CN114570349A - 一种TiO2光催化剂的制备方法 - Google Patents

一种TiO2光催化剂的制备方法 Download PDF

Info

Publication number
CN114570349A
CN114570349A CN202210265337.XA CN202210265337A CN114570349A CN 114570349 A CN114570349 A CN 114570349A CN 202210265337 A CN202210265337 A CN 202210265337A CN 114570349 A CN114570349 A CN 114570349A
Authority
CN
China
Prior art keywords
tio
sample
photocatalyst
xftc
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210265337.XA
Other languages
English (en)
Inventor
李佳宁
王丽英
房均怡
刘译蔚
李佳木
刘岗
左智强
白计文
张利权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN202210265337.XA priority Critical patent/CN114570349A/zh
Publication of CN114570349A publication Critical patent/CN114570349A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种TiO2光催化剂的制备方法,取0.3g的TiO2和9ml无水乙醇混合,空气气氛下采用管式炉300℃加热碳化,得浅黄色物为TiO2光催化剂。与现有技术相比,本发明利用商用锐钛矿纳米TiO2为原料,乙醇为碳源,原料易得且成本低廉。通过简单的低温原位炭化(300℃)法合成了全可见光响应的碳修饰纳米TiO2光催化剂,合成工艺简单,并显著地缩减了TiO2带隙,具有推广应用的价值。

Description

一种TiO2光催化剂的制备方法
技术领域
本发明涉及化工技术领域,尤其涉及一种TiO2光催化剂的制备方法。
背景技术
TiO2有三种不同的晶体形式:锐钛矿,金红石和板钛矿,已发现在这三种晶型中,锐钛矿的TiO2通常具有较好的光催化特性。但锐钛矿TiO2作为光催化材料也有一定的局限性,由于其禁带宽度为3.2eV,只能对波长小于390nm的紫外光产生响应,因此只能利用辐射到地球表面太阳能的3-4%。为了改善这一不利因素,各国学者使用多种方法对TiO2表面进行改性,最主要方法的是利用金属元素和非金属元素掺杂,并将TiO2的光吸收范围扩展到可见光区域。自从上世纪八十年代以来,过渡金属(比如:Cr3+,Fe3+和Cu2+)掺杂已广泛应用于TiO2对污染物的光催化降解研究中。尽管金属元素掺杂可以有效增加TiO2光催化剂对可见光的吸收,但掺杂后的催化剂热不稳定性不够好,价格昂贵,并且还可能增加光生电子和空穴的复合几率。基于金属元素掺杂的缺点,非金属元素掺杂引起了科研工作者的高度重视。自从2001年,Asahi等人首次报道了氮元素掺杂TiO2的光催化实验进展后,C,B,S,P,I等元素也相继用作掺杂剂来改变TiO2的电子结构以获得较高的可见光光催化活性。
在过去几十年的光催化研究中,纳米TiO2作为一种光催化剂因其价格低廉、无毒、来源丰富、热稳定性和化学稳定性高以及在工业上的广泛实际应用,而得到了广泛的、深入的研究。然而,纳米TiO2的带隙相对较宽(≥3.2eV),这严重限制了其在可见光光催化领域的应用。此外,由于光生电子和空穴的快速复合,纳米TiO2显示出较低量子效率。为了将纳米TiO2的光吸收范围扩大到可见光区域,并抑制光生载流子的复合以提高量子效率,已经进行了许多研究工作来修饰纳米TiO2。在这些研究中,碳掺杂或碳改性作为一种重要的改性方法,近年来受到了广泛的关注。
发明内容
本发明的目的是要提供一种TiO2光催化剂的制备方法。
为达到上述目的,本发明是按照以下技术方案实施的:
本发明一种TiO2光催化剂的制备方法:取TiO2和无水乙醇混合,空气气氛下加热碳化,得浅黄色物为TiO2光催化剂。
优选的,所述TiO2和无水乙醇的用量比例为:TiO2用量0.3g,无水乙醇用量9ml。
优选的,加热碳化采用管式炉。
优选的,加热碳化温度为300℃。
本发明的有益效果是:
本发明是一种TiO2光催化剂的制备方法,与现有技术相比,本发明利用商用锐钛矿纳米TiO2为原料,乙醇为碳源,原料易得且成本低廉。通过简单的低温原位炭化(300℃)法合成了全可见光响应的碳修饰纳米TiO2光催化剂,合成工艺简单,并显著地缩减了TiO2带隙,具有推广应用的价值。
附图说明
图1是本发明的化合物XRD图谱
图2是本发明的化合物N2吸脱附曲线图谱
图3是本发明的化合物失重曲线
图4是本发明的化合物的ATR-FTIR图谱
图5是本发明的化合物的XPS图谱
图6是本发明的化合物的UV-Vis DRS图谱
图7是本发明的样品UV-Vis DRS光谱、价带XPS光谱、能带结构示意图
图7中:DRS光谱(a1)、(a2),价带XPS光谱(b1)、(b2),能带结构示意图(c1)、(c2)
图8是本发明样品在波长为360nm的TRPL衰减曲线
图9是本发明的样品在可见光下降解曲线图
图9中:样品在可见光下降解MO(a);样品XFTC-300原位循环降解过程中,每轮在黑暗环境中MO的吸附速率和在可见光照射下的光催化降解速率(b);样品XFTC-300在不同波长下降解MO(c);样品XFTC-300在不同抑制剂下降解MO(d);
图10是本发明样品原位的循环降解测试
图10中:(a)样品XFTC-300在400nm波长下降解MO的循环特性(b)样品XFTC-300在740nm波长下降解MO的循环特性(c)在不同乙醇用量下样品XFTC-300对MO的光催化降解。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明一种TiO2光催化剂的制备方法:
称取0.3g先丰纳米TiO2(商用)和9mL无水乙醇在坩埚中混合,置于管式炉中,300℃空气气氛下炭化2小时,所得样品标记为XFTC-300,作为参比样品,在相同条件下制备了不同乙醇含量0.5mL和15mL的样品,分别标记为0.5XFTC-300和15XFTC-300。同为参比样品,在不加无水乙醇的条件下,重复上述操作,所得样品标记为XFT-300(XF表示先丰,T表示氧化钛,C表示是被乙醇修饰)。
如图1所示,对样品XFTC-300、XFT-300进行XRD表征。其中样品XFT-300未用无水乙醇炭化,为参比样品。通过与标准谱图比对所有样品均为锐钛矿晶相,样品XFT-300和XFTC-300的特征峰均归属于锐钛矿TiO2(JCPDS No.99-0008),并未观察到金红石、板钛矿等其他晶相。经乙醇修饰后的样品XFTC-300的XRD衍射峰与XFT-300相比没有任何明显的变化,这可以说明炭化过程没有影响样品的晶相结构,表1列出了样品粒径的大小均分布在25nm左右。
表1样品的微晶尺寸、表面碳组分含量、和表面元素含量
Figure BDA0003551526240000041
a比表面积、孔容、孔径由BET测试结果得出b表面碳物种含量根据热失重数据计算得出c表面元素含量由XPS谱图计算得出
如图2所示,样品XFTC-300、XFT-300样品的N2吸脱-附等温线,计算得到的样品的BET表面积、平均孔容和孔径也一并标示在图中。样品的N2吸脱-附等温线可归属于Ⅳ(a)型,表明了介孔的存在,而平均孔径结果这证明了这一点。在XFT-300炭化修饰之后,样品XFTC-300的比表面积略有面增加,孔容孔径略有减小。这应该是因为碳组分对纳米TiO2的修饰,导致了孔内碳组分的沉积,从而引起孔径的减少和比表面积的增加。由于碳元素的掺杂对晶体表面结构产生了一定的影响。通常情况下,催化剂比表面积的增大,有利于其光催化活性的也相应提高。
如图3所示:为进一步确认样品表面碳物种的含量,对样品进行了热失重分析结果如图3所示。对于炭化修饰后的样品,随着乙醇用量的增加,样品的失重量逐渐降低。失重量的顺序是0.5XFTC-300>XFTC-300>1.5XFTC-300,其中样品XFTC-300的乙醇用量是9mL。对于样品XFT-300,其热失重主要来自表面羟基和吸附水分子,失重量为1.96%。对炭化修饰后的样品,500℃的热失重应该是表面羟基、吸附水分子和表面碳物种失重的总和。因此,从炭化后样品的500℃失重量中扣除1.96%,可以估算样品的表面碳物种含量,0.5XFTC-300、XFTC-300、15XFTC-300的碳含量依次为5.04%、4.54%以及1.9%。可以看到随着乙醇用量的增加,炭化修饰后样品表面碳物种的含量是逐渐降低的。应该是乙醇过量后,作为一种极性分子,液相中的大量乙醇会反过来通过氢键影响乙醇在TiO2表面的吸附,进而导致乙醇吸附量以及最终炭化后表面碳物种含量的降低。
如图4所示,对样品XFT-300、0.5XFTC-300、XFTC-300、15XFTC-300进行红外光谱(ATR-FTIR)表征。其中样品XFT-300未用无水乙醇炭化,为参比样品。图4(a)所示,对比样品XFT-300和XFTC-300的各红外特征峰的强度变化可以看到,经过乙醇炭化修饰后,纳米TiO2的表面物种发生了一系列变化。首先,位于3229cm-1的表面羟基的伸缩振动峰明显变宽,峰强下降。同时,位于1635cm-1处TiO2表面吸附水分子的弯曲振动峰的强度下降的更加明显。这表明纳米TiO2的表面羟基和吸附水分子,在炭化修饰后显著减少。其次,炭化修饰后,所得的XFTC-300样品出现了甲基反对称和对称伸缩振动峰和亚甲基的反对称伸缩振动峰,甲基的弯曲振动峰,羧基双配位结构的反对称和对称伸缩振动峰,羧酸二聚体的特征吸收峰,并且位于1045cm-1处的醇羟基伸缩振动峰增强。这些结果表明,炭化过程中乙醇在TiO2表面被氧化,炭化,生成了一系列碳物种,包括醇类、甲基、亚甲基、双配位羧基,羧酸二聚体,并且这些碳物种取代原来的表面羟基和吸附水分子,成为了纳米TiO2表面的优势物种。需要说明的是,羧基反对称和对称伸缩振动之间的频率差(Δ=νass)与其配位方式有关。如图2-8所示,通常单齿结合的频率差为350-500cm-1,而双齿螯合的频率差为60-100cm-1,而双齿桥接的频率差介于前两者之间。所以,在1570和1455cm-1处羧基的反对称和对称伸缩振动峰,差值Δ=125cm-1,因此羧基的配位模式为双配位桥接。
为了进一步研究TiO2表面的化学状态,对样品进行了XPS表征,结果如图5所示。根据XPS总谱计算出来的样品表面元素含量,列于表1中。
图5(a)所示为样品的XPS总谱,可以看到样品表面只存在Ti、O、C三种元素。图5(b)所示为样品C1sXPS高分辨谱图,可以看到乙醇修饰后样品的C1s特征峰的强度显著增加,这是由于各种碳物种的表面吸附所导致。通过表4-1的数据对比得知乙醇修饰后与修饰前的表面碳含量大概是2:1。图中三个C1s特征峰分别归属于样品表面的C-C键(284.8eV),C-O键(285.8和286.4eV)和C=O键(289.0eV)。
图5(c)是Ti 2p的XPS高分辨谱图,各特征峰分别归属于TiO2中的Ti 2p3/2(458.9和459.0eV),Ti 2p1/2(464.6和464.7eV)结合能区域。从图中可以看出,样品XFTC-300的特征峰均向高结合能方向移动了0.1eV。结合样品的制备过程及ATR-FTIR表征结果,炭化修饰得到的XFTC-300样品,其表面羟基和吸附水分子大量减少,而吸电子的羧基、羰基等表面碳物种大量增加并成为优势物种。
这些吸电子基团在微观上对TiO2表面的Ti原子周围的电子环境有重大影响,导致Ti阳离子周围的电子云密度不断减小,Ti 2p结合能不断升高。通常,局部电子密度的增加会导致化学位移向较低的结合能移动,反之亦然。同样,这一结合能升高的趋势,在图5(d)所示的O1s高分辨谱图中也可观察到。图中各特征峰分别归属于TiO2中的晶格氧原子(530.2eV),表面羟基C-OH键(530.8和531.8eV)和表面羧基等碳氧类物种(532.2eV)。
样品的UV-Vis DRS光谱如图6所示,从图中可以看出,样品XFT-300紫外的最大吸收波长低于400nm,表明该样品只对紫外光响应,而对可见光不能响应,但经过乙醇修饰后的样品XFTC-300最大吸收波长超过了400nm,并且发生了明显的红移,说明该样品对光的吸收范围已经拓展到可见光区域,表明该样品对可见光的吸收性能有所增强。此外,XFTC-300样品在可见光区产生了显著的“尾状”吸收特征,延伸至超过800nm,表明炭化修饰后样品对可见光的吸收是覆盖全可见光谱的。显然,这些“尾状”吸收特征来自于表面多类型碳物种的修饰,因为未经修饰的XFT-300完全不存在这样的吸收特征。文献研究表明,炭化的表面碳物种可以充当光敏化剂,诱导TiO2产生可见光活性。因此,XFTC-300样品还可以通过敏化机理进行可见光光催化反应。
通过UV-Vis DRS和价带XPS(VB-XPS)表征,绘制了所制备样品的能带结构图,如图7所示。根据Wojciech Macyk等报道的方法,UV-Vis DRS光谱数据被转换成Tauc图谱以确定样品带隙,其结果如图7(a1)-(a2)所示。从图中可以看出,炭化修饰前样品XFT-300的带隙是3.19eV,非常接近纯锐钛矿TiO2的带隙(3.20eV),该样品主要是能响应紫外光区域,而在可见光区域并没有显示出明显吸收特性。经过炭化修饰,样品XFTC-300的带隙为2.87eV,对可见光显示出明显的吸收特性,表明炭化形成多种表面碳物种的修饰显著缩减了TiO2的带隙。通过VB-XPS测量了所制备样品的价带总态密度(DOS),如图7(b1)-(b2)所示。样品XFT-300、XFTC-300价带边位置分别位于2.77eV和2.87eV,即炭化修饰后样品的价带边位置向高结合能方向移动,这与前述的Ti 2p和O1s特征峰的移动相似,主要是由于样品表面形成的大量吸电子的羧基和羰基等导致的。
根据UV-Vis DRS和价带XPS(VB-XPS)表征结果,绘制了所制备样品的能带结构图,如图7(c1)-(c2)所示。由UV-Vis DRS光谱可知,样品XFT-300、XFTC-300的禁带宽度分别为3.19eV和2.87eV;由价带谱得知,两个样品的价带边分别为2.77eV和2.87eV;所以,与它们相对应的导带(CB)底分别为-0.42eV和0eV。明显地,经过炭化修饰后,样品导带底边和价带顶同时下降,且导带底下降的更多,导致了禁带宽度的显著减小,这使得炭化修饰的纳米TiO2样品的光响应范围大幅扩展;同时,较低的价带边位置也可以有效地增强光生空穴的氧化能力和光催化降解效率。
表2样品荧光光谱衰减参数
Figure BDA0003551526240000081
为了研究光生载流子的复合情况,对所制备的样品进行了时间分辨荧光光谱(TRPL)表征,结果如图8所示。所有样品的荧光强度呈指数衰减,衰减曲线可以通过使用三指数衰减动力学来拟合。拟合结果如表2所示。通常辐射寿命是由三个不同的过程组成的:非辐射过程(τ1),辐射过程(τ2)和能量传递过程(τ3)。其中,辐射过程(τ2)时间的长短与光生载流子的复合直接相关,可以表征载流子寿命。
从拟合的结果可知,样品XFTC-300的τ2大于样品XFT-300,也就是说炭化所生成的多种碳物种的表面修饰,可有效抑制光生电子和空穴的复合,从而有利于光催化活性的提升。
所有样品均在室温条件下,以MO为模拟污染物,评价了样品的可见光光催化活性。图9(a)显示了催化剂在暗环境静态吸附平衡后以及光催化过程中,MO浓度随时间变化的规律。在静态吸附过程中,XFTC-300样品具有比XFT-300样品更为显著的吸附性,接近80%的MO被吸附,而XFT-300对MO的吸附只有约10%,表明多种表面碳物种显著促进了MO的表面吸附,这对后续的光催化降解过程是有利的。在随后的光催化降解过程中,XFTC-300样品表现良好的光催化降解活性,接近100%的MO被光催化降解;而XFT-300样品的光催化降解率仅为30%左右。较高的光催化活性应该是多种因素协同作用的结果。首先,吸电子的羧酸表面羧基、羰基等碳物种,使TiO2形成较低的VB边缘和较窄的带隙,从而增强了光生空穴的氧化能力并扩大了光响应范围。其次,正如荧光光谱所表征的那样,碳物种的表面修饰有效地促进光生电子和空穴的分离,更有利于进一步提高催化剂的光催化活性。
考虑到XFTC-300样品较高的吸附性,是否是吸附而非光催化降解导致MO浓度的下降?为了弄清这个问题,对XFTC-300样品进行了的“原位”循环降解测试。这种循环降解方式不分离催化剂,在第一轮降解完成后,直接向体系内补加MO进行后续降解,循环进行直至五轮结束,降解结果如图9(b)所示。由图可见,一方面XFTC-300样品对MO的吸附从第二轮降解开始大幅下降,并在后续几轮降解中持续降低,最终达到10%左右;另一方面,XFTC-300样品对MO的最终降解率则一直保持在较高水平,第五轮降解仍能达到80%以上。这些结果表明,XFTC-300样品对MO的吸附在第一轮基本达到了饱和,在后续几轮降解中吸附对MO浓度的下降所起的作用比较微弱,主要是光催化降解过程导致了MO浓度的下降。也就是说,MO浓度的降低主要是XFTC-300样品对其光催化降解导致的,而非吸附过程导致的。
图9(c)所示为样品XFTC-300在不同波长下的MO光催化降解率及与之同波长范围的UV-Vis DRS谱图。从图中可以看出,在光照波长400nm到740nm的范围内,样品XFTC-300均表现出良好的光催化活性,尤其是在740nm的光照下,降解率仍能达到80%以上,这表明XFTC-300样品是全可见光谱响应的光催化剂。此外,XFTC-300样品的光催化降解率与UV-Vis DRS谱图曲线的变化趋势基本一致,表明样品吸收的光完全被用于光催化过程。
样品XFTC-300的带隙为2.87eV,经过计算只有入射光波长小于430nm的光子才能激发该样品,产生光催化活性,那为什么样品XFTC-300却具有全可见光谱响应的光催化活性呢?这应该归因于样品表面炭化的多种碳物种引入的光敏化作用,正如样品的UV-VisDRS光谱中“尾状”吸收特征所表达的那样。在波长大于430nm的光线照射下,样品表面的炭化的碳物种被激发,并向TiO2的导带注入电子,引发后续的光催化降解过程,Lettmann等曾对此进行过详细的研究。
为了研究样品XFTC-300降解MO的光催化机理,进行了自由基捕获实验,使用三乙醇胺(TEOA),甲醇(MeOH)和对苯醌(PBQ)作为抑制剂来鉴定主要的活性物种,结果如图9(d)所示。反应体系中加入MeOH(8mM)并没有导致MO降解率显着降低,这表明羟基自由基并不是引发光催化反应主要的活性物质。同时,体系中少量加入PBQ(0.18mM)和TEOA(3.79mM)导致样品的光催化活性显着降低,这表明光生空穴和超氧自由基是光催化过程中的主要活性物种。
为了进一步确认样品XFTC-300的全可见光谱响应性能和循环降解性能,分别在400和740nm下对样品进行了原位的循环降解测试,结果图10(a)和(b)所示。当入射波长为400nm时,样品XFTC-300五轮循环降解率均在97%以上,而当入射波长为740nm时,第一轮降解活性可以达到79%,后续降解中活性逐渐下降,五轮过后的循环降解率最终稳定在25%左右。这个结果表明,XFTC-300样品确实是具有全可见光谱响应的光催化降解活性,并且具有较好的循环降解稳定性。
图10(c)所示为乙醇的用量分别为0.5、9、15ml,300℃下炭化修饰样品降解MO的曲线。由图可见,乙醇用量为0.5mL时,样品的活性相对较低,这可能是因为表面碳含量较多,对MO的吸附和降解造成了一定阻碍。提升乙醇用量后,表面碳含量降低,MO均达到了较高的降解率。
本方法主要工作是利用市售的商品锐钛矿纳米TiO2为原料,乙醇作为碳源,通过简单的低温炭化(300℃)法合成了全可见光响应的碳修饰纳米TiO2光催化剂。研究结果表明:
1、源于乙醇的多种碳物种对纳米TiO2的表面修饰显著缩减了TiO2表面的带隙。碳物种含有的吸电子的羧基、羰基等诱导TiO2的价带降低,增强了光生空穴的氧化能力。
2、炭化生成的多种碳物种通过光敏化作用将乙醇修饰后催化剂的光响应范围拓展至整个可见光区域。碳物种的修饰可以有效促进光生载流子的分离。以上这些因素的协同,使得XFTC-300样品显示出较高的、全可见光谱响应的、稳定的光催化降解性能。
3、与使用复杂的修饰方法获得全可见光谱响应的TiO2光催化相比,本研究提供了一种以廉价的乙醇为修饰剂,工艺简单,低成本的制备全光谱响应碳修饰纳米TiO2光催化剂的方法。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (4)

1.一种TiO2光催化剂的制备方法,其特征在于:取TiO2和无水乙醇混合,空气气氛下加热碳化,得浅黄色物为TiO2光催化剂。
2.根据权利要求1所述的TiO2光催化剂的制备方法,其特征在于:所述TiO2和无水乙醇的用量比例为:TiO2用量0.3g,无水乙醇用量9ml。
3.根据权利要求1所述的TiO2光催化剂的制备方法,其特征在于:加热碳化采用管式炉。
4.根据权利要求1或3所述的TiO2光催化剂的制备方法,其特征在于:加热碳化温度为300℃。
CN202210265337.XA 2022-03-17 2022-03-17 一种TiO2光催化剂的制备方法 Pending CN114570349A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210265337.XA CN114570349A (zh) 2022-03-17 2022-03-17 一种TiO2光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210265337.XA CN114570349A (zh) 2022-03-17 2022-03-17 一种TiO2光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN114570349A true CN114570349A (zh) 2022-06-03

Family

ID=81779717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210265337.XA Pending CN114570349A (zh) 2022-03-17 2022-03-17 一种TiO2光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114570349A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292177A1 (en) * 2011-05-19 2012-11-22 Nanoptek Corporation Visible light titania photocatalyst, method for making same, and processes for use thereof
CN103028386A (zh) * 2012-12-21 2013-04-10 上海纳米技术及应用国家工程研究中心有限公司 具有可见光活性的Ti3+与碳共掺杂TiO2光催化剂及其制备方法
CN106673118A (zh) * 2016-12-07 2017-05-17 浙江工业大学 一种锐钛矿二氧化钛/碳复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292177A1 (en) * 2011-05-19 2012-11-22 Nanoptek Corporation Visible light titania photocatalyst, method for making same, and processes for use thereof
CN103028386A (zh) * 2012-12-21 2013-04-10 上海纳米技术及应用国家工程研究中心有限公司 具有可见光活性的Ti3+与碳共掺杂TiO2光催化剂及其制备方法
CN106673118A (zh) * 2016-12-07 2017-05-17 浙江工业大学 一种锐钛矿二氧化钛/碳复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANING LI,ET AL: "Facile synthesis of multi-type carbon doped and modified nano-TiO2 for enhanced visible-light photocatalysis", 《RSC ADVANCES》 *
JIANING LI,ET AL: "In-situ formation of carboxylate species on TiO2 nanosheets for enhanced visible-light photocatalytic performance", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Similar Documents

Publication Publication Date Title
Jin et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst
Kumar et al. C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges
Wang et al. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B
Jing et al. Dynamics of photogenerated charges in the phosphate modified TiO 2 and the enhanced activity for photoelectrochemical water splitting
Zhang et al. Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping
Saif et al. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications
Hou et al. Synergistic effect of {101} crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO2
Hu et al. Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification
Chen et al. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies
KR101359443B1 (ko) 광촉매 재료 및 그 제조방법
Li et al. Engineering of Gd/Er/Lu-triple-doped Bi2MoO6 to synergistically boost the photocatalytic performance in three different aspects: Oxidizability, light absorption and charge separation
Shen et al. Enhancing photocatalytic activity of NO removal through an in situ control of oxygen vacancies in growth of TiO2
Feng et al. Plasmonic metallic Bi deposited Bi12SiO20 crystals with rich oxygen vacancies for enhanced photocatalytic degradation of RhB and 2, 4-DCP
CN109250755B (zh) 一种含有铋缺陷的不同晶相的氧化铋光催化剂及其制备方法
Li et al. Construction of adjustable dominant {314} facet of Bi5O7I and facet-oxygen vacancy coupling dependent adsorption and photocatalytic activity
Li et al. A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation
Zheng et al. Preparation of titanium dioxide/tungsten disulfide composite photocatalysts with enhanced photocatalytic activity under visible light
Zhou et al. Broad spectrum driven Y doped BiO2− x for enhanced degradation of tetracycline: Synergy between singlet oxygen and free radicals
Wang et al. Carbon coated SnO 2: synthesis, characterization, and photocatalytic performance
KR101798129B1 (ko) 금속산화물의 환원방법 및 이를 이용한 환원된 타이타니아의 제조방법
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
Liang et al. Photocatalytic degradation of Rhodamine B by CdS-loaded K4Nb6O17 nanocomposites prepared via reverse microemulsion
Li et al. First-principles energy band calculation and one step synthesis of N-doped BiPO4
CN104226340A (zh) 可见光纳米复合光催化剂AgCl-SnO2的制备方法
Li et al. In-situ formation of carboxylate species on TiO2 nanosheets for enhanced visible-light photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220603

RJ01 Rejection of invention patent application after publication