CN114574877A - 一种具有余热利用的电解水制氢系统 - Google Patents

一种具有余热利用的电解水制氢系统 Download PDF

Info

Publication number
CN114574877A
CN114574877A CN202210358121.8A CN202210358121A CN114574877A CN 114574877 A CN114574877 A CN 114574877A CN 202210358121 A CN202210358121 A CN 202210358121A CN 114574877 A CN114574877 A CN 114574877A
Authority
CN
China
Prior art keywords
water
heat exchanger
electrolytic cell
pipeline
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210358121.8A
Other languages
English (en)
Other versions
CN114574877B (zh
Inventor
袁先明
丁睿
郭向军
王晓威
李黎明
任航星
焦文强
李朋喜
朱艳兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
718th Research Institute of CSIC
Original Assignee
718th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 718th Research Institute of CSIC filed Critical 718th Research Institute of CSIC
Priority to CN202210358121.8A priority Critical patent/CN114574877B/zh
Publication of CN114574877A publication Critical patent/CN114574877A/zh
Application granted granted Critical
Publication of CN114574877B publication Critical patent/CN114574877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种具有余热利用的电解水制氢系统,包括电解水制氢单元、循环冷却单元和循环预热单元;通过循环预热单元与循环冷却单元的配合设置,实现了电解槽出口侧气液混合流体的多级换热,有效利用电解槽出口侧气液混合流体温度高的余热;一方面,电解槽出口侧的气液混合流体通过循环预热单元和循环冷却单元的多级换热降温,有效保证了流入去离子器的电解水温度在去离子器的额定工作范围内,不影响去离子器的水质处理;另一方面,经多级降温后的流入电解槽入口端的电解水再与电解槽出口端的气液混合流体换热进行预热升温,保证了进入电解槽的电解水温度具有有效提高,提升了电解槽内的运行温度,从而保障电解槽的电解性能。

