CN114558150A - 一种用于pH可视化的磁共振成像纳米探针的制备方法 - Google Patents

一种用于pH可视化的磁共振成像纳米探针的制备方法 Download PDF

Info

Publication number
CN114558150A
CN114558150A CN202210210267.8A CN202210210267A CN114558150A CN 114558150 A CN114558150 A CN 114558150A CN 202210210267 A CN202210210267 A CN 202210210267A CN 114558150 A CN114558150 A CN 114558150A
Authority
CN
China
Prior art keywords
nanoparticles
bsa
superparamagnetic
preparation
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210210267.8A
Other languages
English (en)
Other versions
CN114558150B (zh
Inventor
张霓
乔园园
张沛森
侯毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202210210267.8A priority Critical patent/CN114558150B/zh
Publication of CN114558150A publication Critical patent/CN114558150A/zh
Application granted granted Critical
Publication of CN114558150B publication Critical patent/CN114558150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • A61K49/143Peptides, e.g. proteins the protein being an albumin, e.g. HSA, BSA, ovalbumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
    • A61K49/1869Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid coated or functionalised with a protein being an albumin, e.g. HSA, BSA, ovalbumin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开一种用于pH可视化的磁共振成像纳米探针的制备方法,其特征在于包括以下步骤:步骤1:超顺磁性纳米颗粒的制备;步骤2:将蛋白溶解在水中,然后按一定比例加入超顺磁性纳米颗粒水溶液,形成超顺磁性纳米颗粒@蛋白结构纳米颗粒;步骤3:将多酚‑铁溶液与步骤2制备的纳米颗粒混合在一起,充分溶解混合均匀,获得超顺磁性纳米颗粒@蛋白@多酚‑铁纳米颗粒;本发明以纳米颗粒为核心构建响应型分子影像探针在有望实现对病灶部位高灵敏精准成像。其中以超顺磁性磁性纳米颗粒(T2造影效果)为核心构建的MRI造影剂,在表面修饰铁离子络合物后,到达酸性微环境时通过pH响应释放铁离子(T1造影效果),从而可以实现pH响应激活的T1/T2磁共振比率成像。

Description

一种用于pH可视化的磁共振成像纳米探针的制备方法
技术领域
本发明属于磁共振成像探针的领域,特别涉及一种用于pH可视化的磁共振成像纳米探针的制备方法。
背景技术
过去几年,越来越多的研究证明,与正常细胞相比,病灶部位由于肿瘤细胞或炎症状态的存在导致周围组织细胞的供氧量不足,只能利用无氧呼吸的糖酵解产生能量,因此产生的大量乳酸、氢离子以及二氧化碳堆积,导致病灶部位的微环境酸化,pH值在6.5-6.8之间,这不仅对炎症有促进作用,同样提高肿瘤转移的风险。而近几年人们认为这种酸性微环境可以作为病灶部位的显影和治疗的有效靶标,与传统的受体-配体靶标方式相比,这种方式的优势非常明显,由于大多数病灶部位的微环境都呈酸性,因此利用病灶部位的pH异常状态,可以作为疾病诊断的重要指标之一。
磁共振成像(MRI)相比于其他的成像技术,由于成像方式多样,成像原理更加复杂,使其得到的成像信息更加丰富,空间分辨率更高,另外由于磁共振成像是磁场成像,无放射性,对人体无害,同时磁共振成像摆脱了光学成像穿透性不强的缺点,不受组织穿透能力的限制,可通过不同序列(T1、T2)在病灶部位进行成像,更加适用于临床疾病的诊断,广泛用于肿瘤的检查。
人体内病灶部位由于细胞代谢改变引起pH低的特点,导致免疫抑制、炎症等,加速了疾病的进展,通过pH值分布的影像检测,可以对病灶部位的准确定位。
现有技术中,缺少一种磁共振成像纳米探针实现成像的同时还可以实现病灶微环境pH在体可视化。
发明内容
为解决上述技术问题,本发明提供一种用于pH可视化的磁共振成像纳米探针的制备方法,以纳米颗粒为核心构建响应型分子影像探针在有望实现对病灶部位高灵敏精准成像。其中以超顺磁性磁性纳米颗粒(T2造影效果)为核心构建的MRI造影剂,在表面修饰铁离子络合物后,到达酸性微环境时通过pH响应释放铁离子(T1造影效果),从而可以实现pH响应激活的T1/T2磁共振比率成像。
本发明提供的技术方案如下:
一种用于pH可视化的磁共振成像纳米探针的制备方法,包括以下步骤:
步骤1:超顺磁性纳米颗粒的制备
步骤2:将蛋白溶解在水中,然后按一定比例加入超顺磁性纳米颗粒水溶液,形成超顺磁性纳米颗粒@蛋白结构纳米颗粒;
步骤3:将多酚-铁溶液与步骤2制备的纳米颗粒混合在一起,充分溶解混合均匀,获得超顺磁性纳米颗粒@蛋白@多酚-铁纳米颗粒;
所述用于pH可视化的磁共振成像纳米探针的制备方法,包括以下步骤:
步骤1)超顺磁性纳米颗粒的制备
采用改进的水热法制备油酸铁:在搅拌下将4.8gNaOH、60mL水、80mL乙醇和120mL油酸混合以形成均相溶液,然后在磁搅拌条件下加入10.8gFeCl3·6H2O和140mL环己烷,将混合物在70℃下搅拌约4小时,并冷却至室温,将所得混合物用水洗涤去除其他残余物,通过旋蒸获得油酸铁;
疏水性Fe3O4纳米颗粒的合成:
将3.6g上述步骤制备的油酸铁和1.13g油酸溶解在25mL的1-十八烯中,将所得溶液以3.3℃/min的速率加热至310℃,然后在氮气保护下保持310℃30min,通过将反应混合物冷却至室温终止制备,用乙醇沉淀得到疏水性Fe3O4纳米颗粒,通过磁选收集,用乙醇洗涤,最后再分散在环己烷中,备用;
亲水性Fe3O4纳米颗粒水溶液的制备:
将上述制备的疏水性Fe3O4纳米颗粒环己烷分散液测量氧化铁浓度(邻菲罗啉法),取含有10mg的Fe3O4纳米颗粒的环己烷分散液,用无水乙醇沉淀、离心,除去上清液后,所得沉淀用1ml环己烷溶解,再加入10mL环己烷、7mL叔丁醇、2mL水和1mL质量百分比为5wt%K2CO3的混合物在室温下搅拌20min,然后逐滴添加4mL Lemieuxvon Rudloff试剂,将所得混合物在40℃下搅拌4小时,再通过离心分离亲水性Fe3O4纳米颗粒,并分别用去离子水、丙酮和乙醇洗涤,将产物分散在50mL pH值为4-5的盐酸中,并将混合物搅拌30min,再将亲水性Fe3O4纳米颗粒通过使用30kDa MWCO超滤管的水超滤2个循环进行纯化,并分散在水中备用,测量所得溶液的氧化铁浓度;
其中,所述Lemieuxvon Rudloff试剂由5.7mM高锰酸钾和0.105M NaIO4水溶液。
步骤2)Fe3O4@BSA纳米颗粒的制备
将BSA溶解于经Milli-Q处理的水中得到BSA水溶液,将制备好的亲水性Fe3O4纳米颗粒水溶液添加到BSA水溶液中,混合后最终浓度为:亲水性Fe3O4纳米颗粒0.2mg/ml,BSA10mg/ml,以形成Fe3O4@BSA纳米颗粒,其中,Fe3O4与BSA的物质的量的比例为1:10,然后使用100kDa MWCO超滤管通过超滤去除游离BSA,得到Fe3O4@BSA纳米颗粒水溶液;
步骤3:
Figure BDA0003530712310000031
纳米颗粒的制备
分别将TA水溶液和FeCl3溶液加入到Fe3O4@BSA纳米颗粒水溶液中,使得混合后最终TA浓度为0.5mg/ml,Fe3+浓度为0.08mg/ml,Fe3O4@BSA、TA、Fe3+的物质的量的比例是1:40:200,然后使用100kDa MWCO超滤管通过超滤去除游离TA-FeIII络合物,超滤2个循环进行纯化,最终形成
Figure BDA0003530712310000032
纳米颗粒溶液。
本发明浓度单位mM是mmol/L的简写,M是mol/L的简写。
本发明所述TA为单宁酸。
本发明以超顺磁性纳米颗粒为核心,由于纳米颗粒带负电荷,在缓冲液中不稳定,所以在纳米颗粒表面通过静电作用吸附一层蛋白作为“蛋白冠”,在蛋白外通过配位结合多酚-铁络合物。当纳米颗粒进入血液中后,由于铁离子的存在,纳米颗粒会自发吸附血浆中的转铁蛋白,由于病灶部位的细胞膜会过表达转铁蛋白受体,因而纳米探针会靶向病灶部位。
当探针进入病灶部位后,在核磁共振成像仪的磁场中,超顺磁性磁性纳米颗粒具有(T2造影效果),由于病灶部位微环境的pH低于正常组织,酸性条件会T1造影效果。由于病灶组织内部pH分布不均匀,所以铁离子释放率不同,T1信号值则不同,通过T1/T2的比率,可以实现对病灶组织的可视化成像。
相较于现有技术,本发明提供一种用于pH可视化的磁共振成像纳米探针的制备方法,通过步骤1:超顺磁性纳米颗粒的制备;步骤2:将蛋白溶解在水中,然后按一定比例加入超顺磁性纳米颗粒水溶液超顺磁性纳米颗粒@蛋白结构纳米颗粒;步骤3:将多酚-铁溶液与步骤2制备的纳米颗粒混合在一起,充分溶解混合均匀,获得超顺磁性纳米颗粒@蛋白@多酚-铁纳米颗粒;制备得到的纳米探针,用于磁共振成像,通过计量病灶部位微环境pH的T1/T2磁共振比率可以实现病灶微环境pH在体可视化。
本发明提供的纳米探针,以具有T2造影效果的高品质超顺磁性纳米颗粒为核心,在纳米颗粒表面负载具有酸性微环境中响应释放能力的多酚-顺磁性金属离子配合物,铁离子具有T1造影效果,在pH值下顺磁性金属离子的释放率不同,因而在不同pH值的微环境下T1造影效果不同,从而实现对pH值分布的影像检测,以及对病灶部位的准确定位。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为图油酸铁(A)、Fe3O4@BSA(B)、
Figure BDA0003530712310000041
(C)透射电镜(TEM)图;
图2为Fe3+在不同pH下的释放动力学曲线;
图3为不同pH值下的纳米探针弛豫率随Fe3+释放变化线性回归拟合;
图4为T1及T2 MRI加权像及T1/T2比率计量肿瘤区域pH成像图。
具体实施方式
为了使本领域的技术人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
用料说明
六水三氯化铁(FeCl3·6H2O,99.0%)购自山东西亚化工有限公司(中国山东)。
牛白蛋白购自北京阳光科技有限公司(中国北京)。
单宁酸(TA,≥99.7%购自国药集团化学试剂有限公司(中国上海)。
氢氧化钠(NaOH,≥99.7%购自富晨化学试剂有限公司(中国天津)。
油酸(技术级,90%)购自西格玛-奥尔德里奇有限公司(中国上海)。
1-十八烯(技术级,90%)购自西格玛-奥尔德里奇有限公司(中国上海)。
环己烷(≥99.7%)购自达茂化学试剂有限公司(中国天津)。
实施例1
用于pH可视化的磁共振成像纳米探针的制备方法,包括以下步骤:
步骤1)超顺磁性纳米颗粒的制备
采用改进的水热法制备油酸铁:在搅拌下将4.8gNaOH、60mL水、80mL乙醇和120mL油酸混合以形成均相溶液,然后在磁搅拌条件下加入10.8gFeCl3·6H2O和140mL环己烷,将混合物在70℃下搅拌约4小时,并冷却至室温,将所得混合物用水洗涤去除其他残余物,通过旋蒸获得油酸铁;
疏水性Fe3O4纳米颗粒的合成:
将3.6g上述步骤制备的油酸铁和1.13g油酸溶解在25mL的1-十八烯中,将所得溶液以3.3℃/min的速率加热至310℃,然后在氮气保护下保持310℃30min,通过将反应混合物冷却至室温终止制备,用乙醇沉淀得到疏水性Fe3O4纳米颗粒,通过磁选收集,用乙醇洗涤,最后再分散在环己烷中,备用;
亲水性Fe3O4纳米颗粒水溶液的制备:
将上述制备的疏水性Fe3O4纳米颗粒环己烷分散液测量氧化铁浓度(邻菲罗啉法),取含有10mg的Fe3O4纳米颗粒的环己烷分散液,用无水乙醇沉淀、离心,除去上清液后,所得沉淀用1ml环己烷溶解,再加入10mL环己烷、7mL叔丁醇、2mL水和1mL质量百分比为5wt%K2CO3的混合物在室温下搅拌20min,然后逐滴添加4mL Lemieuxvon Rudloff试剂,将所得混合物在40℃下搅拌4小时,再通过离心分离亲水性Fe3O4纳米颗粒,并分别用去离子水、丙酮和乙醇洗涤,将产物分散在50mL pH值为4-5的盐酸中,并将混合物搅拌30min,再将亲水性Fe3O4纳米颗粒通过使用30kDa MWCO超滤管的水超滤2个循环进行纯化,并分散在水中备用,测量所得溶液的氧化铁浓度;
其中,所述Lemieuxvon Rudloff试剂由5.7mM高锰酸钾和0.105M NaIO4水溶液。
步骤2)Fe3O4@BSA纳米颗粒的制备
将BSA溶解于经Milli-Q处理的水中得到BSA水溶液,将制备好的亲水性Fe3O4纳米颗粒水溶液添加到BSA水溶液中,混合后最终浓度为:亲水性Fe3O4纳米颗粒0.2mg/ml,BSA10mg/ml,以形成Fe3O4@BSA纳米颗粒,其中,Fe3O4与BSA的物质的量的比例为1:10,然后使用100kDa MWCO超滤管通过超滤去除游离BSA,得到Fe3O4@BSA纳米颗粒水溶液;
步骤3:
Figure BDA0003530712310000061
纳米颗粒的制备
分别将TA水溶液和FeCl3溶液加入到Fe3O4@BSA纳米颗粒水溶液中,使得混合后最终TA浓度为0.5mg/ml,Fe3+浓度为0.08mg/ml,Fe3O4@BSA、TA、Fe3+的物质的量的比例是1:40:200,然后使用100kDa MWCO超滤管通过超滤去除游离TA-FeIII络合物,超滤2个循环进行纯化,最终形成
Figure BDA0003530712310000062
纳米颗粒溶液。
实验例
将实施例1制备的大分子造影剂
Figure BDA0003530712310000063
纳米颗粒溶液分别进行以下性能分析。
1、纳米探针的透射电镜(TEM)电镜图
利用透射电子显微镜(TEM,JEM-2100)监测了
Figure BDA0003530712310000064
纳米粒子在合成过程中的形态变化,分别检索了磁性氧化铁(A)、Fe3O4@BSA(B)、
Figure BDA0003530712310000065
(C)。如图1所示,BSA电晕形成后,纳米颗粒的形态没有显著变化,这意味着蛋白质电晕不会破坏Fe3O4纳米颗粒的结构。相反,在颗粒表面络合TA-FeIII后,可以在Fe3O4表面观察到明显的涂层,这清楚地证实了BSA蛋白冠及TA-FeIII层的形成。
2、Fe3+在不同pH值下释放动力学曲线
Figure BDA0003530712310000071
纳米颗粒放在不同pH的Tris缓冲液中孵育两小时后超滤,通过普鲁士蓝法测定滤液中的铁浓度,既为释放的铁离子浓度。如图2所示,在中性条件下(pH=7.4)纳米探针非常稳定,而在病灶部位微环境pH值(即pH=6.5)下,Fe3+在最初15分钟内释放量占总量的8.1%,随后不再释放。相对于溶酶体pH值(pH 4.5),在初始阶段可以观察到Fe3+的快速释放过程,其中约占总铁含量的18.6%的铁离子在最初的30分钟内迅速释放,之后释放速率减慢,两小时后该值达到约19.6%。这些结果表明,在酸性条件下,酚羟基被质子化,导致TA与Fe3+的结合亲和力显著降低,
Figure BDA0003530712310000072
纳米探针可以在酸性环境下的病变区域快速触发,但在中性pH的正常组织中保持稳定,这也突出了纳米探针的响应灵敏度和生物安全性。
3、在不同pH值下释放的Fe3+体外弛豫率测量
在7.0T磁共振扫描仪上评估
Figure BDA0003530712310000073
纳米探针,通过对实验数据进行线性回归拟合得到图3,在中性条件下(pH值7.4)纵向弛豫率(r1)为0.79mM-1s-1,当pH值降低到4.5时,弛豫率达到1.14mM-1s-1,显著增加了44.3%。而在pH变化前后横向弛豫率(r2)几乎保持不变(~150mM-1s-1)。
Figure BDA0003530712310000074
纳米探针的磁性可以随pH依赖性Fe 3+释放行为而变化,这使纳米探针具有可激活的磁共振成像(MRI)性能。因此,由于顺磁性Fe 3+释放导致pH值降低而激活的T1 MRI信号使探针仅在病灶部位特异性激活增强T1加权MRI成像,这有助于提高对病灶部位诊断的灵敏度。
4、磁共振MRI成像分析
根据pH响应性Fe3+释放和可激活性MRI的体外表现,用
Figure BDA0003530712310000075
纳米探针检测植入4T1皮下肿瘤的BALB/c小鼠的肿瘤。根据图4所示的T1/T2加权成像结果,静脉注射
Figure BDA0003530712310000076
7h后,肿瘤区域信号出现明显变化。这种变化表明,通过尾静脉递送的
Figure BDA0003530712310000077
纳米探针在体内具有显著的肿瘤靶向能力。由于MRET效应,T1对比度增强不受纳米探针累积的影响,而仅与Fe3+的局部释放有关,在pH值较低的肿瘤区域,Fe3+释放较多,T1信号值较强,而T2信号与探针浓度呈正相关,通过对T1、T2信号的比率计量,可以计算出肿瘤区域的pH值。同时由于高T1信号区代表Fe3+离子大量释放的位置,可以看出Fe3+的释放在空间上是相当不均匀的,也就是说pH在肿瘤内分布不均,这也是众所周知的肿瘤特征,因此本发明的
Figure BDA0003530712310000081
用于磁共振成像,可以实现pH在体可视化。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (2)

1.一种用于pH可视化的磁共振成像纳米探针的制备方法,其特征在于包括以下步骤:
步骤1:超顺磁性纳米颗粒的制备
步骤2:将蛋白溶解在水中,然后按一定比例加入超顺磁性纳米颗粒水溶液,形成超顺磁性纳米颗粒@蛋白结构纳米颗粒;
步骤3:将多酚-铁溶液与步骤2制备的纳米颗粒混合在一起,充分溶解混合均匀,获得超顺磁性纳米颗粒@蛋白@多酚-铁纳米颗粒。
2.如权利要求1所述的用于pH可视化的磁共振成像纳米探针的制备方法,其特征在于包括以下步骤:
步骤1)超顺磁性纳米颗粒的制备
采用改进的水热法制备油酸铁:在搅拌下将4.8gNaOH、60mL水、80mL乙醇和120mL油酸混合以形成均相溶液,然后在磁搅拌条件下加入10.8gFeCl3·6H2O和140mL环己烷,将混合物在70℃下搅拌约4小时,并冷却至室温,将所得混合物用水洗涤去除其他残余物,通过旋蒸获得油酸铁;
疏水性Fe3O4纳米颗粒的合成:
将3.6g上述步骤制备的油酸铁和1.13g油酸溶解在25mL的1-十八烯中,将所得溶液以3.3℃/min的速率加热至310℃,然后在氮气保护下保持310℃30min,通过将反应混合物冷却至室温终止制备,用乙醇沉淀得到疏水性Fe3O4纳米颗粒,通过磁选收集,用乙醇洗涤,最后再分散在环己烷中,备用;
亲水性Fe3O4纳米颗粒水溶液的制备:
将上述制备的疏水性Fe3O4纳米颗粒环己烷分散液测量氧化铁浓度,取含有10mg的Fe3O4纳米颗粒的环己烷分散液,用无水乙醇沉淀、离心,除去上清液后,所得沉淀用1ml环己烷溶解,再加入10mL环己烷、7mL叔丁醇、2mL水和1mL质量百分比为5wt%K2CO3的混合物在室温下搅拌20min,然后逐滴添加4mL Lemieuxvon Rudloff试剂,将所得混合物在40℃下搅拌4小时,再通过离心分离亲水性Fe3O4纳米颗粒,并分别用去离子水、丙酮和乙醇洗涤,将产物分散在50mL pH值为4-5的盐酸中,并将混合物搅拌30min,再将亲水性Fe3O4纳米颗粒通过使用30kDa MWCO超滤管的水超滤2个循环进行纯化,并分散在水中备用,测量所得溶液的氧化铁浓度;
其中,所述Lemieuxvon Rudloff试剂由5.7mM高锰酸钾和0.105M NaIO4水溶液。
步骤2)Fe3O4@BSA纳米颗粒的制备
将BSA溶解于经Milli-Q处理的水中得到BSA水溶液,将制备好的亲水性Fe3O4纳米颗粒水溶液添加到BSA水溶液中,混合后最终浓度为:亲水性Fe3O4纳米颗粒0.2mg/ml,BSA 10mg/ml,以形成Fe3O4@BSA纳米颗粒,其中,Fe3O4与BSA的物质的量的比例为1:10,然后使用100kDa MWCO超滤管通过超滤去除游离BSA,得到Fe3O4@BSA纳米颗粒水溶液;
步骤3:
Figure FDA0003530712300000021
纳米颗粒的制备
分别将TA水溶液和FeCl3溶液加入到Fe3O4@BSA纳米颗粒水溶液中,使得混合后最终TA浓度为0.5mg/ml,Fe3+浓度为0.08mg/ml,Fe3O4@BSA、TA、Fe3+的物质的量的比例是1:40:200,然后使用100kDa MWCO超滤管通过超滤去除游离TA-FeIII络合物,超滤2个循环进行纯化,最终形成
Figure FDA0003530712300000022
纳米颗粒溶液。
CN202210210267.8A 2022-03-03 2022-03-03 一种用于pH可视化的磁共振成像纳米探针的制备方法 Active CN114558150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210210267.8A CN114558150B (zh) 2022-03-03 2022-03-03 一种用于pH可视化的磁共振成像纳米探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210210267.8A CN114558150B (zh) 2022-03-03 2022-03-03 一种用于pH可视化的磁共振成像纳米探针的制备方法

Publications (2)

Publication Number Publication Date
CN114558150A true CN114558150A (zh) 2022-05-31
CN114558150B CN114558150B (zh) 2023-06-23

Family

ID=81718056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210210267.8A Active CN114558150B (zh) 2022-03-03 2022-03-03 一种用于pH可视化的磁共振成像纳米探针的制备方法

Country Status (1)

Country Link
CN (1) CN114558150B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012201A1 (en) * 2004-06-25 2006-02-02 The Regents Of The University Of California Nanoparticles for imaging atherosclerotic plaque
WO2007064175A1 (en) * 2005-12-02 2007-06-07 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
CN105582554A (zh) * 2014-10-21 2016-05-18 中国科学院苏州纳米技术与纳米仿生研究所 核壳结构纳米材料、其制备方法及应用
CN109847073A (zh) * 2018-12-13 2019-06-07 上海师范大学 一种鞣酸(ta)-铁-bsa纳米粒子t1-mri造影剂及其制备方法
CN112010846A (zh) * 2019-05-30 2020-12-01 四川大学华西医院 一种吡啶衍生物及其制备方法和用途
CN112791185A (zh) * 2021-01-20 2021-05-14 广州医科大学 用于肿瘤光热联合铁剂治疗纳米药物及其制备方法
CN113546087A (zh) * 2021-07-01 2021-10-26 东华大学 一种纤连蛋白包覆的单宁酸/铁配合物的载药纳米材料及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012201A1 (en) * 2004-06-25 2006-02-02 The Regents Of The University Of California Nanoparticles for imaging atherosclerotic plaque
WO2007064175A1 (en) * 2005-12-02 2007-06-07 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
CN105582554A (zh) * 2014-10-21 2016-05-18 中国科学院苏州纳米技术与纳米仿生研究所 核壳结构纳米材料、其制备方法及应用
CN109847073A (zh) * 2018-12-13 2019-06-07 上海师范大学 一种鞣酸(ta)-铁-bsa纳米粒子t1-mri造影剂及其制备方法
CN112010846A (zh) * 2019-05-30 2020-12-01 四川大学华西医院 一种吡啶衍生物及其制备方法和用途
CN112791185A (zh) * 2021-01-20 2021-05-14 广州医科大学 用于肿瘤光热联合铁剂治疗纳米药物及其制备方法
CN113546087A (zh) * 2021-07-01 2021-10-26 东华大学 一种纤连蛋白包覆的单宁酸/铁配合物的载药纳米材料及其制备和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LU AN等: "Ultrasensitive iron-based magnetic resonance contrast agent constructed with natural polyphenol tannic acid for tumor theranostics", SCIENCE CHINA MATERIALS, vol. 64, no. 2 *
PEISEN ZHANG等: "Nanoprobe Based on Biominerals in Protein Corona for Dual-Modality MR Imaging and Therapy of Tumors", ACS NANO, vol. 17 *
罗成;李艳;龙启文;龙建纲;: "纳米酶在葡萄糖分析检测中的应用研究进展", 中国生物医学工程学报, no. 01 *
鞠丰翼;袁勋;乔斌;王志刚;张?;杜之渝;: "单宁酸铁包裹的载全氟己烷纳米粒三模态成像的实验研究", 中国超声医学杂志, no. 06 *

Also Published As

Publication number Publication date
CN114558150B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Peng et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications
Peng et al. Nanostructured magnetic nanocomposites as MRI contrast agents
EP1991503B1 (en) Method of preparation of superparamagnetic nanoparticles based on iron oxides with modified surface and superparamagnetic nanoparticles obtained by such a method
CN108324962B (zh) 一种团簇结构的四氧化三铁纳米颗粒的制备方法
Liu et al. Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents
CN111330023B (zh) 一种磁性纳米复合材料及其制备方法与应用
Peng et al. Engineering of single magnetic particle carrier for living brain cell imaging: a tunable T1-/T2-/dual-modal contrast agent for magnetic resonance imaging application
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
Wang et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T 1–T 2 contrast agent for magnetic resonance imaging
Zhang et al. Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging
Antwi‐Baah et al. Metal‐based nanoparticle magnetic resonance imaging contrast agents: classifications, issues, and countermeasures toward their clinical translation
CN112274657B (zh) 一种t1-t2双模态超高场磁共振造影剂及其制备方法和应用
Yue et al. Carbon-coated ultrasmall gadolinium oxide (Gd2O3@ C) nanoparticles: Application to magnetic resonance imaging and fluorescence properties
CN109078196B (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
JP2015519302A (ja) 磁性ナノ粒子分散剤、その調製及び診断及び治療用途
Kuźnik et al. Multiwalled carbon nanotube hybrids as MRI contrast agents
Liu et al. Colloidally stabilized magnetic carbon nanotubes providing MRI contrast in mouse liver tumors
Wang et al. Transferrin-conjugated superparamagnetic iron oxide nanoparticles as in vivo magnetic resonance imaging contrast agents
Tan et al. I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas
Maghsoudinia et al. Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma
Dai et al. Fabrication of AS1411 aptamer functionalized Gd 2 O 3-based molecular magnetic resonance imaging (mMRI) nanoprobe for renal carcinoma cell imaging
Rivera et al. Functional glucosamine-iron oxide nanocarriers
CN109620972B (zh) 一种用于肺癌诊断的t1-t2双模态靶向成像造影剂及制备方法
CN114558150A (zh) 一种用于pH可视化的磁共振成像纳米探针的制备方法
Pournoori et al. Magnetic resonance imaging of tumor‐infiltrating lymphocytes by anti‐CD3‐conjugated iron oxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant