CN114605164A - 一种多孔Ti-Al-N材料及其制备方法和应用 - Google Patents

一种多孔Ti-Al-N材料及其制备方法和应用 Download PDF

Info

Publication number
CN114605164A
CN114605164A CN202210223002.1A CN202210223002A CN114605164A CN 114605164 A CN114605164 A CN 114605164A CN 202210223002 A CN202210223002 A CN 202210223002A CN 114605164 A CN114605164 A CN 114605164A
Authority
CN
China
Prior art keywords
porous
green body
temperature
sintering
heat preservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210223002.1A
Other languages
English (en)
Inventor
叶曙龙
余鹏
李文馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202210223002.1A priority Critical patent/CN114605164A/zh
Publication of CN114605164A publication Critical patent/CN114605164A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0003Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof containing continuous channels, e.g. of the "dead-end" type or obtained by pushing bars in the green ceramic product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种多孔Ti‑Al‑N材料及其制备方法和应用,该制备方法先采用钛源和铝源混合制备生坯;而后将生坯在氩气气氛下进行第一次升温烧结,并在升温至所述生坯的液相反应发生起始温度之前进行保温;再将氩气气氛切换为氮气气氛,进行第二次升温烧结,制得多孔Ti‑Al‑N材料。该制备工艺简单,易于控制,生产成本低,且所制得多孔Ti‑Al‑N材料的孔隙均匀且相互贯通。

Description

一种多孔Ti-Al-N材料及其制备方法和应用
技术领域
本发明涉及多孔材料技术领域,尤其是涉及一种多孔Ti-Al-N材料及其制备方法和应用。
背景技术
多孔无机材料由于具有一定孔径范围分布的孔隙,拥有较大的比表面积,有优异的化学、力学等性能,能够实现过滤、吸附、催化合成、隔音、隔热等多种功能,目前广泛应用于化工、冶金、生物医疗、海水淡化、环境保护等各个领域,对于提高工业生产效率、节约能源、保护环境和资源的再利用有着极其重要的作用。传统的无机多孔材料通常分为两类:多孔金属和多孔陶瓷。其中,多孔金属以其常温强度高、冲击能吸收能力强、气液透气性大、切削加工性好等优点在一些工业领域得到了应用。然而,由于多孔金属在酸、碱、盐等溶液中的抗氧化、硫化和腐蚀能力较差,且在高温下强度较低,因此无法在恶劣的环境下进行应用。而多孔陶瓷虽然具有良好的耐腐蚀性、较高的显微结构稳定性和高温强度,然而多孔陶瓷固有的脆性、较差的切削加工性和较低的热冲击性能也阻碍了其更广泛的应用。因此,开发适用于恶劣环境的新型多孔材料具有重要意义。
Ti-Al-N材料属于三元过渡金属化合物(MAX),与多孔金属(如多孔不锈钢、Ni等)相比,多孔的Ti-Al-N在酸、碱、盐等溶液中具有更好的耐腐蚀性能;与传统的多孔陶瓷(如多孔SiC、Al2O3)相比,Ti-Al-N抗热冲击性能更好且易于机械加工。因而,Ti-Al-N材料及其制备受到了越来越多的关注和研究,但目前关于Ti-Al-N材料的研究主要集中在致密化的块体Ti2AlN陶瓷和Ti2AlN粉体,其致密化结构限制其过滤、吸附、催化合成、隔音隔热等功能的发挥。对此,现有研究通过在Ti-Al-N材料的制备原料中加入造孔剂,并在之后通过烧结分解去除形成孔隙,以制备多孔Ti-Al-N材料,该方法通过加入造孔剂形成的孔隙多为闭孔,难以形成相互贯通的孔隙结构,这也会限制其在过滤、催化等领域的应用,并且造孔剂的使用增加了制备原料成本。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种多孔Ti-Al-N材料及其制备方法和应用。
本发明的第一方面,提出了一种多孔Ti-Al-N材料的制备方法,包括以下步骤:
S1、采用钛源和铝源混合制备生坯;
S2、将所述生坯在氩气气氛下进行第一次升温烧结,并在升温至所述生坯的液相反应发生起始温度之前进行保温;
S3、而后将氩气气氛切换为氮气气氛,进行第二次升温烧结,制得多孔Ti-Al-N材料。
根据本发明实施例的多孔Ti-Al-N材料的制备方法,至少具有以下有益效果:将钛源和铝源混合制得的生坯先在氩气气氛下升温至生坯的液相反应发生起始温度之前进行保温,利用Ti、Al元素扩散速率的差异,造成Al的偏扩散引发柯肯达尔(Kirkendall)效应,在合金中形成孔隙结构,再将气氛切换为氮气进行第二次升温烧结,Al熔化后进一步促进多孔结构的形成;同时,在烧结过程中通过引入非金属元素N,改变其晶胞结构,使其形成陶瓷相,从而制得多孔Ti-Al-N材料。该制备方法工艺简单,易于控制,生产成本低,且所制得多孔Ti-Al-N材料的孔隙均匀且相互贯通。
在本发明的一些实施方式中,步骤S2中,所述生坯的液相反应发生起始温度通过以下方法获得:将生坯在氩气气氛下进行升温烧结,同时使用差示扫描量热仪检测获取所述生坯的DSC放热曲线,而后根据所述DSC放热曲线确定外推起始温度作为所述生坯的液相反应发生起始温度。外推起始温度的确定可采用DSC通用的确定方法,即基线的切线与顶峰的最大斜率线的交点温度。
在本发明的一些实施方式中,步骤S1中,按照Ti和Al的摩尔比为(1~3):(1~2)取钛源和铝源。
在本发明的一些实施方式中,步骤S2中,升温至500~600℃进行保温。第一次升温烧烧结的升温速率可控制在5~15℃/min,优选10℃/min。
在本发明的一些实施方式中,步骤S3中,所述第二次升温烧结升温至1300~1400℃进行保温。第二次升温烧结的升温速率也可控制在5~15℃/min,优选10℃/min。
在本发明的一些实施方式中,步骤S2中,保温时长为0.5~3h,优选1h;步骤S3中,保温时长为1~3h,优选2h。
在本发明的一些实施方式中,步骤S1中,所述钛源选自钛粉、氢化钛粉中的至少一种;所述铝源选自铝粉。可将钛源和铝源混合后通过了冷压成型制备生坯,冷压成型的压力可控制在100~500MPa。具体地,可将钛源和铝源置于在三维混料机中进行混合,铝源均匀分布在钛源周围,再将得到的混合物在100~500MPa压力下进行冷压成型得到生坯,通过以上混合和压制,可减少钛和铝原子之间的扩散距离,进而可减少烧结过程柯肯达尔效应引起的变形。
本发明的第二方面,提出了一种多孔Ti-Al-N材料,其由以上任一种多孔Ti-Al-N材料的制备方法制得。多孔Ti-Al-N材料的孔径范围可控制在5~50μm,孔隙率可达到40%~60%。
本发明的第三方面,提出了以上任一种多孔Ti-Al-N材料在过滤、隔音、隔热或催化合成领域中的应用。
本发明的第四方面,提出了一种过滤元件,所述过滤元件含以上任一种多孔Ti-Al-N材料。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为对比例1所制得Ti-Al材料、对比例2所制得Ti-Al-N材料和实施例1所制得多孔Ti-Al-N材料的照片;
图2为对比例1中生坯在氩气氛围下以10℃/min升温的DSC放热曲线;
图3为实施例1所制得多孔Ti-Al-N材料的XRD图;
图4为实施例1所制得多孔Ti-Al-N材料的SEM图;
图5为实施例1所制得多孔Ti-Al-N材料的压缩曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
对比例1
本对比例制备了一种Ti-Al材料,具体制备过程包括:
S1、采用氢化脱氢法制备的平均粒径为45μm的Ti粉和气雾化法制备的平均粒径为10μm的球型Al粉;将Ti粉和Al粉在三维混料机中以2:1的摩尔比混合1h,得到混合粉末;
S2、将混合粉末在200MPa压力下冷压成生坯,所使用的的模具直径为10mm,得到生坯样品的平均尺寸大约为Φ10mm×13mm;
S3、将所得生坯放入炉子中,在氩气气氛下进行升温烧结,具体以10℃/min的升温速率加热到1300℃,并在1300℃保温2h,制得Ti-Al材料,具体如图1中(b)所示,所得样品保持良好形貌。
对比例2
本对比例制备了一种Ti-Al-N材料,具体制备过程包括:
S1、采用氢化脱氢法制备的平均粒径为45μm的Ti粉和气雾化法制备的平均粒径为10μm的球型Al粉;将Ti粉和Al粉在三维混料机中以2:1的摩尔比混合1h,得到混合粉末;
S2、将混合粉末在200MPa压力下冷压成生坯,所使用的的模具直径为10mm,得到生坯样品的平均尺寸大约为Φ10mm×13mm;
S3、将所得生坯放入炉子中,在氮气气氛下以10℃/min的升温速率加热到1300℃,制得Ti-Al-N材料如图1中(b)所示,由图可知,烧结完成后所得样品严重变形,说明氮元素的引入造成了样品的急速反应或熔化现象。
基于以上,申请人在研究过程中改变烧结策略。具体地,在对比例1中将生坯在氩气气氛下进行升温烧结过程,使用差示扫描量热仪检测获得该生坯的DSC放热曲线,如图2所示,进而结合反应的DSC放热曲线,使用DSC通用的外推反应起始温度的确定方法,确定了该钛铝摩尔比(2:1)下的液相反应发生起始温度(即基线的切线与顶峰的最大斜率线的交点温度)约为648℃,Al的熔化峰在669.91℃,反应剧烈发生的温度在716.9℃。进而改变烧结策略,先在氩气气氛下进行升温烧结,并结合生坯的液相反应发生起始温度,在该温度之前进行保温,以使Ti和Al先进行充分的缓慢反应,防止后续烧结发生剧烈反应而引起变形。通过控制保温温度和保温时长以减小样品在反应过程中的膨胀速率,待充分反应后,停止保温再次升温,同时将气氛切换为氮气气氛,以引入氮元素。并且,通过不同保温温度下的多组横向实验对比,可确定样品急速膨胀段最小的保温温度,以获得孔径均匀度和外形均一高的多孔样品;而经对比实验得出,对比例1中生坯在氩气气氛下升温至560℃进行保温后,样品的急速膨胀段最小,可获得孔径均匀度和外形均一高的多孔样品。
另外,针对不同钛铝摩尔比的生坯,基于类似的设计思路,可通过类似以上的方法,将生坯在氩气气氛下进行升温烧结,同时使用差示扫描量热仪检测获取该钛铝摩尔比下生坯的DSC放热曲线,进而根据DSC放热曲线确定该钛铝摩尔比下生坯的液相反应发生起始温度,以确定烧结策略,即先将生坯在氩气气氛下进行第一次升温烧结,并在生坯的液相反应发生起始温度之前进行保温,待充分反应后将氩气气氛切换为氮气气氛,进行第二次升温烧结。
基于以上确定的烧结策略,如下通过列举部分实施例以说明本申请多孔Ti-Al-N材料的具体制备方法。
实施例1
本实施例制备了一种多孔Ti-Al-N材料,具体制备过程包括:
S1、采用氢化脱氢法制备的平均粒径为45μm的Ti粉和气雾化法制备的平均粒径为10μm的球型Al粉;将Ti粉和Al粉在三维混料机中以2:1的摩尔比混合1h,得到混合粉末;
S2、将混合粉末在200MPa压力下冷压成生坯,所使用的模具直径为10mm,得到生坯样品的平均尺寸大约为Φ10mm×13mm;
S3、将所得生坯放入炉子中,在氩气气氛下进行升温烧结,具体以10℃/min的升温速率加热到560℃,并在560℃保温1h,从而控制样品的膨胀速率,保证此阶段样品不会发生变形;
S4、保温结束后,立即将烧结气氛切换为氮气,从而在样品中引入氮元素;切换成氮气后,继续以10℃/min的升温速率将样品加热至1350℃,然后保温2h,保温结束后随炉冷却至室温,得到多孔Ti-Al-N材料,如图1中(c)所示。
采用XRD衍射仪对本实施例所制得的多孔Ti-Al-N材料进行XRD物相分析,所得结果图3所示,由图3所示结果可知,所制得多孔Ti-Al-N材料主要为Ti2AlN相,同时含有少量TiN、AlN、Ti3Al和TiAl等物相。采用扫描电子显微镜(SEM)对本实施例所制得多孔Ti-Al-N材料进行观察,所得结果如图4所示,所得结果表明通过以上升温烧结形成了相互贯通的孔隙,且所形成孔隙较为均匀。另外,将以上所制得的圆柱形多孔Ti-Al-N材料样品在万能试验机中进行压缩强度测试,具体进行了三次测试,所得结果如图5所示,测试结果表明,所制得多孔Ti-Al-N材料的压缩强度达100MPa以上,且通过三次测试所得图5中的三条力学性能曲线表明其力学性能稳定。
实施例2
本实施例制备了一种多孔Ti-Al-N材料,具体制备过程包括:
S1、采用平均粒径为45μm的TiH2粉和气雾化法制备的平均粒径为10μm的球型Al粉;将TiH2粉和Al粉在三维混料机中以2:1的摩尔比混合1h,得到混合粉末;
S2、将混合粉末在200MPa压力下冷压成生坯,所使用的模具直径为10mm,得到生坯样品的平均尺寸大约为Φ10mm×13mm;
S3、将所得生坯放入炉子中,为了控制样品的膨胀率以及TiH2加热分解引起的变形,在氩气气氛下进行升温烧结,具体以10℃/min的升温速率加热到560℃,并在560℃保温1h;
S4、保温结束后,立即将烧结气氛切换为氮气,从而在样品中引入氮元素;切换成氮气后,继续以5℃/min的升温速率将样品加热至650℃并保温1h,保证TiH2粉末完全分解;再以10℃/min的升温速率将样品加热到1350℃,然后保温2h,保温结束后随炉冷却至室温,得到多孔Ti-Al-N材料。
类似于实施例1,采用XRD衍射仪对本实施例所制得多孔Ti-Al-N材料进行物相分析,采用扫描电子显微镜对其孔隙微观结构进行表征,及采用万能试验机对其压缩强度进行测试,所得结果类似于实施例1,该实施例所制得多孔Ti-Al-N材料具有均匀孔隙且孔隙相互贯穿,且力学性能优异。
实施例3
本实施例制备了一种多孔Ti-Al-N材料,具体制备过程包括:
S1、采用气雾化法制备的平均粒径为45μm的球形Ti粉和气雾化法制备的平均粒径为10μm的球型Al粉;将Ti粉和Al粉在三维混料机中以2.5:1.5(即5:3)的摩尔比混合1h,得到混合粉末;
S2、将混合粉末在200MPa压力下冷压成生坯,所使用的模具直径为10mm,得到生坯样品的平均尺寸大约为Φ10mm×13mm;
S3、将所得生坯放入炉子中,在氩气气氛下进行升温烧结,具体以10℃/min的升温速率加热到550℃,并在550℃保温1h,从而控制样品的膨胀速率,保证此阶段样品不会发生变形;
S4、保温结束后,立即将烧结气氛切换为氮气,从而在样品中引入氮元素;切换成氮气后,继续以10℃/min的升温速率将样品加热至1350℃,然后保温2h,保温结束后随炉冷却至室温,得到多孔Ti-Al-N材料。
类似于实施例1,采用XRD衍射仪对本实施例所制得多孔Ti-Al-N材料进行物相分析,采用扫描电子显微镜对其孔隙微观结构进行表征,及采用万能试验机对其压缩强度进行测试,所得结果类似于实施例1,该实施例所制得多孔Ti-Al-N材料具有均匀孔隙且孔隙相互贯穿,且力学性能优异。
以上各实施例将钛源和铝源混合制得的生坯先在氩气气氛下升温至生坯的液相反应发生起始温度之前进行保温,利用Ti、Al元素扩散速率的差异,造成Al的偏扩散引发柯肯达尔(Kirkendall)效应,在合金中形成孔隙结构,再将气氛切换为氮气进行第二次升温烧结,Al熔化后进一步促进多孔结构的形成;同时,在烧结过程中通过引入非金属元素N,改变其晶胞结构,使其形成陶瓷相,从而制得多孔Ti-Al-N材料,制备工艺简单,易于控制,生产成本低,且所制得多孔Ti-Al-N材料的孔隙均匀且相互贯通,其可用于过滤、隔音、隔热、催化合成等领域,例如,可用于制备过滤元件,进而,本申请还提供了一种过滤元件,该过滤元件包含以上任一种多孔Ti-Al-N材料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种多孔Ti-Al-N材料的制备方法,其特征在于,包括以下步骤:
S1、采用钛源和铝源混合制备生坯;
S2、将所述生坯在氩气气氛下进行第一次升温烧结,并在升温至所述生坯的液相反应发生起始温度之前进行保温;
S3、而后将氩气气氛切换为氮气气氛,进行第二次升温烧结,制得多孔Ti-Al-N材料。
2.根据权利要求1所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S2中,所述生坯的液相反应发生起始温度通过以下方法获得:将所述生坯在氩气气氛下进行升温烧结,同时使用差示扫描量热仪检测获取所述生坯的DSC放热曲线,根据所述DSC放热曲线确定外推起始温度作为所述生坯的液相反应发生起始温度。
3.根据权利要求1所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S1中,按照Ti和Al的摩尔比为(1~3):(1~2)取钛源和铝源。
4.根据权利要求3所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S2中,升温至500~600℃进行保温。
5.根据权利要求3所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S3中,所述第二次升温烧结升温至1300~1400℃进行保温。
6.根据权利要求5所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S2中,保温时长为0.5~3h;步骤S3中,保温时长为1~3h。
7.根据权利要求1至6任一项所述的多孔Ti-Al-N材料的制备方法,其特征在于,步骤S1中,所述钛源选自钛粉、氢化钛粉中的至少一种;所述铝源选自铝粉。
8.一种多孔Ti-Al-N材料,其特征在于,由权利要求1至7中任一项所述的多孔Ti-Al-N材料的制备方法制得。
9.权利要求8所述多孔Ti-Al-N材料在过滤、隔音、隔热或催化合成领域中的应用。
10.一种过滤元件,其特征在于,所述过滤元件含权利要求8所述的多孔Ti-Al-N材料。
CN202210223002.1A 2022-03-07 2022-03-07 一种多孔Ti-Al-N材料及其制备方法和应用 Pending CN114605164A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210223002.1A CN114605164A (zh) 2022-03-07 2022-03-07 一种多孔Ti-Al-N材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210223002.1A CN114605164A (zh) 2022-03-07 2022-03-07 一种多孔Ti-Al-N材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114605164A true CN114605164A (zh) 2022-06-10

Family

ID=81861165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210223002.1A Pending CN114605164A (zh) 2022-03-07 2022-03-07 一种多孔Ti-Al-N材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114605164A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724469A (zh) * 2001-07-03 2006-01-25 本田技研工业株式会社 多元系陶瓷粉末的制造方法和烧结体的制造方法
CN101994043A (zh) * 2010-12-08 2011-03-30 北京科技大学 一种高铌钛铝多孔金属间化合物梯度材料及其制备方法
JP2013189676A (ja) * 2012-03-13 2013-09-26 National Institute Of Advanced Industrial Science & Technology 金属多孔体及び金属多孔体の製造方法。
US20150004041A1 (en) * 2012-01-06 2015-01-01 Uacj Corporation Method for manufacturing porous aluminum
CN104263981A (zh) * 2014-09-17 2015-01-07 福建龙溪轴承(集团)股份有限公司 一种粉末冶金钛合金棒材的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724469A (zh) * 2001-07-03 2006-01-25 本田技研工业株式会社 多元系陶瓷粉末的制造方法和烧结体的制造方法
CN101994043A (zh) * 2010-12-08 2011-03-30 北京科技大学 一种高铌钛铝多孔金属间化合物梯度材料及其制备方法
US20150004041A1 (en) * 2012-01-06 2015-01-01 Uacj Corporation Method for manufacturing porous aluminum
JP2013189676A (ja) * 2012-03-13 2013-09-26 National Institute Of Advanced Industrial Science & Technology 金属多孔体及び金属多孔体の製造方法。
CN104263981A (zh) * 2014-09-17 2015-01-07 福建龙溪轴承(集团)股份有限公司 一种粉末冶金钛合金棒材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄虎军: ""Ti-Al合金多孔材料的制备与性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Igharo et al. Compaction and sintering phenomena in titanium—nickel shape memory alloys
Aslam et al. Powder injection molding of biocompatible stainless steel biodevices
CN100465311C (zh) 一种制备高铌钛铝多孔材料的方法
Azarniya et al. Physicomechanical properties of porous materials by spark plasma sintering
KR101478286B1 (ko) 메탈폼 제조방법 및 이에 의해 제조된 메탈폼
EP1813688A1 (en) Titanium or titanium alloy sintered article of a sponge form excellent in compression strength
Liu et al. Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis
CN101358304A (zh) NiAl金属间化合物多孔材料及其制备方法
WO2015014190A1 (zh) 抗高温氧化的烧结Fe-Al基合金多孔材料及过滤元件
US5147831A (en) Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
CN101994043A (zh) 一种高铌钛铝多孔金属间化合物梯度材料及其制备方法
Liu et al. Fabrication of porous FeAl-based intermetallics via thermal explosion
Jiao et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review
CN103290248A (zh) 一种颗粒增强耐磨多孔钛制备方法
US4990181A (en) Aluminide structures and method
BRPI0613051A2 (pt) processo para adiÇço de alumÍnio a elementos de construÇço
KR101331027B1 (ko) 균일한 분포의 나노 기공을 가지는 메탈폼 제조방법 및 이에 의해 제조된 메탈폼
CN111056859A (zh) 钛合金mim零件烧结用氧化钇多孔承烧板及其制备方法
JP2021517210A (ja) 銅ニッケル合金発泡体の作製方法
Zhang et al. Fabrication of high melting-point porous metals by lost carbonate sintering process via decomposition route
CN114605164A (zh) 一种多孔Ti-Al-N材料及其制备方法和应用
CN111230118A (zh) 一种FeAlSi金属间化合物多孔材料及其制备方法和应用
Cai et al. Oxidation resistance of highly porous Fe-Al foams prepared by thermal explosion
TW573016B (en) Processing of iron aluminides by pressureless sintering of elemental iron and aluminum
KR100395036B1 (ko) 개포형 금속포움 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220610

RJ01 Rejection of invention patent application after publication