Description

一种具有余热利用的电解水制氢系统
技术领域
本发明涉及水电解制氢技术领域,尤其涉及一种具有余热利用的电解水制氢系统。
背景技术
氢能作为战略新兴产业,以其清洁低碳、灵活高效的能源属性可以在化工、电力、燃料等领域具有广阔的应用前景。近年来,风电、光伏发电等可再生能源的大规模发展,利用可再生能源发电制氢提供了一条绿色、低碳、可持续的氢能生产方式。电解水制氢过程中,在电能的作用下,水被分解为氢气和氧气,一部分能量以化学能的形式存储在了气体中;由于电解槽内部各部件存在电阻,造成一部分能力以热能的形式释放。电解槽工作过程,随着工作温度的升高,活化损失减小,电解槽性能提升,制氢效率升高。PEM电解水制氢技术,由于存在质子交换膜特性的限制,工作温度一般不高于80℃。PEM电解水制氢采用的是贵金属催化剂,且催化剂具有易中毒的特点,因此在使用过程中,PEM电解水制氢对水中离子要求较高,为了保证循环过程中水质达标,在电解槽入口增加离子交换树脂对电解水进行过滤清洁处理。离子交换树脂虽然可以保证水质要求,但离子树脂工作温度较低,一般在50℃以下;这就会造成电解槽入口温度较低,导致电解槽电能转换效率较低,大大影响制氢效率。因此,业内急需一种新型的具有余热利用的电解水制氢系统。
发明内容
本发明的目的在于提供一种具有余热利用的电解水制氢系统,解决背景技术中现有水电解制氢系统中存在的电解槽入口端电解水温度偏低影响电解槽的制氢性能,以及去离子树脂端电解水温度偏高影响电解水质处理的问题。
本发明提供了一种具有余热利用的电解水制氢系统,包括电解水制氢单元、循环冷却单元和循环预热单元;
所述电解水制氢单元包括电解槽、氧分离器、氢分离器、去离子器、氧气干燥器和氢气干燥器;
所述循环冷却单元包括第一换热器和冷却水箱;
循环冷却单元中,冷却水箱通过循环管路连通第一换热器,冷却水箱里的冷却介质通过第一换热器换热后再通过循环管路流回冷却水箱;
所述循环预热单元包括第二换热器;
所述电解槽的氢侧出口连通氢分离器,氢分离器输出端连通氢气干燥器;电解槽中水电解产生的氢气依次经氢分离器分离和氢气干燥器干燥后输出;
电解槽的氧侧出口通过第一管路连通第二换热器的高温流体侧进口;第二换热器的高温流体侧出口通过第二管路连通第一换热器的进口;第一换热器的出口通过第三管路连通氧分离器;氧分离器底部出口通过第四管路连通第二换热器的低温流体侧进口;第二换热器的低温流体侧出口通过第五管路连通电解槽进口;氧分离器顶部出口连通氧气干燥器;电解槽中水电解产生的氧气依次经第二换热器和第一换热器后流入氧分离器分离,氧分离器分离后的氧气再流入氧气干燥器干燥后输出;
所述去离子器设置于第四管路上,去离子器用以清洁电解水,以保证电解水的水质。
进一步地,本发明的电解水制氢系统还包括调节回路;调节回路包括第一调节回路和第二调节回路;第一调节回路包括第一调节阀,第一调节阀一端连接第一管路,第一调节阀另一端连接第二管路;通过第一调节阀调节控制电解槽的氧侧出口端气液混合流体经过第二换热器的流量。第二调节回路包括第二调节阀,第二调节阀设置于冷却水箱与第一换热器进水口段的循环管路上;通过第二调节阀调节控制冷却介质进过第一换热器的流量;本发明的冷却介质优选液态冷却介质,冷却介质包括但不限于水或防冻液。
进一步地,本发明的电解水制氢系统还包括温度监测回路,温度监测回路包括第一温度计和第二温度计,第一温度计设置于第一管路上,用以检测第一管路中气液混合流体的温度;第二温度计设置于第三管路,用以监测流入氧气分离器的气液混合流体的温度。相应地,本发明还可以在第四管路上设置第三温度计,进一步监测流入去离子器端的电解水温度。
进一步地,本发明的电解水制氢系统还包括水质监测回路,水质监测回路包括电导率测试仪;电导率测试仪设置于去离子器与第二换热器的低温流体侧进口之间的第四管路上,用以监测流入电解槽的电解水水质。
进一步地,氧分离器底部出口与去离子器之间的第四管路上还设有循环泵和流量计;循环泵增强管路的泵送能力,流量计用以监测管路流量。
进一步地,本发明的电解水制氢系统还包括第一单向阀、第二单向阀和第三单向阀;第一单向阀设置于电解槽的氢侧出口;第二单向阀设置于电解槽的氧侧出口;第三单向阀设置于氧分离器底部出口;第一单向阀、第二单向阀和第三单向阀一方面能够实现控制管路的通与闭,另一方面能够防止气液混合流体回流。相应地,本发明还可以在电解槽的氢侧出口端设置第四单向阀。
进一步地,电解槽采用质子交换膜电解槽。
进一步地,所述第一换热器为间壁式换热器。
进一步地,所述第二换热器均为间壁式换热器。
本发明的上述技术方案具有如下优点:
本发明的电解水制氢系统,包括电解水制氢单元、循环冷却单元和循环预热单元;本发明利用电解槽要求工作温度较高,去离子器要去温度较低的特点,通过循环预热单元与循环冷却单元的配合设置,实现了电解槽出口侧气液混合流体的多级换热,有效利用电解槽出口侧气液混合流体温度高的余热;一方面,电解槽出口侧的气液混合流体通过循环预热单元和循环冷却单元的多级换热降温,有效保证了流入去离子器的电解水温度在去离子器的额定工作范围内,不影响去离子器的水质处理;另一方面,经多级降温后的流入电解槽入口端的电解水再与电解槽出口端的气液混合流体换热进行预热升温,保证了进入电解槽的电解水温度具有有效提高,提升了电解槽内的运行温度,从而保障电解槽的电解性能。
本发明电解水制氢系统中设置的调节回路和温度监测回路,调节回路配合温度监测回路的反馈控制,做到了实时监测各单元温度的同时,能够合理有效的调节控制电解水的换热温度,保障系统的正常运行。
附图说明
图1为本发明一种具有余热利用的电解水制氢系统的结构框图;
其中:电解水制氢单元,2、循环冷却单元,3、循环预热单元,4、电解槽,5、氧气分离器,6、氢气分离器,7、循环泵,8、流量计,9、去离子器,10、电导率测试仪,11、氧气干燥器,12、氢气干燥器,13、第一换热器,14、第二调节阀,15、冷却水箱,16、第二换热器,17第一调节阀。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参见图1,本发明的一种具有余热利用的电解水制氢系统,包括电解水制氢单元1、循环冷却单元2和循环预热单元3。
电解水制氢单元1包括电解槽4、氧分离器5、氢分离器6、循环泵7、流量计8、去离子器9和电导率测试仪10、氧气干燥器11、氢气干燥器12;循环冷却单元2包括第一换热器13和冷却水箱15;循环预热单元3包括第二换热器16。电解槽4采用质子交换膜电解槽,即PEM电解槽。第一换热器13和第二换热器16均为间壁式换热器。
所述电解槽的氢侧出口连通氢分离器,氢分离器输出端连通氢气干燥器;电解槽中水电解产生的氢气依次经氢分离器分离和氢气干燥器干燥后输出;
电解槽的氧侧出口通过第一管路连通第二换热器的高温流体侧进口;第二换热器(预热换热器)的高温流体侧出口通过第二管路连通第一换热器的进口;第一换热器(冷却换热器)的出口通过第三管路连通氧分离器;氧分离器底部出口通过第四管路连通第二换热器的低温流体侧进口;第二换热器的低温流体侧出口通过第五管路连通电解槽进口;氧分离器顶部出口连通氧气干燥器;电解槽中水电解产生的氧气依次经第二换热器和第一换热器后流入氧分离器分离,氧分离器分离后的氧气再流入氧气干燥器干燥后输出;
所述去离子器设置于第四管路上,去离子器用以清洁电解水,保证电解水的水质。
氧分离器5底部出口、循环泵7、流量计8、去离子器9和电导率测试仪10通过第四管路依次连通,且第四管路末端连接于第二换热器的低温流体侧进口。电导率测试仪设置于去离子器与第二换热器的低温流体进口之间,用以检测反馈经去离子器中离子交换树脂处理后的电解水是否符合相应的电解水质要求。氧分离器5和氢分离器6的底部通过管路连接,一方面便于氢分离器中分离的电解水流入氧分离器,再经氧分离器底部出口的第四管路和第二换热器换热后流入所述电解槽;另一方面便于保持两个气水分离器(氢分离器和氧分离器)的压力平衡。
第一换热器13和冷却水箱15通过冷却水循环管路连接;冷却水箱里的冷却介质通过第一换热器换热后再通过循环管路流回冷却水箱;冷却水箱至第一换热器进水口段的冷却循环管路上设有第二调节阀14,形成第二调节回路,第二调节阀用以控制冷却水箱中的冷却介质进入第一换热器的流通量。
第二换热器的高温流体进口和第二换热器16的高温流体侧出口的连通管路与第一调节回路并联设置;第一调节回路的设置将电解槽的氧侧出口分成两路出路,同时第一调节回路上设有第一调节阀17,通过控制第一调节阀的开度有效控制电解槽的氧侧出口气液混合体进入第二换热器的流通量。本发明还设有温度监测回路,温度监测回路包括第一温度计和第二温度计,第一温度计设置于第一管路上,用以检测第一管路中气液混合流体的温度;第二温度计设置于第三管路,用以监测流入氧气分离器的气液混合流体的温度。
电解槽的氧侧出口分为两路,一路进入第二换热器后进行预热回收,通过第二换热器换热后的水和氧气得到了一定降温,第二路经过第一调节阀,两路流体在各自经过第二换热器和第一调节阀后进行汇合,汇合后的气液混合物流体进入第一换热器进行再次冷却换热,再次冷却后的气液混合物流体进入氧气分离器,分离后的得到的氧气再经氧气干燥器进一步除水,得到的氧气进入氧气排出管输出。
温度降低后的电解水通过氧分离器底部出口、循环泵、进入去离子器,两次换热降温后的电解水温度不高于去离子树脂的额定工作温度;通过去离子器中的离子交换树脂处理的电解水再通过电导率测试仪检测水质,形成流入电解槽中电解水的一个水质检测闭环,以保证流入电解槽的电解水符合水质要求;同时再进入第二换热器换热升温,换热升温后的电解水重新回到电解槽中参与电解反应,保障了电解槽的电解工作性能。
电解槽氢气侧产物经过氢分离器后进入冷却设备降温,再经氢气干燥器进一步除水,最后通过氢气干燥器进入氢气排除管道,气液分离得到的纯水经过氢气分离器和氧气分离器的连接管路回到氧气分离器,进入再次循环。
电解槽4析氧反应一侧的气液混合流体一部分经过第二换热器16,另一部分经过第一调节阀17,两部分流体混合后,整体温度得到一定降低;再经过第一换热器13,再次冷却的气液两相流体温度不高于去离子器9所能承受的最高工作温度。
调节回路配合温度监测回路的反馈,能有效合理的调节控制电解水的换热温度。第一温度计监测的温度较低,则减少第一调节阀的开度,让电解槽的氧侧出口端的气液混合流体更多的流入第二换热器换热,以提高电解水的换热效果,提高初次换热后的电解水温度;第一温度计监测的温度较高,则增加第一调节阀的开度,让电解槽的氧侧出口端的气液混合流体更多的从第一调节回路通过,减少初次换热,以降低初次换热后的电解水温度。第二温度计监测的温度较高,则增大第二调节阀的开度,以便冷却水箱的冷却介质大通量的流入第一换热器换热,提升第一换热器的换热效果;反之,第二温度计监测的温度较低,则减小第二调节阀的开度。
经实际验证,本发明的电解水制氢系统制氢过程中,电解槽4内的电解液的运行温度为60~80℃,经第二换热器16或第一换热器13降温后的电解液温度为40~50℃,确保去离子器在额定工作范围内工作,同时经第二换热器16预热升温后的原料水即电解槽入口的原料水温度为60~70℃,相比于经过去离子器的原料水温度具有有效提高,原料水进入电解内,部分原料水被电解消耗,部分原料水未消耗,电解产热将电解槽温度提高,保证电解槽工作温度不高于80℃。
本发明的电解水制氢系统利用电解槽要求工作温度较高,去离子器要去温度较低的特点,通过循环预热单元与循环冷却单元的配合设置,实现了电解槽出口气液混合物的多级换热,有效做到电解槽的余热利用;一方面保证了流入去离子器端的电解水温度在去离子器的额定工作温度范围;另一方面,实现了电解槽入口端的电解水温度的预热升温,提升了电解槽的运行温度,保障电解槽的电解性能。另外,本发明中调节回路配合温度监测回路的反馈控制,做到了实时监测各单元温度的同时,能够合理有效的调节控制电解水的换热温度,保障系统的正常运行。
需要说明的是,本发明的制氢系统还包括控制器,控制器中包含有控制系统,控制系统参照现有技术常规设置,控制器与电解槽、调节回路的调节阀、温度监测回路的温度计、水质监测回路的电导率测试仪、循环泵和流量计都电性连接;控制器用以获取温度计、流量计、电导率测试仪的监测信号,并控制电解槽、循环泵以及系统管路中阀门的运转;系统管路中的阀门包括但不限于调节阀和单向阀。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种具有余热利用的电解水制氢系统,其特征在于,包括电解水制氢单元、循环冷却单元和循环预热单元;
所述电解水制氢单元包括电解槽、氧分离器、氢分离器、去离子器、氧气干燥器和氢气干燥器;
循环冷却单元包括第一换热器和冷却水箱;
所述循环冷却单元中,冷却水箱通过循环管路连通第一换热器,冷却水箱里的冷却介质通过第一换热器换热后再通过循环管路流回冷却水箱;
循环预热单元包括第二换热器;
所述电解槽的氢侧出口连通氢分离器,氢分离器输出端连通氢气干燥器;电解槽中水电解产生的氢气依次经氢分离器分离和氢气干燥器干燥后输出;
电解槽的氧侧出口通过第一管路连通第二换热器的高温流体侧进口;第二换热器的高温流体侧出口通过第二管路连通第一换热器的进口;第一换热器的出口通过第三管路连通氧分离器;氧分离器底部出口通过第四管路连通第二换热器的低温流体侧进口;第二换热器的低温流体侧出口通过第五管路连通电解槽进口;氧分离器顶部出口连通氧气干燥器;电解槽中水电解产生的氧气依次经第二换热器和第一换热器后流入氧分离器分离,氧分离器分离后的氧气再流入氧气干燥器干燥后输出;
所述去离子器设置于第四管路上,去离子器用以清洁电解水。
2.如权利要求1所述的电解水制氢系统,其特征在于,包括调节回路;调节回路包括第一调节回路,第一调节回路包括第一调节阀;第一调节阀一端连接第一管路,第一调节阀另一端连接第二管路,用以调节控制电解槽的氧侧出口端气液混合流体经过第二换热器的流量。
3.如权利要求2所述的电解水制氢系统,其特征在于,调节回路还包括第二调节回路,第二调节回路包括第二调节阀;第二调节阀设置于冷却水箱与第一换热器进水口段的循环管路上,用以调节控制冷却介质经过第一换热器的流量。
4.如权利要求1所述的电解水制氢系统,其特征在于,包括温度监测回路,温度监测回路包括第一温度计和第二温度计;第一温度计设置于第一管路上,用以检测电解槽的氧侧出口端气液混合流体的温度;第二温度计设置于第三管路,用以监测流入氧气分离器的气液混合流体的温度。
5.如权利要求4所述的电解水制氢系统,其特征在于,包括水质监测回路,水质监测回路包括电导率测试仪;电导率测试仪设置于去离子器与第二换热器的低温流体侧进口之间的第四管路上,用以监测流入电解槽的电解水水质。
6.如权利要求1-5任意一项所述的电解水制氢系统,其特征在于,氧分离器底部出口与去离子器之间的第四管路上还设有循环泵和流量计。
7.如权利要求6所述的电解水制氢系统,其特征在于,包括第一单向阀、第二单向阀和第三单向阀;第一单向阀设置于电解槽的氢侧出口;第二单向阀设置于电解槽的氧侧出口;第三单向阀设置于氧分离器底部出口。
8.如权利要求7所述的电解水制氢系统,其特征在于,电解槽采用质子交换膜电解槽。
9.如权利要求8所述的电解水制氢系统,其特征在于,所述第一换热器为间壁式换热器;所述第二换热器为间壁式换热器。
10.如权利要求9所述的电解水制氢系统,其特征在于,包括控制器,控制器与电解槽、调节回路的调节阀、温度监测回路的温度计、水质监测回路的电导率测试仪、循环泵和流量计都连接;控制器获取温度计、流量计、电导率测试仪的监测信号,并控制电解槽、循环泵以及系统管路中阀门的运转。
CN202210358121.8A 2022-04-06 2022-04-06 一种具有余热利用的电解水制氢系统 Active CN114574877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210358121.8A CN114574877B (zh) 2022-04-06 2022-04-06 一种具有余热利用的电解水制氢系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210358121.8A CN114574877B (zh) 2022-04-06 2022-04-06 一种具有余热利用的电解水制氢系统

Publications (2)

Publication Number Publication Date
CN114574877A true CN114574877A (zh) 2022-06-03
CN114574877B CN114574877B (zh) 2023-05-05

Family

ID=81779276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210358121.8A Active CN114574877B (zh) 2022-04-06 2022-04-06 一种具有余热利用的电解水制氢系统

Country Status (1)

Country Link
CN (1) CN114574877B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921343A (zh) * 2021-02-20 2021-06-08 河北建投新能源有限公司 一种冷热氢联供系统及控制方法
CN115029718A (zh) * 2022-06-15 2022-09-09 阳光氢能科技有限公司 制氢系统及其控制方法
CN115287680A (zh) * 2022-09-21 2022-11-04 中能(江苏苏州)氢能源科技有限公司 一种利用超声波场的电解水制氢系统
CN115747853A (zh) * 2022-11-21 2023-03-07 时代氢源(深圳)科技有限公司 一种小型制氢设备的多重循环冷却系统
CN116497400A (zh) * 2023-06-30 2023-07-28 中石油深圳新能源研究院有限公司 干燥塔废热回收并用于电解液保温加热的系统和方法
CN116516378A (zh) * 2023-07-03 2023-08-01 氢联(江苏)高科技有限公司 一种pem电解制氢的热管理控制系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204455305U (zh) * 2015-02-15 2015-07-08 中国船舶重工集团公司第七一八研究所 一种含氚重水自循环电解系统
WO2019238218A1 (de) * 2018-06-12 2019-12-19 Hoeller Electrolyzer Gmbh Verfahren zum betreiben einer wasserelektrolysevorrichtung zur erzeugung von wasserstoff und sauerstoff
CN111336571A (zh) * 2020-04-07 2020-06-26 中国华能集团清洁能源技术研究院有限公司 一种电解水制氢余热利用系统及其工作方法
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN113388856A (zh) * 2021-06-21 2021-09-14 宝武清洁能源有限公司 基于ael和pem水电解的制氢系统及态势控制方法
CN113667997A (zh) * 2021-08-30 2021-11-19 广东能源集团科学技术研究院有限公司 一种高压质子交换膜电解水系统
CN215481305U (zh) * 2020-12-28 2022-01-11 上海航天智慧能源技术有限公司 一种pem电解水制氢余热利用装置
CN215628335U (zh) * 2021-05-31 2022-01-25 宝武清洁能源有限公司 一种混合型电解水制氢设备的集成及热管理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204455305U (zh) * 2015-02-15 2015-07-08 中国船舶重工集团公司第七一八研究所 一种含氚重水自循环电解系统
WO2019238218A1 (de) * 2018-06-12 2019-12-19 Hoeller Electrolyzer Gmbh Verfahren zum betreiben einer wasserelektrolysevorrichtung zur erzeugung von wasserstoff und sauerstoff
CN111336571A (zh) * 2020-04-07 2020-06-26 中国华能集团清洁能源技术研究院有限公司 一种电解水制氢余热利用系统及其工作方法
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN215481305U (zh) * 2020-12-28 2022-01-11 上海航天智慧能源技术有限公司 一种pem电解水制氢余热利用装置
CN215628335U (zh) * 2021-05-31 2022-01-25 宝武清洁能源有限公司 一种混合型电解水制氢设备的集成及热管理系统
CN113388856A (zh) * 2021-06-21 2021-09-14 宝武清洁能源有限公司 基于ael和pem水电解的制氢系统及态势控制方法
CN113667997A (zh) * 2021-08-30 2021-11-19 广东能源集团科学技术研究院有限公司 一种高压质子交换膜电解水系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921343A (zh) * 2021-02-20 2021-06-08 河北建投新能源有限公司 一种冷热氢联供系统及控制方法
CN112921343B (zh) * 2021-02-20 2022-11-15 河北建投新能源有限公司 一种冷热氢联供系统及控制方法
CN115029718A (zh) * 2022-06-15 2022-09-09 阳光氢能科技有限公司 制氢系统及其控制方法
CN115287680A (zh) * 2022-09-21 2022-11-04 中能(江苏苏州)氢能源科技有限公司 一种利用超声波场的电解水制氢系统
CN115747853A (zh) * 2022-11-21 2023-03-07 时代氢源(深圳)科技有限公司 一种小型制氢设备的多重循环冷却系统
CN116497400A (zh) * 2023-06-30 2023-07-28 中石油深圳新能源研究院有限公司 干燥塔废热回收并用于电解液保温加热的系统和方法
CN116497400B (zh) * 2023-06-30 2023-09-19 中石油深圳新能源研究院有限公司 干燥塔废热回收并用于电解液保温加热的系统和方法
CN116516378A (zh) * 2023-07-03 2023-08-01 氢联(江苏)高科技有限公司 一种pem电解制氢的热管理控制系统及其控制方法
CN116516378B (zh) * 2023-07-03 2023-12-22 氢联(江苏)高科技有限公司 一种pem电解制氢的热管理控制系统及其控制方法

Also Published As

Publication number Publication date
CN114574877B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN114574877B (zh) 一种具有余热利用的电解水制氢系统
CN113373458B (zh) 一种波动功率输入下的质子交换膜电解水制氢系统及方法
CN114592207B (zh) 一种适应快速宽功率波动的电解制氢系统及控制方法
CN211872097U (zh) 一种宽功率电解水制氢系统
CN111270256A (zh) 移动式水电解制氢加氢装置
CN113881951A (zh) 一种碱液分段循环电解系统及其工作方法
CN210796654U (zh) 一种用于纯水spe电解水器的供水-冷却-控温一体化系统
CN114583205A (zh) 热交换器
CN113699537A (zh) 差压式纯水电解制氢系统
CN115939469A (zh) 一种热电联产的一体式可再生燃料电池系统
CN216107238U (zh) 一种碱液分段循环电解系统
CN112376075B (zh) 一种电化学氟化外循环柔性电解系统
JP2020149838A (ja) 高圧の燃料電池排ガスをフィルタリングする窒素ガス生成方法及び装置
CN212025475U (zh) 移动式水电解制氢加氢装置
CN113611894A (zh) 一种氢燃料电池余热利用系统
CN112779549A (zh) 一种兆瓦级电站及其控制方法
CN117248225A (zh) 酸碱不平衡耦联糠醛氧化双极电解制氢的装置及方法
CN215365999U (zh) 一种兆瓦级电站
CN216120380U (zh) 一种氢燃料电池余热利用系统
CN214782178U (zh) 一种碱性制氢电解槽的碱液循环系统
CN114807959B (zh) 一种适用于宽功率波动的高效率制氢系统
CN2518840Y (zh) 一种复极式电解臭氧发生装置
CN220317976U (zh) 一种电解水制氢系统
CN218880084U (zh) 一种碱性电解水制氢热电耦合系统
CN218232600U (zh) 电解制氢的处理分离系统及电解制氢系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant