactctt ctcaagaatc tacatcttac aaattgaagt tgccaacttc tgctggtaat 3540
ttgactattc ctcagttgga gggtactttg tctttgaacg gtagagattc caaaatccat 3600
gttgttgatt acaacgtttc cggtactaat attatttact ctactgctga agttttcact 3660
tggaagaagt ttgatggtaa taaagttttg gttttgtacg gtggtcctaa ggagcatcat 3720
gaattggcta tcgcttctaa gtctaacgtt accattattg aaggttctga ttctggaatt 3780
gtttctacta gaaagggttc ttctgttatt attggttggg atgtttcatc tactagaaga 3840
attgttcaag ttggtgattt gagagttttt ttgttggata gaaactctgc ttataactac 3900
tgggttccag aattgccaac cgagggtacc tctcctggtt tttctacctc taaaaccacc 3960
gcttcttcta ttattgttaa ggctggttac ttgttgagag gagctcattt ggatggtgct 4020
gatttgcatt tgactgctga ttttaacgct actactccta ttgaagttat tggagctcca 4080
actggtgcta agaatttgtt tgttaatggt gagaaggctt ctcatactgt tgataagaac 4140
ggtatttggt cctctgaggt taagtatgct gctcctgaga ttaagttgcc aggtttgaag 4200
gatttggatt ggaagtactt ggatactttg ccagaaatta aatcctctta cgatgattct 4260
gcttgggttt ctgctgattt gccaaagact aagaatactc atagaccatt ggatacccca 4320
acttctttgt actcttctga ttacggtttt cataccggat acttgattta cagaggtcat 4380
tttgttgcta acggtaagga atccgaattt tttattagaa ctcagggtgg ttctgctttt 4440
ggttcttccg tttggttgaa cgagacttac ttgggttctt ggaccggtgc tgattatgct 4500
atggatggta attcaactta caagttgtct cagttggaat ctggtaagaa ctatgttatt 4560
actgttgtta tcgacaactt gggattggat gaaaactgga cagttggtga agagactatg 4620
aagaatccaa gaggtatttt gtcttacaag ttgtccggtc aagatgcttc tgctattact 4680
tggaagttga caggaaactt gggtggagag gattaccaag ataaggttag aggaccattg 4740
aacgaaggtg gtttgtatgc tgaaagacag ggttttcatc aaccacaacc accatctgaa 4800
tcatgggaat ctggatctcc attggaaggt ttgtccaagc caggtattgg attttacacc 4860
gctcaatttg atttggattt gccaaaaggt tgggacgttc cattgtactt taactttggt 4920
aataacactc aggctgctag agctcaattg tacgttaacg gttaccaata cggtaaattt 4980
actggtaacg ttggtcctca gacatctttt ccagttccag aaggtatttt gaattataga 5040
ggaactaact acgttgcttt gtctttgtgg gctttggagt ctgatggtgc taagttggga 5100
tcttttgagt tgtcttacac tactcctgtt ttgactggtt atggtaacgt tgagtcccct 5160
gaacaaccaa agtatgagca aagaaagggt gcttacgatt acaaggatga tgatgataag 5220
taacctaggg cggccgcgaa ttaattcgcc ttagacatga ctgttcctca gttcaagttg 5280
ggcacttacg agaagaccgg tcttgctaga ttctaatcaa gaggatgtca gaatgccatt 5340
tgcctgagag atgcaggctt catttttgat acttttttat ttgtaaccta tatagtatag 5400
gatttttttt gtcattttgt ttcttctcgt acgagcttgc tcctgatcag cctatctcgc 5460
agctgatgaa tatcttgtgg taggggtttg ggaaaatcat tcgagtttga tgtttttctt 5520
ggtatttccc actcctcttc agagtacaga agattaagtg agaagttcgt ttgtgcaagc 5580
ttatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac 5640
cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg caccgtcacc ctggatgctg 5700
taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatatc gtccattccg 5760
acagcatcgc cagtcactat ggcgtgctgc tagcgctata tgcgttgatg caatttctat 5820
gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt 5880
cgctacttgg agccactatc gactacgcga tcatggcgac cacacccgtc ctgtggatct 5940
atcgaatcta aatgtaagtt aaaatctcta aataattaaa taagtcccag tttctccata 6000
cgaaccttaa cagcattgcg gtgagcatct agaccttcaa cagcagccag atccatcact 6060
gcttggccaa tatgtttcag tccctcagga gttacgtctt gtgaagtgat gaacttctgg 6120
aaggttgcag tgttaactcc gctgtattga cgggcatatc cgtacgttgg caaagtgtgg 6180
ttggtaccgg aggagtaatc tccacaactc tctggagagt aggcaccaac aaacacagat 6240
ccagcgtgtt gtacttgatc aacataagaa gaagcattct cgatttgcag gatcaagtgt 6300
tcaggagcgt actgattgga catttccaaa gcctgctcgt aggttgcaac cgatagggtt 6360
gtagagtgtg caatacactt gcgtacaatt tcaacccttg gcaactgcac agcttggttg 6420
tgaacagcat cttcaattct ggcaagctcc ttgtctgtca tatcgacagc caacagaatc 6480
acctgggaat caataccatg ttcagcttga gacagaaggt ctgaggcaac gaaatctgga 6540
tcagcgtatt tatcagcaat aactagaact tcagaaggcc cagcaggcat gtcaatacta 6600
cacagggctg atgtgtcatt ttgaaccatc atcttggcag cagtaacgaa ctggtttcct 6660
ggaccaaata ttttgtcaca cttaggaaca gtttctgttc cgtaagccat agcagctact 6720
gcctgggcgc ctcctgctag cacgatacac ttagcaccaa ccttgtgggc aacgtagatg 6780
acttctgggg taagggtacc atccttctta ggtggagatg caaaaacaat ttctttgcaa 6840
ccagcaactt tggcaggaac acccagcatc agggaagtgg aaggcagaat tgcggttcca 6900
ccaggaatat agaggccaac tttctcaata ggtcttgcaa aacgagagca gactacacca 6960
gggcaagtct caacttgcaa cgtctccgtt agttgagctt catggaattt cctgacgtta 7020
tctatagaga gatcaatggc tctcttaacg ttatctggca attgcataag ttcctctggg 7080
aaaggagctt ctaacacagg tgtcttcaaa gcgactccat caaacttggc agttagttct 7140
aaaagggctt tgtcaccatt ttgacgaaca ttgtcgacaa ttggtttgac taattccata 7200
atctgttccg ttttctggat aggacgacga agggcatctt caatttcttg tgaggaggcc 7260
ttagaaacgt caattttgca caattcaata cgaccttcag aagggacttc tttaggtttg 7320
gattcttctt taggttgttc cttggtgtat cctggcttgg catctccttt ccttctagtg 7380
acctttaggg acttcatatc caggtttctc tccacctcgt ccaacgtcac accgtacttg 7440
gcacatctaa ctaatgcaaa ataaaataag tcagcacatt cccaggctat atcttccttg 7500
gatttagctt ctgcaagttc atcagcttcc tccctaattt tagcgttcaa caaaacttcg 7560
tcgtcaaata accgtttggt ataagaacct tctggagcat tgctcttacg atcccacaag 7620
gtggcttcca tggctctaag accctttgat tggccaaaac aggaagtgcg ttccaagtga 7680
cagaaaccaa cacctgtttg ttcaaccaca aatttcaagc agtctccatc acaatccaat 7740
tcgataccca gcaacttttg agttgctcca gatgtagcac ctttatacca caaaccgtga 7800
cgacgagatt ggtagactcc agtttgtgtc cttatagcct ccggaataga ctttttggac 7860
gagtacacca ggcccaacga gtaattagaa gagtcagcca ccaaagtagt gaatagacca 7920
tcggggcggt cagtagtcaa agacgccaac aaaatttcac tgacagggaa ctttttgaca 7980
tcttcagaaa gttcgtattc agtagtcaat tgccgagcat caataatggg gattatacca 8040
gaagcaacag tggaagtcac atctaccaac tttgcggtct cagaaaaagc ataaacagtt 8100
ctactaccgc cattagtgaa acttttcaaa tcgcccagtg gagaagaaaa aggcacagcg 8160
atactagcat tagcgggcaa ggatgcaact ttatcaacca gggtcctata gataacccta 8220
gcgcctggga tcatcctttg gacaactctt tctgccaaat ctaggtccaa aatcacttca 8280
ttgataccat tattgtacaa cttgagcaag ttgtcgatca gctcctcaaa ttggtcctct 8340
gtaacggatg actcaacttg cacattaact tgaagctcag tcgattgagt gaacttgatc 8400
aggttgtgca gctggtcagc agcataggga aacacggctt ttcctaccaa actcaaggaa 8460
ttatcaaact ctgcaacact tgcgtatgca ggtagcaagg gaaatgtcat acttgaagtc 8520
ggacagtgag tgtagtcttg agaaattctg aagccgtatt tttattatca gtgagtcagt 8580
catcaggaga tcctctacgc cggacgcatc gtggccgacc tgcagggggg gggggggcgc 8640
tgaggtctgc ctcgtgaaga aggtgttgct gactcatacc aggcctgaat cgccccatca 8700
tccagccaga aagtgaggga gccacggttg atgagagctt tgttgtaggt ggaccagttg 8760
gtgattttga acttttgctt tgccacggaa cggtctgcgt tgtcgggaag atgcgtgatc 8820
tgatccttca actcagcaaa agttcgattt attcaacaaa gccgccgtcc cgtcaagtca 8880
gcgtaatgct ctgccagtgt tacaaccaat taaccaattc tgattagaaa aactcatcga 8940
gcatcaaatg aaactgcaat ttattcatat caggattatc aataccatat ttttgaaaaa 9000
gccgtttctg taatgaagga gaaaactcac cgaggcagtt ccataggatg gcaagatcct 9060
ggtatcggtc tgcgattccg actcgtccaa catcaataca acctattaat ttcccctcgt 9120
caaaaataag gttatcaagt gagaaatcac catgagtgac gactgaatcc ggtgagaatg 9180
gcaaaagctt atgcatttct ttccagactt gttcaacagg ccagccatta cgctcgtcat 9240
caaaatcact cgcatcaacc aaaccgttat tcattcgtga ttgcgcctga gcgagacgaa 9300
atacgcgatc gctgttaaaa ggacaattac aaacaggaat cgaatgcaac cggcgcagga 9360
acactgccag cgcatcaaca atattttcac ctgaatcagg atattcttct aatacctgga 9420
atgctgtttt cccggggatc gcagtggtga gtaaccatgc atcatcagga gtacggataa 9480
aatgcttgat ggtcggaaga ggcataaatt ccgtcagcca gtttagtctg accatctcat 9540
ctgtaacatc attggcaacg ctacctttgc catgtttcag aaacaactct ggcgcatcgg 9600
gcttcccata caatcgatag attgtcgcac ctgattgccc gacattatcg cgagcccatt 9660
tatacccata taaatcagca tccatgttgg aatttaatcg cggcctcgag caagacgttt 9720
cccgttgaat atggctcata acaccccttg tattactgtt tatgtaagca gacagtttta 9780
ttgttcatga tgatatattt ttatcttgtg caatgtaaca tcagagattt tgagacacaa 9840
cgtggctttc cccccccccc ctgcaggtcg gcatcaccgg cgccacaggt gcggttgctg 9900
gcgcctatat cgccgacatc accgatgggg aagatcgggc tcgccacttc gggctcatga 9960
gcgcttgttt cggcgtgggt atggtggcag gccccgtggc cgggggactg ttgggcgcca 10020
tctccttgca tgcaccattc cttgcggcgg cggtgctcaa cggcctcaac ctactactgg 10080
gctgcttcct aatgcaggag tcgcataagg gagagcgtcg agtatctatg attggaagta 10140
tgggaatggt gatacccgca ttcttcagtg tcttgaggtc tcctatcaga ttatgcccaa 10200
ctaaagcaac cggaggagga gatttcatgg taaatttctc tgacttttgg tcatcagtag 10260
actcgaactg tgagactatc tcggttatga cagcagaaat gtccttcttg gagacagtaa 10320
atgaagtccc accaataaag aaatccttgt tatcaggaac aaacttcttg tttcgaactt 10380
tttcggtgcc ttgaactata aaatgtagag tggatatgtc gggtaggaat ggagcgggca 10440
aatgcttacc ttctggacct tcaagaggta tgtagggttt gtagatactg atgccaactt 10500
cagtgacaac gttgctattt cgttcaaacc attccgaatc cagagaaatc aaagttgttt 10560
gtctactatt gatccaagcc agtgcggtct tgaaactgac aatagtgtgc tcgtgttttg 10620
aggtcatctt tgtatgaata aatctagtct ttgatctaaa taatcttgac gagccaaggc 10680
gataaatacc caaatctaaa actcttttaa aacgttaaaa ggacaagtat gtctgcctgt 10740
attaaacccc aaatcagctc gtagtctgat cctcatcaac ttgaggggca ctatcttgtt 10800
ttagagaaat ttgcggagat gcgatatcga gaaaaaggta cgctgatttt aaacgtgaaa 10860
tttatctcaa gatctctgcc tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat 10920
gcagctcccg gagacggtca cagcttgtct gtaagcggat gccgggagca gacaagcccg 10980
tcagggcgcg tcagcgggtg ttggcgggtg tcggggcgca gccatgaccc agtcacgtag 11040
cgatagcgga gtgtatactg gcttaactat gcggcatcag agcagattgt actgagagtg 11100
caccatatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggcgc 11160
tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 11220
tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 11280
aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 11340
tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 11400
tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 11460
cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 11520
agcgtggcgc tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 11580
tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 11640
aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 11700
ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 11760
cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 11820
accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 11880
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 11940
ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 12000
gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 12060
aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 12120
gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc 12180
gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 12240
cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 12300
gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 12360
gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctgca 12420
ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 12480
tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct 12540
ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 12600
cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 12660
accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaaca 12720
cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 12780
tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 12840
cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa 12900
acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc 12960
atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 13020
tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 13080
aaagtgccac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 13140
cgtatcacga ggccctttcg tcttcaagaa ttaattctca tgtttgacag cttatcatcg 13200
ataagctgac tcatgttggt attgtgaaat agacgcagat cgggaacact gaaaaataac 13260
agttattatt cg 13272
<210> 6
<211> 40
<212> DNA
<213> upstream primer for amplifying Pir1p Gene (Artificial Sequence)
<400> 6
aaagagaggc tgaagcttac gtatatgctc caaaggaccc 40
<210> 7
<211> 40
<212> DNA
<213> downstream primer for amplifying Pir1p Gene (Artificial Sequence)
<400> 7
ccagaaccac caccaccgaa ttcacagttg agcaaatcga 40
<210> 8
<211> 76
<212> DNA
<213> amplification of the upstream primer of the lacA Gene (Artificial Sequence)
<400> 8
gctcaactgt gaattcggtg gtggtggttc tggtggtggt ggatctggtg gtggaggttc 60
ttctattaag cataga 76
<210> 9
<211> 64
<212> DNA
<213> amplification of the downstream primer of the lacA Gene (Artificial Sequence)
<400> 9
ttaattcgcg gccgccctag gttacttatc atcatcatcc ttgtaatcgt aagcaccctt 60
tctt 64
<210> 10
<211> 40
<212> DNA
<213> amplification of the upstream primer of Pir1p+lacA overlap Gene (Artificial Sequence)
<400> 10
aaagagaggc tgaagcttac gtatatgctc caaaggaccc 40
<210> 11
<211> 64
<212> DNA
<213> amplification of the downstream primer of Pir1p+lacA overlap Gene (Artificial Sequence)
<400> 11
ttaattcgcg gccgccctag gttacttatc atcatcatcc ttgtaatcgt aagcaccctt 60
tctt 64
Claims (8)
1. A recombinant pichia pastoris with beta-galactosidase displayed on the surface, which is characterized in that the recombinant pichia pastoris is obtained by heterologously expressing a beta-galactosidase gene lacA from aspergillus oryzae BK03 and a cell wall protein gene pir1p from saccharomyces cerevisiae in original pichia pastoris, wherein the nucleotide sequence of the beta-galactosidase gene lacA from aspergillus oryzae BK03 is shown as SEQ ID NO:1 is shown in the specification; the nucleotide sequence of the cell wall protein gene pir1p from saccharomyces cerevisiae is shown as SEQ ID NO: 2.
2. The recombinant pichia pastoris of claim 1, wherein the original pichia pastoris isPichia pastoris GS115。
3. The construction method of recombinant pichia pastoris according to claim 1 or 2, characterized in that the cell wall protein pir1p from saccharomyces cerevisiae and the β -galactosidase gene lacA from aspergillus oryzae BK03 are first overlapped and then cloned into the pPIC9k plasmid to obtain a linearized plasmid, which is then introduced into the genome of pichia pastoris by electrotransformation.
4. The method for inducing and expressing recombinant pichia pastoris according to claim 1 or 2, wherein the recombinant pichia pastoris is inoculated in YPD liquid culture medium, seed liquid is obtained by overnight culture, and then the seed liquid is inoculated in BMGY culture medium for culture until OD 600 To 2-6, the BMGY medium was centrifuged to remove the supernatant, the resulting bacterial pellet was washed with sterile water, and the pellet was transferred to BMMY medium containing methanol for further culture.
5. The method of claim 4, wherein the YPD liquid medium comprises 10g/L yeast powder, 20g/L peptone, and 20g/L glucose; the BMGY culture medium comprises 10g/L yeast powder, 20g/L peptone, 2ml/L biotin mother liquor, 100 ml/L10% glycerol, 100ml/L potassium phosphate mother liquor and 100ml/L YNB mother liquor.
6. The method of claim 4, wherein the YNB mother liquor consists of 20.1g YNB and 150ml H 2 O, the potassium phosphate mother liquor consists of 0.45. 0.45g K 2 HPO 4 、1.77g KH 2 PO 4 And 150ml H 2 O, the mother liquor of biotin consists of 20mg and 100ml H 2 O composition.
7. Use of the recombinant pichia pastoris according to claim 1 or 2 for the fermentative production of galactooligosaccharides.
8. The use according to claim 7, wherein the recombinant pichia pastoris is inoculated into a pichia pastoris fermentation medium BMMY for fermentation culture, the thalli are collected by centrifugation, and then the cells are transformed by taking lactose as a substrate to obtain the galactooligosaccharides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210456408.4A CN114606151B (en) | 2022-04-27 | 2022-04-27 | Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210456408.4A CN114606151B (en) | 2022-04-27 | 2022-04-27 | Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114606151A CN114606151A (en) | 2022-06-10 |
CN114606151B true CN114606151B (en) | 2023-05-19 |
Family
ID=81869162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210456408.4A Active CN114606151B (en) | 2022-04-27 | 2022-04-27 | Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114606151B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009060804A (en) * | 2007-09-04 | 2009-03-26 | National Research Inst Of Brewing | Method for highly secreting different protein by pichia yeast |
CN102803491A (en) * | 2010-01-21 | 2012-11-28 | 奥克西雷恩英国有限公司 | Methods and compositions for displaying a poypeptide on a yeast cell surface |
CN103055464A (en) * | 2012-12-14 | 2013-04-24 | 南京林业大学 | Method for degrading octyl phenol by utilizing laccase |
WO2013153090A1 (en) * | 2012-04-10 | 2013-10-17 | Food Research And Innovation - F.R.I. S.R.L. | Method for preparing and purifying a vegetable protein usable as a sweetener |
CN108841740A (en) * | 2018-07-10 | 2018-11-20 | 青岛蔚蓝生物集团有限公司 | A kind of Pichi strain of high yield alpha-galactosidase |
CN114395547A (en) * | 2022-02-16 | 2022-04-26 | 江南大学 | Mutant of beta-galactosidase and application of mutant in milk |
-
2022
- 2022-04-27 CN CN202210456408.4A patent/CN114606151B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009060804A (en) * | 2007-09-04 | 2009-03-26 | National Research Inst Of Brewing | Method for highly secreting different protein by pichia yeast |
CN102803491A (en) * | 2010-01-21 | 2012-11-28 | 奥克西雷恩英国有限公司 | Methods and compositions for displaying a poypeptide on a yeast cell surface |
WO2013153090A1 (en) * | 2012-04-10 | 2013-10-17 | Food Research And Innovation - F.R.I. S.R.L. | Method for preparing and purifying a vegetable protein usable as a sweetener |
CN103055464A (en) * | 2012-12-14 | 2013-04-24 | 南京林业大学 | Method for degrading octyl phenol by utilizing laccase |
CN108841740A (en) * | 2018-07-10 | 2018-11-20 | 青岛蔚蓝生物集团有限公司 | A kind of Pichi strain of high yield alpha-galactosidase |
CN114395547A (en) * | 2022-02-16 | 2022-04-26 | 江南大学 | Mutant of beta-galactosidase and application of mutant in milk |
Non-Patent Citations (1)
Title |
---|
Biofilm-Based Biocatalysis for Galactooligosaccharides Production by the Surface Display of -Galactosidase in Pichia pastoris;Chen, T. 等;Int. J. Mol. Sci.;第24卷;第1-16页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114606151A (en) | 2022-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110938652A (en) | Targeting vector, method for constructing F4/80-DTR transgenic mouse with diphtheria toxin regulation and elimination of macrophage and application | |
MXPA04001108A (en) | Herbicide tolerant cotton plants and methods for producing and identifying same. | |
CN108456688A (en) | A kind of recombinant expression plasmid, transformant and its application based on T7 promoters | |
CN110628798B (en) | Bacillus subtilis CRISPR-Cas9 genome editing system | |
CN110042067B (en) | Method for improving xylose utilization capacity of recombinant saccharomyces cerevisiae strain and mutant strain thereof | |
CN114606151B (en) | Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application | |
CN111979133B (en) | Yarrowia lipolytica gene engineering bacterium for producing limonene and application thereof | |
CN110093277B (en) | Construction method and application of gene knock-out strain of Toxoplasma gondii adenylate succinate lyase | |
CN114796526B (en) | Bionic bispecific nano editing system and application thereof | |
KR910008643B1 (en) | Method for purification of hbs antigen | |
CN114774298B (en) | Recombinant strain for synthesizing sakura extract, construction method thereof, and method for synthesizing sakura extract by fermentation and application | |
CN115707776B (en) | Recombinant coxsackievirus A6 virus-like particles and uses thereof | |
KR20190053965A (en) | FGF21 reactive reporter gene cell line | |
Al Ani et al. | The structure of cauliflower mosaic virus I. pH-Induced structural changes | |
CN114015723B (en) | Duck tembusu virus plasmid vector, attenuated strain, preparation method and application thereof | |
CN113493855B (en) | Kit for detecting HBV cccDNA based on RAA-CRISPR-cas13a | |
CN112322512A (en) | Method for synthesizing S-adenosylmethionine by modifying saccharomyces cerevisiae through DL-methionine based on CRISPR technology | |
CN114959110A (en) | Kit for detecting hepatitis B virus pregenomic RNA based on PCR-CRISPR-Cas13a | |
CN114957448A (en) | Yeast strain for efficiently expressing alpha-lactalbumin, alpha-lactalbumin and application of yeast strain and alpha-lactalbumin | |
CN109576296B (en) | Duck plague virus US1 gene traceless deletion virus strain and construction method thereof | |
CN106399223B (en) | A kind of separation of tripterygium wilfordii protoplast and transient transformation methods | |
CN114959107A (en) | Kit for detecting hepatitis B virus DNA based on RAA-CRISPR-Cas13a technology | |
CN108949793B (en) | Recombinant bacterium for representing genetic toxicity and construction method and application thereof | |
KR101620141B1 (en) | Immortalized porcine renal cell line and the method for cultivating and proliferating porcine circovirus type 2 using the same | |
CN110522907B (en) | Sodium alginate/cell-penetrating peptide/plasmid ternary nano-composite vaccine and preparation and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |